
International Journal of Science and Research (IJSR)
ISSN: 2319-7064

ResearchGate Impact Factor (2018): 0.28 | SJIF (2019): 7.583

Volume 9 Issue 6, June 2020

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

FPGA based MIPS Pipeline Processor with SIMD

Architecture

Sarah M. Al-Sudany
1
, Ahmed S. Al-Araji

2
, Bassam M. Saeed

3

Computer Engineering Department, University of Technology, Baghdad, Iraq

Abstract: The aim of this study is to develop a MIPS pipeline processor based on FPGA with using VHDL. This architecture can be

used for academic purposes and to set up a multifunctional system for the processing of digital signals or images. In order to do so, a

subset of MIPS instructions is chosen to show functionality in the simulation and synthesis processor inside a five-stage pipeline

(instruction fetch, instruction decode, execution, memory and writing back). The hazard control network has been set up to manage data

transfer and stalling. A single cycle multiplication functionality and a single-cycle SIMD instruction have been added to the basic MIPS

architecture. The SIMD instructions have been selected to execute binary operations for possible mathematical morphology. A Software

(XUP) box containing Xilinx Virtex7 xc7vx330tFPGA was the board used to test the processor. This makes it possible for the processor

to perform four 32-bit data sets per cycle when the SIMD pipeline is complete. The research explained the Field Programmable Gate

Array (FPGA) technology with extensive explore of MIPS pipeline architecture. In addition to the research highlights many aspect of

this process such as the role of The SIMD principle in the support of the hardware acceleration feature that required by multicore

overall processors and instruction set and the multiple instructions executed in this processor from each register and multiply them as

standard MIPS applications instead of the entire 32 bits.

Keywords: MIPS Pipeline Processor, SIMD Architecture, FPGA, RTL, VHDL

1. Introduction

Processor is one of the basic component of any digital

system. It is also called the brain of a computer or a system.

Moreover, processor is the electronic circuitry within a

computer that executes instructions that make up a computer

program .Design computing processors based on FPGA and

computational SIMD arrays that has already been proven to

perform supercomputer class tasks for limited amounts of

supercomputer costs. Such two architectures consist of a

number of limited, but various processing components. Such

similarity is the secret to understanding the remarkably high

performance of silicon on the FPGA and SIMD chips. Huge

data parallelism makes high use of SIMD computers[1].

Through specific task computer configuration and

pipelining, FPGA machines achieve a higherutilization. In

either case, numerous thousand bits per cycle transformed

compared with a standard 64 bits microprocessor. Today,

field-programmable gate arrays (FPGAs) commonly used

for the implementation of multipurpose logic. FPGAs built

from a sophisticated collection of basic logical functions [2].

There are a number of FPGAs available on the market from

many vendors. Further developments in packaging allow

high-performance [3]. Integrated SIMD arrays to be

manufactured at reasonable cost. Such two array structures

are identical. Both use a sophisticated collection of logical

components. The logical unit performs a basic logical

function in certain states and some array inputs, and either

updates its own status to record the computation results or

shares the results with other entities in the array [4].Given

the similarities, there have been very different directions in

the design of FPGAs and SIMD arrays.

In this paper, it implements MIPS processor model on the

FPGAs and use SIMD architecture.The manner in which

FPGA and SIMD architecture solve problems is contrasted

in Section 2, including FPGA technology. In section 3,

introduces and defines the specific terms such as MIPS and

SIMD. In section 4, explains MIPS pipeline architecture and

instruction set architecture. The results are discussed in

section 5; finally, conclusions are cited in section 6.

2. Field Programmable Gate Array (FPGA)

Technology

Advances continually recorded in Field Programmable Gate

Array (FPGA) technology. FPGAs are a preferred

integration platform in many industries by high speed and

versatility, the ability to take advantage of the inherent

fundamental parallelism of many frameworks and

algorithms, a fast time to market, strong cost-effectiveness,

vast quantities of embedded resources and the availability of

IP-specific cores [3 and 5]. Limited knowledge of the design

and technology techniques, lack of adequacy of these

techniques, size, and the absence of advanced hardware

functionality conditioned the industrial penetration of this

second program [6]. The difficulty of the FPGA architecture

and the need to develop some hardware design expertise is

one of the key obstacles to further acceptance of

programmable computation as a new paradigm [7].

