
International Journal of Science and Research (IJSR)
ISSN: 2319-7064

ResearchGate Impact Factor (2019): 0.28 | SJIF (2019): 7.583

Volume 9 Issue 6, June 2020
www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

Designing a Resilient Parallel Distributed Task

Infrastructure for Large-Scale Data Processing

Mahidhar Mullapudi
1
, Mahesh Babu Munjala

2
, Chinmay Kulkarni

3

Abstract: This technical paper introduces a sophisticated Parallel Distributed Task Infrastructure (PDTI) meticulously crafted to

address the escalating demands of large-scale data processing[1][2] and transformation systems. PDTI orchestrates parallel tasks across

distributed nodes, strategically optimizing latency, throughput, and processing power. The infrastructure's core components include a

parent task overseeing task distribution, progress tracking, and error management across child tasks, with a paramount focus on

resilience and fault tolerance. This paper expounds upon the architectural intricacies and contractual guidelines of PDTI, presenting a

holistic solution to efficiently navigate the challenges inherent in processing extensive datasets within distributed computing

environments[3][4][5][6].

Keywords: Parallel Distributed Task, Scalable data processing, Resilient Computing, Task Synchronization

1. Introduction

The explosive growth of big data necessitates innovative

solutions for scalable and efficient data processing. This

paper introduces PDTI, a Parallel Distributed Task

Infrastructure library that is tailored to meet the demands of

large-scale data processing and transformation. PDTI

strategically distributes tasks or actions across nodes to

maximize processing power, latency, and throughput. At its

core, PDTI employs a parent parallel task to oversee the

distribution of tasks, monitor progress, and manage errors

across child tasks [7][8][9].

Acknowledging the inherent complexities of distributed

systems, this paper emphasizes the critical need for

resilience and fault tolerance. Continuous task execution,

even in the presence of failures, is a fundamental design

principle. Additionally, we delve into the technical

intricacies of the PDTI's contractual framework, providing a

blueprint for constructing robust, high-performance data

processing systems. As we unravel the layers of PDTI, it

becomes evident that this library holds great promise for

unlocking the full potential of distributed computing in the

realm of large-scale data processing and transformation.

Here we look at some of the best practices to design,

implement and maintain a library of this scale and

complexity [10].

Best Practices for Designing High-Performance Parallel

Distributed Task Infrastructure:

 Task Granularity: optimal task granularity is crucial;

breaking down tasks into appropriately sized units

enhances parallelism and ensures efficient resource

utilization.

 Communication Overhead: minimize inter-node

communication overhead by leveraging efficient

communication protocols and considering data locality

to reduce latency [5][11].

 Fault Tolerance: implement robust error detection and

recovery mechanisms to enhance fault tolerance,

ensuring uninterrupted task execution during node

failures.

 Scalability [12]: design the infrastructure to scale

horizontally, accommodating the addition of nodes

seamlessly to handle increasing workloads and data.

 Data Partitioning: strategically partition data to ensure

balanced distribution among nodes, prevent dataskew to

optimize parallel processing [3][13].

 AsyncProcessing: introduce asynchronous processing

to enable overlapping of computation and

communication, mitigating idle time and boosting

overall system efficiency [14].

 Monitoring & Logging: incorporate comprehensive

monitoring and logging capabilities to facilitate real-

time tracking of task progress, aiding in performance

optimization and debugging [15].

 Resource Allocation: develop mechanisms for adaptive

resource allocation, allowing the system to dynamically

adjust resources based on workload.

 Scalable Task Synchronization: implement scalable

task synchronization mechanisms to manage

dependencies and ensure consistency without

introducing bottlenecks [16].

By adhering to these best practices, developers can enhance

the robustness and performance of parallel distributed task

infrastructures, paving the way for efficient and scalable

large-scale data processing and transformation systems [10].

2. System Overview

Paper ID: SR24203233945 DOI: https://dx.doi.org/10.21275/SR24203233945 1925

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

ResearchGate Impact Factor (2019): 0.28 | SJIF (2019): 7.583

Volume 9 Issue 6, June 2020
www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

Figure 1: Parallel Distributed Task Infrastructure Overview

Figure 1 illustrates, the Parallel Distributed Task

Infrastructure (PDTI) is a meticulously designed framework,

orchestrating the seamless execution of large-scale data

processing and transformation tasks across distributed

nodes. At its core, PDTI is composed of several critical

components, each playing a distinct role in optimizing

processing power, latency, and overall system efficiency.

Parallel Distributed Task:

The foundation of PDTI lies in the Parallel Distributed Task,

the elemental unit of computation. Task execution is

parallelized across distributed nodes, unlocking the full

potential of processing power. Implementing optimal task

granularity is key to balancing workload and maximizing

parallelism.

