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Abstract: Machine Learning is one of the hot searches in the search engine and is very useful in a variety of areas and subjects. The 

definition of Machine learning given by Wikipedia is the study of computer algorithms that improve automatically through experience. 

Mathematical equations and statistical computations also play crucial roles in the entire machine learning process. Statistical models 

like regression and classification help in Supervised Learning. Other processes will work for Unsupervised Learning and 

Reinforcement Learning. Other than pure statistics, which focus more on understanding data in terms of models, Machine Learning 

focus higher on prediction. This article focusses on the prediction perspective of the Machine Learning process while considering the 

dimension reduction using the sparsity property. The LASSO (Tibshirani, 1996) method provides a sharp power in selecting significant 

explanatory variables and has become very popular in solving big data problems. A simulation study was conducted to test the power of 

the model. For application, NBA data was considered. A prediction of the 2019 postseason bracket is given by learning the historical 

postseason team statistics. The accuracy of the bracketing could be evaluated. 
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1. Introduction 
 

One important area in machine learning is the prediction. 

Researchers are working on selecting the better model in 

reducing the prediction variance. Ordinary linear regression 

is one of the classic models in the supervised learning 

process. However, the ordinary linear model will encounter 

the overfitting problem due to the least-squares approach. 

 

The overfitting problem is expressed in Figure 1. The black 

dots are the data points. The red least-squares line was fitted 

to describe the linear relationship between the response ( ) 

and the explanatory variable ( ). If the intention in this 

machine learning process was to predict over the new dataset 

marked in green dots, the red regression line is overfitting 

and yields a high prediction variance for these new dates 

(green dots). We anticipate a model that was fit over the 

training dataset (black dots) can provide a blue fitted line, 

which can also have a relatively small variance toward the 

testing dataset (green dots).   

  

  
Figure 1: OLS overfitting 

  

One classic approach to reach the blue fitted line is the 

LASSO model. LASSO stands for the least absolute 

shrinkage and selection operator. Tibshirani (1996) proposed 

this LASSO model which minimizes 

 

    (1.1) 

 

where  is the tuning parameter form  to  . The tuning 

parameter is the coefficient that controls the power of the 

shrinkage.  is the same as  norm such that 

. Note that there are a total of  covariates 

in the model.  

 

Due to LASSO‟s desired geometric property, it can 

significantly reduce the dimension of the covariates. 

Sometimes the LASSO model will even work when , 

the number of covariates is larger than the sample size. 

Figure 2 shows the geometric property of Lasso under the 

constraint of two dimensions  norm. We can also interpret 

Figure 2 as  for some . 

 
Figure 2: The geometric expression for two dimensions  

 

The choice of  is usually through cross-validation. If  goes 

to 0, the penalty portion will go to 0. Then there is no 

difference between the LASSO model and the OLS (ordinary 

least squares) model. If  goes to , the penalty portion 

will dominate the whole equation. The estimated coefficients 
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will all go to 0. R package like “glmnet” will provide the 

estimated tuning parameter.  

 

A penalized logistic regression is considered to get the 

prediction of the binary response data. Figure 3 shows the 

logistic curve, which is bounded between 0 and 1. The 

curve‟s property makes the logistic regression a nature fit for 

binary response data.  

 
Figure 3: The standard logistic function 

 

Penalized logistic regression imposes a penalty to the logistic 

model for having too many covariates. This process results in 

shrinking the coefficients of the less contributive variables 

toward zero. If LASSO is incorporated in this process, the 

coefficients of some less contributive variables are forced to 

be exactly zero. The other popular definition of this process 

is dimension reduction. 

 

Combine the LASSO logistic regression with the Bayesian 

informative prior model to directly apply to NBA postseason 

data. An evaluation method can be applied to check the 

prediction accuracy of the 2019 NBA postseason bracket.  

 

2. Methodology 
 

The whole methodology part can be separated into two 

sections. We first start with the LASSO logistic regression. It 

is treated as the model selection process. Once we get the 

final reduced model from this LASSO logistic process, we 

can then fit a Bayesian informative prior model to get the 

predicted bracket. A comparison between the real bracket 

and the prediction bracket will get this whole process 

adequately evaluated. 