With FPGAs evolving by scaling down production

fabrication technology, vendors have started developing soft

processor cores, whichcan be incorporated from standard

FPGA resources, and have embedded (hard) processors

incorporated in their products [8]. This pattern has seen an

immense growth, to the point that there are countless current

solutions.This has led to a paradigm change in the past

dichotomy of design strategies that constitutes the key

existing asset of FPGAs thatcan no longer be seen merely as

hardware accelerators, but also as very efficient system-on-

Chip (SoC) platforms [9]. Combining embedded (or soft)

processors with high performance custom-optimized

hardware peripherals in a single chip open the door to

unrestricted use of FPGA in any digital design field for

Paper ID: SR20601000556 DOI: 10.21275/SR20601000556 444

https://www.researchgate.net/profile/Bassam_Mohammed_Saeed?_iepl%5BgeneralViewId%5D=PKfAcobTX4Xq03EqFKlPWa3tWK7xAtGU9u7n&_iepl%5Bcontexts%5D%5B0%5D=searchReact&_iepl%5BviewId%5D=Lgnu5IfJvQiHt1CpgVdUTp5iClStPoOmRaTr&_iepl%5BsearchType%5D=researcher&_iepl%5Bdata%5D%5BcountMoreThan20%5D=1&_iepl%5Bdata%5D%5BinteractedWithPosition8%5D=1&_iepl%5Bdata%5D%5BwithoutEnrichment%5D=1&_iepl%5Bposition%5D=8&_iepl%5BrgKey%5D=AC%3A10106504&_iepl%5BinteractionType%5D=profileView

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

ResearchGate Impact Factor (2018): 0.28 | SJIF (2019): 7.583

Volume 9 Issue 6, June 2020

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

commercial applications [10]. Perhaps unexpectedly, in

recent years the features, design techniques, methods, and

implementation areas of these devices were studied

extensively, to mention only the work focused primarily on

industrial systems. Additional features are constantly

emerging. The authors therefore believe that a study of the

latest advances in FPGA technology would be useful for the

research community in industry informatics[11].FPGAs

have very different hardware capabilities between

manufacturers and models. The most beneficial options for

designers have been studied in: standardized functional

frames, i/ O signal processing, partial modification, IP

security and special [12]. New manufacturing technologies

(14 nm, 3-D tri-gate transistors)permit the incorporation of

even more useful features into contemporary FPGAs, with

more than 50 millions equivalent logical gates in some cases

and operating frequencies of over500MHz while

maintaining a rational power consumption[13].Indeed, while

one of the conventional FPGAs problems is its high power

requirement compared to microcontrollers, it is possible that

the energy usage of FPGAs could be equivalent to that of

the microcontrollers required in complex applications where

multiple machines need to be used. Within these features,

those, which enable the implementation of modern,

advanced digital systems for commercial applications (often

based on complex algorithms) due to their high computer

power and/or the low run-time they deliver [14].

3. Literature Review

Market products such as handheld devices and home

entertainment will deliver high-quality audio, video, picture

and graphics output to connect with the new generation. The

technology that provides higher data flow is especially

essential for business applications of scientific / high-

performance computing and data mining [15].SIMD (Single

Instruction Multiple Data) is the primary technologies for

connect with the new generation. Modern CPU principles

that increase efficiency by enabling effective concurrent

processing of vehicle activities. These advanced computing

specifications streamlined and accelerated [16].

The MIPS SIMD Architecture (MSA) technology integrates

a programmable approach into the CPU for managing

evolving codecs or a limited number of features, which are

not supported by specialised hardware in consumer

electronics, whereas unusable hardware assists the

Processor, and GPU with multimedia codecs.This

programmable approach facilitates consistency of the

system.