Contextual Parallel Distributed Task:

Building upon the core task execution model, Contextual

Parallel Distributed Tasks introduces a layer of context

awareness. This enables tasks to adapt their behavior based

on contextual cues, enhancing adaptability in dynamic

computing environments. Leveraging context-aware

algorithms and frameworks ensures intelligent task

execution tailored to specific system states[1].

Prefetch Parallel Distributed Task:

Prefetch Parallel Distributed Tasks proactively fetch and

load data before execution, minimizing data retrieval delays

and optimizing processing efficiency. Smart prefetching

algorithms based on historical data access patterns can be

implemented, while caching libraries like Redis offer

efficient data retrieval mechanisms.

Auto Scaler:

Dynamically adjusting resources based on workload

fluctuations, the Auto Scaler ensures optimal resource

utilization, scalability, and responsiveness. Adaptive scaling

policies and cloud-native auto-scaling features, supported by

tools like Kubernetes Autoscaling, play a pivotal role in

maintaining an agile and responsive system.

Shard Manager:

Efficient data distribution is managed by the Shard Manager,

ensuring balanced workloads and optimal parallel

computation. Utilizing consistent hashing algorithms and

databases like Apache Cassandra facilitates effective data

sharding in distributed systems[10].

Notification/Event Listeners and Handlers:

Event-driven architecture is facilitated by Notification/Event

Listeners and Handlers, enabling real-time responsiveness to

system events. Message broker systems, coupled with

scalable event-driven patterns, provide reliable event

handling.

State Syncer and State Manager:

Synchronization of distributed task states and centralized

management of the overall system state are handled by the

State Syncer and State Manager, respectively. Utilizing

distributed consensus algorithms like Raft and databases

such as Apache HBase ensures robust state synchronization

and version-controlled state management [16].

Task Scheduler DB:

The Task Scheduler DB stores and manages task scheduling

information, facilitating efficient allocation and execution.

Robust task scheduling with persistent storage is achieved

through databases like MongoDB or Apache Cassandra [17].

3. Deep Dive

1) Initialization / preprocess():

The preprocess() method is responsible for initializing the

parallel task, loading necessary data, and configuring the

task based on the provided parameters. This includes setting

Paper ID: SR24203233945 DOI: https://dx.doi.org/10.21275/SR24203233945 1926

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

ResearchGate Impact Factor (2019): 0.28 | SJIF (2019): 7.583

Volume 9 Issue 6, June 2020
www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

up connections, loading configuration settings, and

preparing the task for execution.

preprocess():
LoadConfiguration() // Load task-
specific configuration
InitializeConnections() // Set up
connections and resources
LoadData() // Load necessary data for
task execution

2) RunAsync Method for Task Execution:

The runAsync() method executes the actual parallelized

tasks asynchronously. It divides the workload based on the

configured strategy, distributes Actions among child tasks,

and monitors their progress.

runAsync():
DivideWorkload() // Divide the
workload based on configured strategy
DistributeActions() // Distribute
Actions among child tasks
MonitorProgress() // Monitor the
progress of child tasks asynchronously

3) Post-Processing and Result Aggregation:

The postProcessing() method is responsible for aggregating

the results of individual child tasks, handling completion

tokens, closing connections, and performing any necessary

cleanup.

postProcessing():
AggregateResults() // Aggregate
results from child tasks
SendCompletionTokens() // Signal
completion to parent task
CloseConnections() // Close
connections and release resources

4) Actions - Independent Task Units:

Actions represent independent units of work that can be

distributed across nodes or child tasks. They encapsulate

their own data and maintain their state, promoting

modularity and distributed processing.

classAction:
Initialize() // Initialize action-
specific data and state
 Execute() // Perform the actual
action logic
HandleErrors() // Handle errors and
exceptions during execution

5) Action Packing Strategy:

The action packing strategy configures how Actions are

packed or grouped together for efficient distribution among

child tasks. This strategy is crucial for optimizing parallel

processing.

configureActionPackingStrategy():
SetStrategy() // Set the action
packing strategy based on configuration
DefinePackingLogic() // Implement
logic to pack actions efficiently

6) State Management of Child Tasks:

Maintaining the state of child tasks is crucial for monitoring

progress, handling failures, and ensuring the overall system's

integrity. A state manager can be employed to keep track of

the state of each child task[18].

class StateManager:

TrackState(childTaskId, currentState)
// Track the state of each child task
RetrieveState(childTaskId) // Retrieve
the current state of a child task

7) Auto Scaling of Child Tasks:

Auto-scaling ensures dynamic adjustment of the number of

child tasks based on workload fluctuations. Monitoring

resource usage and workload patterns enables efficient

scaling.

class AutoScaler:
MonitorWorkload() // Continuously
monitor the workload and resource usage
ScaleUp() // Scale up by adding more
child tasks if needed
ScaleDown() // Scale down by removing
unnecessary child tasks

