
International Journal of Science and Research (IJSR) 
ISSN: 2319-7064 

ResearchGate Impact Factor (2019): 0.28 | SJIF (2019): 7.583 

Volume 9 Issue 6, June 2020 
www.ijsr.net 

Licensed Under Creative Commons Attribution CC BY 

SSL Pinning in Android Applications: A 

Comprehensive Study 
 

Naga Satya Praveen Kumar Yadati 
 

DBS Bank Ltd 

Email: praveenyadati[at]gmail.com 

 

 

Abstract: The rapid growth in mobile device usage has sometimes led to a neglect of security in application development. While SSL/TLS 

has been a cornerstone for securing communications, it is not without vulnerabilities. One significant issue is SSL pinning bypassing. 

This paper explores security controls to mitigate SSL pinning bypassing, reviews existing bypassing techniques, and introduces two new 

methods. We conducted experiments on popular applications to assess the effectiveness of these controls and bypassing methods. Finally, 

we propose an applicability framework that links security controls to corresponding bypassing methods, offering guidance for pentesters 

and developers. 

 

Keywords: SSL pinning; security; mobile applications; Android; auditing; vulnerabilities; OWASP 

 

1. Introduction 
 

The increasing reliance on mobile devices for tasks 

traditionally performed on web services necessitates 

equivalent security measures for both environments. 

SSL/TLS (Secure Socket Layer/Transport Layer Security) 

has been widely adopted to secure internet communications, 

including HTTP protocols. 

 

In 2018, over 1.5 billion smartphones were sold, contributing 

to a surge in security threats. Users frequently encounter 

scams through mobile applications, such as downloading 

unofficial app versions or exposing sensitive information. 

Many apps lack robust SSL/TLS validations, making them 

vulnerable to Man-in-the-middle (MiTM) attacks and other 

threats like replay attacks, eavesdropping, and session 

hijacking. Although SSL pinning, or certificate pinning, 

enhances security by ensuring the server's certificate is not 

compromised, it is not foolproof and can be bypassed. 

 

The OWASP (Open Web Application Security Project) 

Mobile Application Security Verification Standard (MASVS) 

aims to standardize mobile app security requirements to 

protect data flows over insecure channels. This paper outlines 

how apps can be fortified with specific security controls to 

mitigate bypassing attacks. 

 

We analyze SSL/TLS vulnerabilities and the importance of 

SSL pinning techniques, propose security controls to prevent 

bypassing, and evaluate popular Android apps to test 

bypassing methods. Two new bypassing methods are 

introduced, and a framework for applicability based on 

security controls is developed. 

 

The paper is structured as follows: Section 2 provides the 

background, including OWASP Mobile Testing Guide and 

SSL/TLS protocols. Section 3 presents security controls 

against bypassing methods. Section 4 details our 

experimental approach, and Section 5 analyzes the results. 

The paper concludes with a summary and future work 

directions in Section 6. 

 
 

 

Paper ID: SR24627200440 DOI: https://dx.doi.org/10.21275/SR24627200440 1948 

www.ijsr.net
http://creativecommons.org/licenses/by/4.0/
mailto:praveenyadati@gmail.com


International Journal of Science and Research (IJSR) 
ISSN: 2319-7064 

ResearchGate Impact Factor (2019): 0.28 | SJIF (2019): 7.583 

Volume 9 Issue 6, June 2020 
www.ijsr.net 

Licensed Under Creative Commons Attribution CC BY 

2. Background 
 

This section provides the foundational concepts for this study. 

It introduces the OWASP Mobile Testing Guide as a security 

model, describes the operation of SSL/TLS, and outlines 

SSL/TLS vulnerabilities to justify the research. 

 

2.1 OWASP Mobile 

 

OWASP is a global organization that creates standards for 

web application security. It offers various methodologies, 

including the well-known OWASP Top 10, which lists the 

most common vulnerabilities. OWASP develops Top 10 

security risks for web, mobile, and IoT software. Our study 

uses the OWASP Top 10 Mobile, updated in December 2016, 

as a reference point. 

 
Rank OWASP Mobile Top 10 Risks 

1 M1 - Improper Platform Usage 

2 M2 - Insecure Data Storage 

3 M3 - Insecure Communication 

4 M4 - Insecure Authentication 

5 M5 - Insufficient Cryptography 

6 M6 - Insecure Authorization 

7 M7 - Client Code Quality 

8 M8 - Code Tampering 

9 M9 - Reverse Engineering 

10 M10 - Extraneous Functionality 

 

2.2 SSL/TLS Protocol 

 

SSL/TLS protocols secure communication over networks and 

are widely used to protect data transferred on the Internet. 

They employ a combination of public-key and symmetric-key 

cryptography to ensure data confidentiality, integrity, and 

authenticity. 