The MSA is also intended to speed up a variety of

computing applications by providing standardised compiler

assistance. MSA innovations is introduced in full

accordance with the architecture standards of RISC

(Reduced Instruction Set Computer) [17]. With simple

directions, MIPS Architecture have developed the MSA to

contribute to less complicated applications. The carefully

chosen, basic SIMD instruction set is not only programmer

friendly and easy to compile, but also quick, range and

power sensitive. The requirements for MSA technologies are

extendable and capable of meeting potential demands. In the

following section we will clarify more detail about SIMD

AND MIPS [18].

3.1 The Role of the SIMD Principle in New Technology

The SIMD principle is a method to boost efficiency in

applications where highly repetitive operations are needed.

SIMD is a method to execute the same procedure on

multiple pieces of data concurrently, whether arithmetic or

otherwise. When an algorithm is typically coded and a

single process may be done over a wide dataset, a loop is

used to iterate any entity in the dataset and execute the

efficient approach. At each execution, a single piece of data

is done for a single process [19].This is called Single

Instruction Single Data processing (SISD). Loops may well

iterate thousands of times and quite inefficient.

Theoretically, the amount of iterations of a loop requires to

be decreased to improve efficiency. One way to decrease

loops is called loop unrolling. This takes the single

procedure in the process and executes it numerous times in

increasing iteration[20].

The SIMD principle goes a step forward by integrating and

executing several acts in each loop repetition. Through

SIMD, it is not only feasible to minimise the amount of loop

iterations, but it can also minimise the necessary multiple

operations to an efficient single action. This will be achieved

by SIMD utilising vectors. The argument for a particular

instruction may be used as a SIMD vectors that are then

executed concurrently on all items in the vector [21].

The amount of values, whichcan be installed into the vector,

thusaffects output directly; the more values are processed

simultaneously, the more easily a full dataset can be

processed. Two items are needed for this scale; the data type

used and the SIMD specification. When values are

processed and operated on in SIMD vectors through a SIMD

method, they are simply transferred to a different collection

of CPU registers whereby parallel processing happens. The

SIMD design specifies the size and amount of such registers

[22].

SIMD utilises several Kernel functional units; separate

CPU functional units for continuously performing arithmetic

and Boolean Procedures. The SIMD functionality can be

enhanced by pipelining the guidance of the system.The

instruction pipelines are to decompose instruction execution

in a linear sequence of autonomous phases, which permit

each step to concurrently execute an execution process

component such as decoding, productive address

measurement, fetch operand, execution and storage [23].The

diagram of the SIMD architecturecan be shown in Figure

(1).

Paper ID: SR20601000556 DOI: 10.21275/SR20601000556 445

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

ResearchGate Impact Factor (2018): 0.28 | SJIF (2019): 7.583

Volume 9 Issue 6, June 2020

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

Figure 1: Big picture of SIMD architecture.

3.2 The Importance of MIPS in the Design of FPGA

John L. Hennessy first engineered the MIPS system in 1985,

while work began at Stanford University in 1981. The MIPS

processor architecture intended by using deep instruction

pipelines to enhance processor efficiency. Instead of the full

instruction cycle like the conventional designs, the clock

rate of the processor centred on the crucial path in one of the

stages before switching to the next. One significant feature

of MIPS architecture was to demand that all instructions

followed by just one cycle [24].

Thus avoiding any interlocking specifications. The

architecture of the MIPS processor omitted a range of

valuable instructions to complete certain moves [25]. The

MIPS basic pipeline is shown in the Figure (2).

Figure 2: MIPS basic pipeline [25]

The lengthy instructions were taken out, as a consequence of

the processor operating at much higher clock speeds, the

machine output was considered to be significantly enhanced.

It was difficult to increase the pace with interlocking,

because the locks took up additional chip areas, which

decreased the speed [26].

Several analysts believed that the MIPS concept should not

be used with the absence of guidance in commercial

products. The point was that of CISC (complex instructions

computer set) vs RISC (reduced instructions set): that a

complicated instruction would reduce speed by substituting

several simpler instructions [27]. The claim overlooked the

reality that the construction speed arises from the pipelines

and not from the instructions themselves. Across several

academic curricula, the principle of the MIPS system used to

explain the pipeline [28].