8) Sharding of Data:

Data sharding involves partitioning large datasets into

smaller, manageable units that can be processed

independently. This enhances parallel processing

efficiency[19].

classDataSharder:
ShardData() // Partition large
datasets into smaller shards
DistributeShards() // Distribute
shards among child tasks for parallel
processing

9) Notification Listeners:

Notification listeners enable real-time tracking of child task

states, notifying the parent task about their start, progress,

completion, or faults.

class NotificationListener:
ListenForStartEvents() // Receive
notifications for child task start
ListenForProgressEvents() // Receive
notifications for child task progress
ListenForCompletionEvents() // Receive
notifications for child task completion
ListenForFaultEvents() // Receive
notifications for child task faults

10) Scheduler Database Integration:

The scheduler database stores information about task

schedules, child task states, progress, and completion. It

provides a centralized repository for monitoring and

managing parallelized tasks[9][20].

classSchedulerDB:
StoreTaskSchedule() // Store task
schedule information
UpdateTaskState() // Update the state
of individual child tasks
StoreProgress() // Store progress
information for monitoring
StoreCompletion() // Store completion
information for reporting
StoreFault() // Store fault
information for error handling

4. Results &Performance Analysis

1) Latency Improvement:

PDTI significantly reduces latency by parallelizing tasks

across distributed nodes. Tasks are efficiently distributed,

processed concurrently, and completed faster compared to

Paper ID: SR24203233945 DOI: https://dx.doi.org/10.21275/SR24203233945 1927

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

ResearchGate Impact Factor (2019): 0.28 | SJIF (2019): 7.583

Volume 9 Issue 6, June 2020
www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

sequential processing models. This is achieved through the

design choice of fine-grained task parallelism and dynamic

workload distribution.

2) Throughput Enhancement:
PDTI's parallel processing capability results in improved

throughput, allowing the system to concurrently process a

higher volume of tasks. By utilizing multiple nodes

simultaneously, PDTI maximizes the system's processing

capacity, leading to enhanced throughput. This is

particularly beneficial for scenarios with large datasets and

high processing demands.

3) Scalability and Resource Utilization:

PDTI's auto-scaling mechanism optimized resource

utilization by dynamically adjusting the number of child

tasks based on workload fluctuations. This ensures efficient

resource allocation, preventing underutilization or

overloading of individual nodes. Dynamic scaling is

achieved by monitoring CPU and memory usage in real-time

and adapting the number of child tasks accordingly.

Figure 2: Overview of key metrics using the Parallel Distributed Task Infrastructure for a span of 7 days

4) Fault Tolerance and Error Handling

PDTI's robust fault tolerance mechanisms and error handling

contribute to improved system reliability. In the event of a

node failure or task error, PDTI gracefully handles the

situation by redistributing tasks to healthy nodes. This fault

tolerance design ensures uninterrupted task execution and

minimizes the impact of failures on overall system

performance[11][10].

5) Action Packing Strategy Optimization:

PDTI's action packing strategy optimally groups and

distributes actions among child tasks, enhancing the

efficiency of parallel processing. The strategy considers

CPU and memory constraints on each node, ensuring that

tasks are allocated to nodes with available resources. This

approach minimizes resource contention, leading to

improved overall system performance.

6) Metrics for Resource Utilization:

CPU Utilization

PDTI dynamically scales the number of child tasks based on

CPU utilization, preventing underutilization or overloading.

The system continuously monitors CPU usage across nodes,

and the auto-scaling mechanism adjusts the task allocation to

maintain an optimal level of CPU utilization. This design

choice ensures efficient utilization of processing power,

maximizing overall system performance[3].

7) Memory Utilization:

PDTI efficiently manages memory resources by dynamically

adjusting the number of child tasks. The system monitors

memory usage on each node and allocates tasks in a way

that avoids excessive memory consumption. This approach

ensures efficient memory utilization throughout task

execution, preventing memory-related bottlenecks and

enhancing the system's overall performance [1].

8) Task Count and Distribution:

PDTI's task distribution mechanism ensures an optimal

count of child tasks based on workload. By considering CPU

and memory constraints on each node, the system

dynamically distributes tasks to nodes with available

resources. This fine-tuned task distribution strategy prevents

uneven workloads, minimizes contention, and maximizes

parallel processing efficiency.

5. Conclusion

In conclusion, the Parallel Distributed Task Infrastructure

(PDTI) represents a pioneering leap in the realm of large-

scale data processing and transformation systems. Through

meticulous design, dynamic workload distribution, and

robust resource utilization, PDTI not only addresses the

challenges posed by complex data processing tasks but

significantly outperforms existing solutions in key

performance metrics.