 

2.1 LASSO Logistic Regression 

 

We intend to keep a model with only the most significant 

variables or covariates. The ordinary logistic regression is of 

the following format 

 

     (2.1) 

With the penalty involved, logistic LASSO is an effective 

method to reduce large dimensional covariates. Given the 

logistic model (2.1), the negative log-likelihood with  

regularization takes the form 

 

    (2.2) 

 

From the form of the log-likelihood function (2.2), we see 

that the maximization of the log-likelihood function, a 

monotone function, is the same as minimizing the negative 

log-likelihood. The rest part is the same as the basic LASSO 

regression,  controls the magnitude of the penalty term and 

is estimated by cross-validation. Figure 4 shows an example 

of the selection process of the best-estimated . 

 
Figure 4: Example CV values with  

 

Once  is determined, the estimated coefficients will be 

reported with the lowest predicting variance. Several 

coefficients will be set exactly to zero due to the sparsity of 

LASSO.  

 

2.2 Bayesian Model with Informative Prior 

 

For the Bayesian model, two parts need to be considered, the 

prior and the likelihood. The posterior is proportional to the 

product of prior and the likelihood. For the likelihood, since 

the research interest is the binary response, the setting 

transfers to a random variable , taking values 0 or 1, follows 

a Bernoulli distribution with probability . Refer to the 

logistic regression (2.1) and let , the probability  

can be expressed as the following equation: 

                                        (2.3) 

 

The distribution of  is as follows: 

 

 

    (2.4) 

 

For a full Bayesian approach, the posterior is stated as 

 As to the likelihood, 

, it is determined with the product of the 

distribution . For the prior , we need to involve 

the indirect prior information based on the historical 

probability information. Using the delta method, we can have 

the following distribution for the vector : 

 
(2.5) 

Note that the above Normal distribution is a multivariate 

normal distribution and  refers to as the design matrix. 

 

With all these setups, we can sample from the posterior 

distribution which is 
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(2.6) 

The estimated coefficients can then be determined. For the 

application to the real data, a predicted bracket can be 

provided by involving the current season‟s team statistics.  

 

3. Simulation 
 

A simulation process is provided to check the performance of 

the LASSO logistic regression. The simulation work involved 

fifteen covariates; hence there will be fifteen  related to 

the covariates. Ten out of the fifteen covariates will be set to 

zero. The covariates‟ data will come from a variety of 

distributions.  

 

3.1 Simulation on X’s 

 

The data should differ from a variety of distributions, and the 

mean of these data should be away from zero. If the mean of 

these data is around zero, then it is difficult to distinguish 

whether it is due to the LASSO sparsity that the later 

estimated coefficients shrink to zero. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

3.2 Simulation on ’s 

 Table 1: Assumed true coefficient values 
Coef         

True Value 4 -4 5 7 -6 0 0 0 

 

Coef         

True Value 0 0 0 0 0 0 0 

3.3 Simulation on ’s 

 

The following equation calculates the “true” probabilities: 

                                (3.1) 

 

 

 

3.4 Simulation on ’s 

 

Since we need the binary response, we will set  or 

 based on the Bernoulli trial with the above probability. 

The sample size is taken to be 1000. 

 

3.5 Simulation Results 

 Table 2: Comparison of the coefficient values 
Coef         

True Value 4 -4 5 7 -6 0 0 0 

Estimated Value 2.5 -2.3 3.1 4.2 -3.6 0 0 0.04 

 

Coef         

True Value 0 0 0 0 0 0 0 

Estimated Value 0 -0.1 0 -0.1 -0.02 0 0.13 

 

We can see that the logistic LASSO model successfully 

shrinks the unnecessary coefficient down to zero hence reach 

a dimension reduction effect. 

 

4. Application 
 

NBA postseason team statistics are studied to apply this 

whole process to live data. The training dataset includes the 

postseason team statistics from the year 2012 playoffs to the 

year 2018 playoffs. Table 3 shows all team statistics included 

in this study.   