The MIPS-based DLX system uses VHDL code to

simulation the processor, but without significant alteration,

it can not be synthesised [29]. The fundamental MIPS

architecture has built a five-stage pipeline that separates the

data path combination into stages. By splitting the processor

into smaller parts, the overall frequency increased and the

vital path from the single cycle route to a smaller portion of

this route decreases [30].

4. MIPS Pipeline Architecture and Instruction

Set Architecture

One of the most important functions of subset while the

MIPS processor uses instructions set. Every instruction has a

length of 32 bits and is characterised by six

least significant or most significant bits. Three types of

instructions are used with the MIPS: access to register (R-

type), instant registration, immediate type (I-type) and

jumping (J-type). The instructions R-type are mainly used

for directions of method of function, i.e. addition and

subtraction. The (I-type) instructions like the R type

instructions were used, except in their instructions they use

an immediate 16-bit meaning. Instructions for jump are used

for the (J-type). In the following Table1displays the 28

instructions used:

Table 1. The MIPS Instruction Set

Description
Instruction

Name

unsigned registry addition and immediate value Addiu

AND logical, of two register And

OR logical of two registers Or

the xor logical of two registers Xor

the shift left logically Sll

the shift right arithmetic Sra

set on less than immediately Slti

Instant upper load Lu

exception to breakpoint Break

jump and link Jal

branch is less than zero Bltz

store the word Sw

shift the right logic Srl

unsigned subtraction of two registers Subu

the unsigned addition of two registers Addu

the logical and the register and the immediate value Andi

the OR logical the register and the immediate value Ori

the XOR logical of the register and the immediate value Xori

set less than the unsigned immediate Sltiu

the Branch equal Beq

jump the registry Jr

branch greater than or equal to zero Bgez

set on less than unsigned Sltu

branch not the equal Bne

the word load Lw

a signed multiplication of two registers Mul

set on less than that Slt

Jump J

The multiple instructions executed in this processor would

take 16 least bits from each register and multiply them as

standard MIPS applications instead of the entire 32 bits. The

multiplier instruction requires just 16 bit instead of 32 bit as

the processor uses a Xilinx IP core for the multiplier, not

allowing 32 bit processes. The understanding and analysis

purposes the most important 28 instructions are mentioned

here.

Paper ID: SR20601000556 DOI: 10.21275/SR20601000556 446

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

ResearchGate Impact Factor (2018): 0.28 | SJIF (2019): 7.583

Volume 9 Issue 6, June 2020

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

The addition, subtracting, and multiplying operations cover

the arithmetic process; the logical procedure, sll, srl and sra

cover changing needs; the configuration of less than and

division instructions requires comparisons; lw and sw are

memory-capable; Division and jump instructions contain

circuits and division jumps; and the software debugging and

checking split orders are feasible.

4.1 Elements of Pipeline Data Analysis

A pipeline is a collection of data processing devices linked

in sequence, such that the outputs of one component is the

input of the next component. These components or phases of

a pipeline implemented in parallel time-sliced format with a

certain volume of buffer capacity added between phases.

Steps in this pipeline are instruction fetch, decode, memory,

and write back. Such pipeline phases have also introduced in

the basic MIPS processor.

4.1.1 Instruction Fetch (IF)

The Instruction fetch is first stage in the MIPS pipeline. The

instruction fetch stage controls the program's flow and

recovers the memory instructions. IF stage consists of the

register program Counter (PC), synchronous instruction

memory and passed signals from the ID stage with the logic

through branches, jumps also PC-stalled signals. The PC is

still enabled; the combined logic is used to decide the

address, which should be registered and then sent to the

instruction memory. When the pipeline is stall or a break

instruction released, the CPU keeps its current value such

that instructions are not lost. When a branch or jump is

active, the PC takes the value NEXTPC with the target

address of the branch or jump. The default is to go to the

sequential instruction with the [PC + 4] as shown in Figure

(3).