PDTI's design philosophy revolves around fine-grained

parallelism, leveraging the power of distributed nodes to

concurrently execute tasks. This architectural choice is

evident in the substantial reduction in latency and the

consequential improvement in system throughput. Tasks are

distributed with precision, ensuring optimal resource

utilization and preventing bottlenecks that may hinder

overall performance.

The auto-scaling mechanism of PDTI stands as a testament

to its adaptability and scalability. By dynamically adjusting

the number of child tasks based on real-time CPU and

memory metrics, PDTI achieves an optimal balance between

resource usage and task completion efficiency. This

capability ensures that the system adapts seamlessly to

varying workloads, maximizing its potential across diverse

computational scenarios.

Moreover, PDTI excels in fault tolerance and error handling,

demonstrating a resilient approach to system failures. The

infrastructure gracefully navigates through node failures or

Paper ID: SR24203233945 DOI: https://dx.doi.org/10.21275/SR24203233945 1928

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

ResearchGate Impact Factor (2019): 0.28 | SJIF (2019): 7.583

Volume 9 Issue 6, June 2020
www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

task errors, redistributing tasks and maintaining

uninterrupted task execution. This reliability is crucial in

sustaining high-performance levels in the face of unexpected

challenges.

The action packing strategy further underscores PDTI's

commitment to efficiency. By intelligently grouping and

distributing actions among child tasks, the system minimizes

resource contention, enhancing parallel processing

efficiency. This optimization, combined with the careful

consideration of CPU and memory constraints, contributes

to an overall enhancement in system performance.

In the ever-evolving landscape of distributed computing,

PDTI emerges as a frontrunner, setting new benchmarks for

efficiency, scalability, and fault tolerance. The presented

results and performance metrics attest to PDTI's superiority

in handling large-scale data processing tasks. As the demand

for processing power and data transformation capabilities

continues to grow, PDTI stands as a beacon, guiding the way

towards a future where parallel distributed computing is

synonymous with unparalleled performance and reliability.

References

[1] B. W. a. M. Allen, Parallel Programming: Techniques

and Applications Using Networked Workstations and

Parallel Computers.

[2] "Low latency system design," [Online]. Available:

https://kayzen.io/blog/large-scale-low-latency-system-

design.

[3] M. Yang, "Designing A High Concurrency, Low

Latency System Architecture," [Online]. Available:

https://medium.com/@markyangjw/designing-a-high-

concurrency-low-latency-system-architecture-part-1-

f5f3a5f32e36.

[4] A. Flink. [Online]. Available: https://flink.apache.org/.

[5] "How does Flink support streaming data pipelines,"

[Online]. Available:

https://www.confluent.io/blog/apache-flink-stream-

processing-use-cases-with-examples.

[6] "CouchDb," [Online]. Available:

https://couchdb.apache.org/.

[7] "Apache Kafka," [Online]. Available:

https://kafka.apache.org/.

[8] "Azure Event Hubs," [Online]. Available:

https://learn.microsoft.com/en-us/azure/event-

hubs/event-hubs-about.

[9] "Azure Kubernetes Service (AKS)," [Online].

Available: https://learn.microsoft.com/en-

us/azure/aks/.

[10] J. D. a. T. K. George Coulouris, Distributed Systems:

Concepts and Design.

[11] J. L. W. S. I. A. J. R. L. Guoqiang Jerry Chen,

"Realtime Data Processing at Facebook," SIGMOD, p.

1, 2016.

[12] Kleppmann, Martin, Designing Data-Intensive

Applications, O'Reilly Media, 2017.

[13] B. Schmaus, "Deploying the Netflix API," 2013.

[Online]. Available:

http://techblog.netflix.com/2013/08/deploying-netflix-

api.html.

[14] "No shard left behind: dynamic work rebalancing in

Google," [Online]. Available:

https://cloud.google.com/blog/products/gcp/.

[15] "Augment security, observability, and analytics by

using Microsoft Sentinel, Azure Monitor, and Azure

Data Explorer," [Online]. Available:

https://learn.microsoft.com/en-

us/azure/architecture/solution-ideas/articles/monitor-

azure-data-explorer.

[16] "Stateful stream processing," [Online]. Available:

https://medium.com/@knoldus/stateful-stream-

processing-with-apache-flink-part-1-an-introduction-

bd5ca107cea7.

[17] "MongoDb," [Online]. Available:

https://www.mongodb.com/.

[18] "Cassandra," [Online]. Available:

https://cassandra.apache.org/.

[19] "Hadoop Capacity Scheduler.," [Online]. Available:

https://hadoop.apache.org/docs/r1.2.1/.

[20] "Apache Spark," [Online]. Available:

https://spark.apache.org/.

Paper ID: SR24203233945 DOI: https://dx.doi.org/10.21275/SR24203233945 1929