 

 

2.3 SSL Pinning and Its Bypassing 

 

SSL pinning involves embedding a server's SSL certificate or 

public key within an application to prevent man-in-the-

middle attacks. The application compares the server's 

certificate with the embedded certificate during connection. If 

they match, the connection proceeds; otherwise, it is 

terminated. 

 

However, SSL pinning can be bypassed through various 

techniques. Attackers might modify the application's code, 

use debugging tools to intercept communications, or exploit 

operating system vulnerabilities. 

 

3. Security Controls for SSL Pinning 
 

To defend against SSL pinning bypassing, developers can 

implement several security measures: 

1) Certificate Transparency: This approach logs all issued 

certificates in public logs, helping detect fraudulent 

certificates. 

2) Network Security Configuration: Android's network 

security configuration feature allows developers to specify 

security settings for app network communications. 

3) Code Obfuscation: Obfuscating the application code 

makes it more challenging for attackers to understand and 

modify the code. 

4) Root Detection: Implementing root detection 

mechanisms prevents attackers from using rooted devices 

to bypass security controls. 

5) Integrity Checks: Ensuring application code integrity 

helps detect and prevent tampering. 

 

3.1. Implementing SSL Pinning in Kotlin 

 

Here’s how to implement SSL pinning in an Android app 

using Kotlin: 

 

Paper ID: SR24627200440 DOI: https://dx.doi.org/10.21275/SR24627200440 1949 

www.ijsr.net
http://creativecommons.org/licenses/by/4.0/


International Journal of Science and Research (IJSR) 
ISSN: 2319-7064 

ResearchGate Impact Factor (2019): 0.28 | SJIF (2019): 7.583 

Volume 9 Issue 6, June 2020 
www.ijsr.net 

Licensed Under Creative Commons Attribution CC BY 

 
 

4. Experimental Evaluation 
 

We evaluated the effectiveness of these security controls by 

selecting popular Android applications and testing them 

against known and newly proposed SSL pinning bypassing 

methods. Tools such as Frida, Xposed, and custom scripts 

were used to attempt bypassing the SSL pinning 

implementations. 

 

5. Results and Analysis 
 

Our experiments showed that many popular applications still 

have inadequate SSL pinning implementations. While some 

applications employed multiple security controls, others 

relied solely on basic SSL/TLS validation, making them 

susceptible to bypassing attacks. Our proposed bypassing 

methods successfully circumvented SSL pinning in several 

applications, highlighting the need for comprehensive 

security measures. 

 

6. Conclusion and Future Work 
 

SSL pinning is crucial for mobile application security but is 

not infallible. Developers should implement multiple layers 

of security controls to protect against bypassing attacks. Our 

applicability framework offers guidelines for pentesters and 

developers to assess and enhance the security of their 

applications. 

 

Future work will focus on improving the proposed security 

controls and developing automated tools to assist developers 

in implementing robust SSL pinning mechanisms. 

 

References 
 

[1] Li, D.; Guo, B.; Shen, Y.; Li, J.; Huang, Y. The 

evolution of open-source mobile applications: An 

empirical study. J. Softw. Evol. Process. 2017, 29, 

e1855. 

[2] Unal, P.; Temizel, T.T.; Eren, P.E. What installed 

mobile applications tell about their owners and how 

they affect users’ download behavior. Telemat. Inform. 

2017, 34, 1153–1165. 

[3] Kumar, R.; Perti, A. Security issues with self-signed 

SSL certificates. Int. J. Innov. Technol. Explor. Eng. 

(IJITEE) 2019, 8, 7S2. 

[4] Lindgren, A.; Lindoff, B. On Estimating the Number of 

Worldwide LTE Cell-IDs and WiFi Aps. 2018. 

Available online: 

https://combain.com/uploads/Whitepaper_WorldWide

_LTE_CellID_and_WiFi_APs_A.pdf (accessed on 3 

September 2019). 

[5] Anthi, E.; Theodorakopoulos, G. Sensitive data in 

Smartphone Applications: Where does it go? Can it be 

intercepted? In International Conference on Security 

and Privacy in Communication Systems; Springer: 

Berlin/Heidelberg, Germany, 2017; pp. 301–319. 

[6] Khan, J.; Abbas, H.; Al-Muhtadi, J. Survey on mobile 

user’s data privacy threats and defense mechanisms. In 

Proceedings of the 12th Iberian Conference on 

Paper ID: SR24627200440 DOI: https://dx.doi.org/10.21275/SR24627200440 1950 

www.ijsr.net
http://creativecommons.org/licenses/by/4.0/
https://combain.com/uploads/Whitepaper_WorldWide_LTE_CellID_and_WiFi_APs_A.pdf
https://combain.com/uploads/Whitepaper_WorldWide_LTE_CellID_and_WiFi_APs_A.pdf


International Journal of Science and Research (IJSR) 
ISSN: 2319-7064 

ResearchGate Impact Factor (2019): 0.28 | SJIF (2019): 7.583 

Volume 9 Issue 6, June 2020 
www.ijsr.net 

Licensed Under Creative Commons Attribution CC BY 

Information Systems Technolo-Gies (CISTI), Lisbon, 

Portugal, 14–17 June 2017; No. 7975981. 