Figure 3: RTL Schematic of the Instruction Fetch Stage

The instruction memory is an IP core of Xilinx: single port

block memory v7.3 is used as instruction memory. The

memory is configured as a ROM. The memory works as

read-only memory and can be read in a .coe file, which

holds the instructions. The size of memory is 32: 1024, 32 is

the width and 1024 is the depth of the memory.

4.1.2 Instruction Decode (ID)

Instruction decode is the second stage of MIPS pipeline. It

decodes the instruction in instruction register (IR), computes

the next PC, and reads any operands, which is required from

the register file. The ID stage includes the register file, the

next PC logic module, a branch logic module and controller.

The diagram of the internal structure of instruction decoding

stage shown in Figure (4).

Figure 4: RTL Schematic of the Instruction Decode Stage

The work of branch module is to determine the if BEQ,

BNE, BLTZ will take the branch. The register file consists

of 31 general-purposeregisters and one zero register, which

cannot be modified.

The control unit controls the whole unit. Control unit is

describedin Figure (5). The most significant six bit is used

as an opcode by the controller to sets the signal for proper

execution. The least significant six bits tells about the

function. All types of instructions have different opcodes. R-

type instructions have the same opcode. All the parameter

for opcode are defined in Figure(5).

Figure 5: Instructions opcodes for different types of

instructions.

4.1.3 Instruction Execution (IE)

Instruction execution is the third stage MIPS pipeline. It

actually executes the instruction. In fact all the ALU

operations are done in this stage. ALU stand for arithmetic

logic unit which perform all the arithmetic operations

including addition, subtraction, shifting, and rotating. The

scheme for the EXE stage is shown in the Figure (6).

Paper ID: SR20601000556 DOI: 10.21275/SR20601000556 447

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

ResearchGate Impact Factor (2018): 0.28 | SJIF (2019): 7.583

Volume 9 Issue 6, June 2020

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

Figure 6: RTL schematic of the instruction execution

stagemux and shifting modules

All the modules are controlled by the controller. Comparator

is used as shifter for all shifting instructions including SLT,

SLTU, SLTI, and other related instructions. The shifting

unit actually compare the status flag from ALU for the

correct result.For the multiply command, the multiply

module is included. This multiplies the 16 small bits and

recovers the output by 32 bits. The multiplier is an IP

component for Xilinx: multiplier v11.2.

The functional of ALU controller is to control the ALU. The

ALU controller is triggered on the FUNCT or the ALUOP

and uses case statements to set the ALU controls FSEL for

the ALU and MSEL for the 32x3 MUX output. The

parameters for the ALUOP, FUNCT, and MSEL are given

in Figure (7).

Figure 7: ALU Power Parameters from the.vhd ALU

controller

4.1.4 Memory Stage

The Memory Stage is the fourth stage in the MIPS

pipeline.The Memory stage (MEM) accesses the data

memory when either a SW or LW is used is given

instruction. The data storage also constitutes the Xilinx IP

core single port frame Memory v7.3.The memory is

configured as a RAM. The memory designed to read and

write and can be configured with a data carrying .coefile.

The memory stage operates in the system at the same time

as the EXE multiplier. It is necessary since the data file

address is determined in the ALU and the value passed to

the file prior to registration in the inter stage registrar. The

load word data is ready for the next clock period as the

memory is synchronised.

Figure 8: RTL Schematic of the Memory Stage.

4.1.5 Write Back Stage

The write back Stage is the five stage in the MIPS

pipeline.The Write Back (WB) stage takes the multiplying

results, result value and or memory info, and return it to the

register file to compose a suitable register.

4.1.6Hazard Detection
The Detection of Hazards risk analysis has two functions.

The first is to forwarding data from the currently in the

pipeline instructions that have not been written back to the

instruction register file in ID stage instruction that requires

value. The second is to stall the pipeline when the correct

value for this clock cycle is not available.