 Table 3: Team statistics list 

Fouls Per 

Game 

Games 

Played 

Average 

Field 

Goals 

Made 

Average 

Field 

Goals 

Attempted 

Field Goal 

Percentage 

Average 3-

Point Field 

Goals 

Made 

Average 3-

point Field 

Goals 

Attempted 

3-Point 

Field Goal 

Percentage 

Average 

Free 

Throws 

Made 

Average 

Free 

Throws 

Attempted 

Free Throw 

Percentage 

Offensive 

Rebounds 

Per Game 

Defensive 

Rebounds 

Per Game 

Rebounds 

Per Game 

Assists 

Per Game 

Steals Per 

Game 

Blocks Per 

Game 

Turnovers 

Per Game 

 

With the help of the logistic LASSO regression, some of the 

team statistics could be removed. This LASSO process will 

lead to a final reduced model with only important covariates. 

Table 4 shows the removed team statistics in red color.  

Table 4: Team statistics with removed covariates in red 
Fouls Per 

Game 

Games 

Played 

Average 

Field 

Goals 

Made 

Average 

Field Goals 

Attempted 

Field Goal 

Percentage 

Average 3-

Point Field 

Goals 

Made 

Average 3-

point Field 

Goals 

Attempted 

3-Point 

Field Goal 

Percentage 

Average 

Free 

Throws 

Made 

Average 

Free 

Throws 

Attempted 

Free Throw 

Percentage 

Offensive 

Rebounds 

Per Game 

Defensive 

Rebounds 

Per Game 

Rebounds 

Per Game 

Assists 

Per Game 

Steals Per 

Game 

Blocks Per 

Game 

Turnovers 

Per Game 

 

The estimated tuning parameter  = 0.0023. The dimension 

of the covariates reduced from eighteen to seven.  

 

The playoff bracket is seeded based on the regular-season 

performance. Seeds will be number from 1 to 8 by East or 
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West teams. Figure 5 is the example bracket for 2019 

playoffs (Wikipedia).  

 
Figure 5: Bracket for 2019 playoffs 

 

For the first round, Milwaukee plays with Detroit. Milwaukee 

rank seed one and Detroit rank seed eight. The winning 

probability for Milwaukee based on the historical seeding is 

involved. The historical winning probabilities are determined 

by all games matched with those seeding combination. If 

seed one and seed eight played 20 games at the postseason, 

and seed one won 19 of those games, then seed one is 

defined to have 19/20 winning probability over seed eight. 

The historical winning probabilities will then transfer to the 

 prior using Delta Method. Table 5 is a comparison of the 

perdition and the real bracket of the playoffs 2019.  

 

Table 5: NBA 2019 playoffs bracketing 
Team R1 R2 R3 R4 

Milwa 
Milwa (√) 

Milwa 

(√) 

Milwa 

(Toronto) 

Milwa 

(Toronto) 

Detroit 

Boston 
Boston (√) 

Indiana 

Phila 
Phila (√) 

Phila 

(Toronto) 

Brookln 

Toronto 
Toronto (√) 

Orlando 

Golden S 
Golden S (√) 

Houston 

(Golden St) 

Houston 

(Golden St) 

LA clippers 

Houston 
Houston (√) 

Utah 

Portland 
Portland (√) 

Portland 

(√) 

Oklaho 

Denver San Anto 

(Denver) San Anto 

 

The prediction accuracy can be evaluated by a single scoring 

system and as well as a double scoring system (Shen, 2015). 

For single scoring system, the accuracy is 8/15= 53.33%. For 

double scoring system, the accuracy is 11/32=34.38%.  

 

5. Conclusions 
 

From the simulation and also the application, it is easy to 

detect that the sparse machine learning model is beneficial 

for the prediction or decision making. Furthermore, for the 

current big data world, it also plays a significant role. When 

reaching the high dimension problem, the sparsity property 

can significantly reduce the size of the dimension and yield a 

more reasonable model.  

 

Current common sparse machine learning models include 

Ridge Regression, LASSO regression, and Elastic Net.  

norm could also be considered from a different type of data. 

Figure 6 is the geometric representation of the typical values 

of . 

 
Figure 6: Geometric representation of  norm 
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