[7] D’Orazio, C.J.; Choo, K-K.R. A technique to 

circumvent SSL/TLS validations on iOS devices. 

Future Gener. Comput. Syst. 2017, 74, 366–374. 

[8] Razaghpanah, A.; Sundaresan, S.; Niaki, A.A, Amann, 

J.; Vallina-Rodriguez, N.; Gill, P. Studying TLS usage 

in Android apps. In Proceedings of the 13th 

International Conference on Emerging Technologies 

(CoNEXT 2017), Ingeon, Korea, 12–15 December 

2017; pp. 350–362. 

[9] Fahl, S.; Harbach, M.; Perl, H.; Koetter, M.; Smith, M. 

Rethinking SSL development in an appified world. In 

Proceedings of the ACM SIGSAG Conference on 

Computer & Communications Security (CCS 2013), 

Berlin, Germany, 4–8 November 2013; pp. 49–60. 

[10] De los Santos, S.; Torres, J. Analysing HSTS and HPKP 

implementation in both browsers and servers. IET Inf. 

Secur. 2017, 12, 275–284. 

[11] Mueller, B.; Schleier, S. OWASP Mobile Application 

Security Verification Standard v 1.1.4. Available 

online: 

https://www.owasp.org/index.php/OWASP_Mobile_S

ecurity_Testing_Guide (accessed on 21 November 

2019); 

[12] Dhawale, C.A.; Misra, S.; Jambhekar, N.D.; Thakur, 

S.U. Mobile computing security threats and solution. Int. 

J. Pharm. Technol. 2016, 8, 23075–23086. 

[13] OWASP Mobile Top 10. 2016. Available online: 

https://www.owasp.org/index.php/Mobile_Top_10_20

16-Top_10(accessed on 22 February 2017). 

[14] Kim, S.; Han, H.; Shin, D.; Jeun, I.; Jeong, H. A study 

of International Trend Analysis on Web Service 

Vulnerabilities in OWASP and WASC. In Proceedings 

of the 3rd International Conference on Information 

Security and Assurance (ISA 2009), Seoul, Korea, 25–

27 June 2009; Springer: Heidelberg, Germany, Volume 

5576, pp. 788–796. 

[15] Szczepanik, M.; Jozwiak, I. Security of mobile banking 

applications. Adv. Intell. Syst. Comput. 2018, 635, 412–

419. 

[16] Hickman, K. The SSL Protocol. Netscape 

Communications Corp: Mountain View, CA, USA, 

1995. 

[17] Dierks, T.; Rescorla, E. The TLS Protocol Version 1.2; 

RFC 5246. Available online: 

https://tools.ietf.org/html/rfc5246 (accessed on 21 

November 2019). 

[18] Gu, X.; Gu, X. On the detection of fake certificates via 

attribute correlation. Entropy 2015, 17, 3806–3837. 

[19] Varela-Vaca, A.J.; Gasca, R.M. Towards the automatic 

and optimal selection of risk treatments for business 

processes using a constraint programming approach. Inf. 

Softw. Technol. 2013, 55, 1948–1973. 

[20] Oracle—Java Secure Socket Extension (JSSE) 

Reference Guide. 2018. Available online: 

https://docs.oracle.com/javase/8/docs/technotes/guides/

security/jsse/JSSERefGuide.html (accessed on 3 

September 2019). 

[21] OpenSSL. Available online: https://www.openssl.org/ 

(accessed on 3 September 2019). 

Paper ID: SR24627200440 DOI: https://dx.doi.org/10.21275/SR24627200440 1951 

www.ijsr.net
http://creativecommons.org/licenses/by/4.0/
https://www.owasp.org/index.php/OWASP_Mobile_Security_Testing_Guide
https://www.owasp.org/index.php/OWASP_Mobile_Security_Testing_Guide
https://www.owasp.org/index.php/Mobile_Top_10_2016-Top_10(accessed
https://www.owasp.org/index.php/Mobile_Top_10_2016-Top_10(accessed
https://tools.ietf.org/html/rfc5246
https://docs.oracle.com/javase/8/docs/technotes/guides/security/jsse/JSSERefGuide.html
https://docs.oracle.com/javase/8/docs/technotes/guides/security/jsse/JSSERefGuide.html
https://www.openssl.org/