The hazard controller stops data transfer from reading after

writing hazards. Writing after reading and writing after

writing hazards can not happen in this execution as both

orders are performed to be run according to the programme.

The question of data forwarding arises when an instruction

writes to a register and then the next instruction uses the

register as one of its operands. Taking the directions

explained in the following display:

Addu r2, r1, r3 ------ r2 = r1 + r3

xor r4, r2, r3 ------ r4 = r2 | r3

subu r5, r2, r1 ------- r5 = r2 – r1

andr6, r2, r2 ------ r6 = r2 & r2

5. Simulation Results

The schematics Register Transfer Level (RTL) of the

processor can be shown after the synthesis is shown in the

Figure (9).

Figure 9: RTL schematic for the processor.

Paper ID: SR20601000556 DOI: 10.21275/SR20601000556 448

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

ResearchGate Impact Factor (2018): 0.28 | SJIF (2019): 7.583

Volume 9 Issue 6, June 2020

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

Device utilization for the MIPS processor 32-bit is executed

by utilizing Virtex 7 on FPGA board. The design process is

simplified using VHDL to design MIPS processor. The

results got are appeared in the Figure (10).

Figure 10: Summary of the Device utilization for MIPS

processor

The design process is simplified using VHDL to design

MIPS processor as only 1% slices register, 10% flip flops

and 3% LUTs are utilized. By comparison with the results of

previous studies[31]-[34], we development and get the best

utilization rates for the device space. As mentioned inTable.

2.

Table 2: Results my work compare with other studies

Name of the

authors

Number

of Slice

Registers

Number

of Slice

LUTs

Number of

fully used

LUT-FF

pairs

Number

of

bonded

IOBs

Number of

BUFG/

BUFGCTR

Ls

N.Alekya ,

P.Ganesh

Kumar, [31]

22% 122% 0% 107% 56%

Anu Mariam

John

ShilpiVarshne,

[32]

8% 5% 5% 42% -

Tyamanavar,

Vishala A

Nidagundi,

Jayashree C, [33]

4% 2% - 1% -

Raj, Vishal

Patil, Rutuja

Patil, Alpesh

Vishwakarma,

Vikas, [34]

1% 6% 33% 33% 6%

My work 1% 3% 10% 12% 12%

The simulation result of MIPS processor 32-bit single cycle

designis shown inFigure (11).

Figure 11: Simulation result of a 32-bit pipeline MIPS

processor design

6. Conclusion

Pipelined MIPS processor 32-bit was designed and

implemented on Xilinx Virtex7 xc7vx330t FPGA using

VHDL. Xilinx ISE Design Suite 14.7 platform were used for

simulation and testingthe SIMD processor introduced 39

instructions, utilising the Harvard memory strategy that

usedfive stages pipeline to improved performance the speed

of processor 191.150MHz, it is observed that the

development in the speed of processor (191.150MHz)

instead of (177MHz)compared to [32]. Results were

obtained the total device utilization of as only 1% slices

register, 10% flip flops and 3% LUTs are utilized. The

instruction set is small but strong and can be easily

reconfigured to fit future needs.

References

[1] Omran, S., &Jumma, L.,"Implementation of 4-way

Superscalar Hash MIPS Processor Using

FPGA". Journal of Physics: Conference

Series,Vol. 1003, No. 1,pp.1-8, 2018.

[2] Husainali, S., Hitesh, N. &Abhishek, A.,"Design of 32-

bit 3-Stage Pipelined Processor based on MIPS in

Verilog HDL and Implementation on FPGA

Virtex7". International Journal of Applied Information

Systems, Vol.10,No. 9, pp.26-37, 2016.

[3] Al-Araji. A., “Development of an on-line self-tuning

FPGA-PID-PWM control algorithm design for dc-dc

buck converter in mobile applications”. Journal of

Engineering, Vol. 23, No. 8, pp. 84-106, 2017.

[4] Tanabe, S., Nagashima, T., & Yamaguchi, Y.," A study

of an FPGA based flexible SIMD processor". Journal

ACM SIGARCH Computer Architecture News, Vol.

39,No. 4, pp.86-89, 2011.

[5] Najjar, W., &Ienne, P.,"Reconfigurable Computing".

IEEE Micro,Vol.34,No.1,pp. 4-6, 2014.

[6] Xiao, C., Huang, Z., & Li, D.," An Embedded

Multicore Platform Exploration in Video Application

Utilizing FPGA". Advanced Materials Research, Vol.

505,pp. 329-337, 2012.

[7] Bobrek ,M.,Bouldin, D., Holcomb, D., Killough, S.,

Smith, S., and Ward, C.,"Survey of Field Programmable

Gate Array Design Guides and Experience Relevant to

Nuclear Power Plant Applications". Engineering

Science and Technology Division, 2007.

[8] Domínguez, C., Hassan, H., Crespo, A., &Albaladejo, J.

"Multicore and FPGA implementations of emotional-

Paper ID: SR20601000556 DOI: 10.21275/SR20601000556 449

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

ResearchGate Impact Factor (2018): 0.28 | SJIF (2019): 7.583

Volume 9 Issue 6, June 2020

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

based agent architectures". The Journal Of

Supercomputing,Vol.71,No.2,pp.479-507, 2014.

[9] Poovendran, R., &Sumathi, S." An Area-Efficient

FPGA Implementation of Network-on-Chip (NoC)

Router Architecture for Optimized Multicore-SoC

Communication". Sensor Letters, Vol.16, No.7, pp.

552-560,2018.

[10] Nouri, S., Rossi, D., &Nurmi, J.," Power mitigation of a

heterogeneous multicore architecture on FPGA/ASIC

by DFS/DVFS techniques". Microprocessors and

Microsystems,Vol. 63, pp. 259-268, 2018.

[11] Sinha, S., Jarvinen, K., Vliegen, J., Vercauteren, F.,

&Verbauwhede, I.,"HEPCloud: An FPGA-based

Multicore Processor for FV Somewhat Homomorphic

Function Evaluation". IEEE Transactions on

Computers,Vol.67,No.11, pp. 1637 – 1650, 2018.

[12] Vipin,K.,&Suhaib A.,"FPGA Dynamic and Partial

Reconfiguration: A Survey of Architectures, Methods,

and Applications". ACM Computing Surveys,Vol.

51,No.4, pp.1-39,2018.

[13] Kenny, R., Watt, J.,"The Breakthrough Advantage for

FPGAs with Tri-Gate Technology Transistor".2010.

[14] Verma, G.,Kumar, M.,Khare, V.,& Pandey, B.,"

Analysis of Low Power Consumption Techniques on

FPGA for Wireless Devices".Vol. 95,No. 2,pp.353-

364.2017.

[15] Wang, G., &Gao, Y.,"An Implementation of

Configurable SIMD Core on FPGA". Journal Applied

Mechanics and Materials, Vol. 336-338, pp. 1925-

1929, 2013.

[16] Rhu, M., &Erez, M.,"Maximizing SIMD resource

utilization in GPGPUs with SIMD lane

permutation". Journal ACM SIGARCH Computer

Architecture News, Vol.41, No.3, pp.356-367, 2013.

[17] Anu, M., &Shilpi, V.," FPGA Implementation of 32-bit

MIPS Processor with CISC Multiplication

Operation". International Journal of Engineering

Research and Technology, Vol.4, No.11, pp.675-

678,2015.

[18] Hadizadeh, A., &Tanghatari, E.,"Parallel Processor

Architecture with a New Algorithm for Simultaneous

Processing of MIPS-Based Series

Instructions". Emerging Science Journal, Vol.1,

No.4,pp.226-232, 2018.

[19] Maheswari, R., Pattabiraman, V., &Sharmila,

P.,"Reconfigurable FPGA based soft-core processor for

SIMD applications" . Asian Journal of Pharmaceutical

and Clinical Research, Vol.10,No.13, pp.180-186,2017.

[20] Yangzhao,Y , Naijie, G., Kaixin, R. ,& Bingqing, H.

,"An Approach to Enhance Loop Performance for

Multicluster VLIW DSP Processor". Published

in: ARCS 2014; 2014 Workshop Proceedings on

Architecture of Computing Systems. pp. 1-8, 2014.

[21] Mahmood, B.,&Jbaar, M., "Design and implementation

of SIMD Vector Processor on FPGA". International

Symposium on Innovations in Information and

Communications Technology, Amman, pp. 124-130,

2011.

[22] Evgueny,k. ,&Jamie, E. ,"Vectorization:A Key Tool To

Improve Performance On Modern CPUs". Published on

January 25, 2018.

[23] Indira ,P.,&Kamaraju, M.," Design and Implementation

of 6-Stage 64-bit MIPS Pipelined Architecture".

International Journal of Engineering and Advanced

Technology, Vol.8, pp.790-796, 2019.

[24] Omran, S., &Jumma, L.," Design SHA-2 MIPS

Processor Using FPGA". Cihan University-Erbil

Scientific Journal, Vol.2017(Special-1),pp.1-12, 2017.

[25] Prasanth, V., Sailaja, V., Sunitha, P., &Vasantha,

B.,"Design and implementation of low power 5 stage

pipelined 32 bits MIPS processor using 28nm

technology". International Journal of Innovative

Technology and Exploring Engineering, Vol.

8,No.(4S2),pp.503-507, 2019.

[26] Singh, K.," Performance Improvement in MIPS Pipeline

Processor based on FPGA". Conference: 3rd

International Conference on Emerging Trends of

Engineering Science Management and its

ApplicationsAt: IIC, New Delhi, India,Vol. 4, No.

1,pp.57-64, 2016.

[27] Ruckmani,D., Srinivas,N., Shashi,S. Ruckmani,D.,

&Byrareddy,H., "Implementation and verification of

RISC processor on FPGA using chipscope pro tool".

International Journal of Current Engineering and

Scientific Research, Vol.6, No.6, pp. 59-65,2019.

[28] Mahmood, H., &Omran, S.," Selective branch

prediction schemes based on FPGA MIPS processor for

educational purposes". IOP Conference Series:

Materials Science and Engineering, Vol.518,No.

4,2019.

[29] Elkateeb, A.,"A Processor Design Course Project:

Creating Soft-Core MIPS Processor Using Step-by-Step

Components’ Integration Approach". International

Journal of Information and Education

Technology, Vol.1, No.5,pp. 432-440, 2011.

[30] Indira, P .Kamaraju, M &Vyas , V.," Design and

Analysis of A 32-bit Pipelined MIPS Risc Processor".

International Journal of VLSI Design &

Communication Systems, Vol.10, No.5, pp.1-18,2019.

[31] Alekya, N, Kumar, P.,"Design of 32-bit RISC CPU

based on MIPS". Journal of Global Research in

Computer Science .Vol.2, No.9,pp.2-6, 2011.

[32] John, A. &Varshney, S.,"FPGA Implementation of 32-

bit MIPS Processor with CISC Multiplication

Operation". International Journal of Engineering

Research, Vol.4, No.11, pp. 675-678, 2015.

[33] Tyamanavar, V., Nidagundi, J.," FPGA Implementation

of a 32-Bit MIPS Processor". International Journal of

Engineering Research & Technology (IJERT),

Vol.7,No.10,pp.1-5,2019.

[34] Raj, V., Patil, R.,Pati, A.,Vishwakarma, V.&Preeti-

Hemnani,"32-bit Processor Design on FPGA".Journal

of Applied Science and Computations.Vol. 6, No. 4,

pp.3484-3490, 2019.

Paper ID: SR20601000556 DOI: 10.21275/SR20601000556 450

https://www.researchgate.net/journal/0360-0300_ACM_Computing_Surveys
https://ieeexplore.ieee.org/xpl/conhome/6775070/proceeding
https://ieeexplore.ieee.org/xpl/conhome/6775070/proceeding
https://ieeexplore.ieee.org/xpl/conhome/6775070/proceeding
https://software.intel.com/en-us/user/1701514

