
International Journal of Science and Research (IJSR)
ISSN: 2319-7064

ResearchGate Impact Factor (2018): 0.28 | SJIF (2019): 7.583

Volume 9 Issue 5, May 2020

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

Scalable Data Platform Architecture for Highly

Variable e-Commerce Workloads

Gautham Ram Rajendiran

Email: gautham.rajendiran[at]icloud.com

Abstract: The exponential growth in the generation of data related to eCommerce has motivated organizations to seek big data

architectures that scale both batch and real-time data processing [1]. This paper discusses an architecture that has fault tolerance,

scalability, and low latency for data processing and was implemented in a large-scale eCommerce organization. This architecture ensures

integration from varied sources, features data quality, lineage, and provides robust data storage and analytics. It entails design

considerations for efficient utilization of cloud-native services, event-driven processing and task orchestration. We explain in detail the

various components and brief on technical implementation details so that this can be a standard architecture that can be adopted to build

eCommerce data platforms, thereby saving the time and effort in researching and designing such a platform from scratch.

Keywords: Big Data, Scalability, eCommerce, Data Architecture, Data Processing, Distributed Systems, Cloud Computing, Data Pipelines

1. Introduction

Digital commerce has increased the volume, velocity, and

variety of data. Traditionally, relational databases and

monolithic architectures have proved to be inadequate in

managing such a high volume of data [1]. Scalable and

distributed architectures continue to gain ground as

eCommerce platforms need batch and stream processing to

keep pace with the demands of a personalized customer

experience, real-time insight, and large-scale operations.

In this paper, we propose a big data architecture tailored for

large-scale eCommerce platforms. This architecture utilizes

distributed systems, cloud-native services and adaptive task

orchestration to provide a resilient, low-latency and highly

scalable data solution. This paper will cover some of the

major components of the proposed architecture, including

event handling, adaptive workload scaling, lineage tracking,

and data warehousing using some of the contemporary design

principles in Software Engineering and other open-source

tools.

2. Literature Review

The rapid growth of data generation from various sources,

including IoT devices, e-commerce platforms, and social

media led to the rise of numerous data processing

frameworks. Traditional data platforms like Hadoop [2] have

been pivotal in processing large-scale batch data. These

platforms provide scalable storage and compute capabilities,

but they primarily cater to batch processing with high latency,

making them less suitable for real-time data needs.

On the other hand, streaming platforms such as Apache Kafka

[3] and Apache Flink [4] have gained prominence for

handling continuous data streams at low-latency. These

platforms excel in real-time analytics, event-driven

architectures and supporting microservices, but they often

lack efficient support for long-running batch processing or

complex aggregations typically required for business

intelligence.

To bridge the gap between batch and streaming data, modern

frameworks like Apache Spark [5] introduced hybrid

architectures through Spark Streaming. Although it offers

support for both types of data, Spark's micro-batch processing

model introduces latency in real-time processing, preventing

truly instantaneous data handling. Similarly, Lambda

Architecture [6] was proposed to combine batch and real-time

processing pipelines, but its dual pipeline nature leads to

complexity and maintenance.

Several studies highlight these limitations. Kiran et al. [6]

discuss how maintaining dual pipelines increases system

complexity, while Yadranjiaghdam et al. [7] note the

difficulties in achieving exactly-once semantics across batch

and streaming data in Lambda Architectures. This signifies

the need for a unified platform capable of seamlessly handling

both batch and streaming data with low latency, scalability

and consistency.

3. Objective

The following objectives are derived from challenges that

were encountered in the production environment of an

eCommerce system where data volume and velocity can have

a wide range, reaction time to certain events need to be almost

immediate, data quality issues and data audits are common.

Design for Massive Scalability: Ensure the architecture can

seamlessly scale from minimal data loads to extremely large

data volumes, adapting to the dynamic demands of

eCommerce systems.

Real-Time Analysis: Enable mechanisms to provide both

real-time and near real-time data insights, supporting

business-critical decisions in high-velocity environments.

High Auditability and Data Quality: Establish robust

mechanisms for ongoing data quality monitoring and

automated correction to ensure high accuracy in data handling

across various processes.

Paper ID: SR24923122459 DOI: https://dx.doi.org/10.21275/SR24923122459 1895

www.ijsr.net
http://creativecommons.org/licenses/by/4.0/

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

ResearchGate Impact Factor (2018): 0.28 | SJIF (2019): 7.583

Volume 9 Issue 5, May 2020

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

System Architecture

The System architecture depicted above covers all the

components, processes and actors that comprise a data

processing pipeline that can adapt to ingest various sources of

data, process what is classified as big data [8] at scale and

explain mechanisms that can be used for auditing, quality

checking, storing and analyzing the same. Individual

components and their interactions with actors are explained

in detail in the sections below.

We will cover details on how some tools like Apache Airflow,

Apache Hudi and Apache Spark come into play when

working with data at scale. We will also discuss using the

Publisher-Consumer architecture to deal with high velocity

data and also re-purpose the same to deal with smaller batches

of data as such workloads are very common in e-Commerce

systems. One of the important requirements of e-Commerce

systems is tracking the lineage, as audits and compliance

requirements are common in this domain, and in this

architecture, we explain mechanisms that can be used to track

data at a very granular level, for example a single data point

or a row can be traced back to the ingestion source,

transformations and to the data warehouse. Some of the

mechanisms used to ensure data quality, on-demand data

analysis and long-term storage mechanisms like data

warehousing are also explored in the context of e-Commerce.

Process Flow

Paper ID: SR24923122459 DOI: https://dx.doi.org/10.21275/SR24923122459 1896

www.ijsr.net
http://creativecommons.org/licenses/by/4.0/

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

ResearchGate Impact Factor (2018): 0.28 | SJIF (2019): 7.583

Volume 9 Issue 5, May 2020

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

Components

Rapid Integration Layer

This layer is intended to ingest data from multiple sources that

are classified as either streams or batch. It will guarantee

ingestion of the data at speed and with high efficiency,

regardless of the source type. The layer itself will deal with

the preprocessing of data, ensuring its idempotency as well as

taking care of metadata enrichment.

Adapter

The adapter component transforms and enriches the raw

payload that the event handler receives. This logic is

decoupled from the event handler, so it keeps the system

flexible and adaptable to different data sources. The

idempotency key logic is owned by the transformer since e-

Commerce sources can uniquely be identified only based on

the content of the event. This is different from the usual

definition of idempotency. Idempotency is an important

feature for Lineage Tracking explained in other sections of

this paper.

Technical Implementation

Common functionalities, such as telemetry and generating

idempotent keys, are abstracted into the BaseAdapter class.

To enable source-specific transformations and prepare per-

source unique idempotency keys, adapters extending this

class can do so.

The method emit_metrics allows the passing of telemetry data

to monitoring and alerting systems.

Event Handler

This component is in charge of routing and managing

incoming events. It handles retries, failover mechanisms, and

guarantees at-least-once delivery. The next code snippet can

be used as an example to extend this event handler to deal

with other types of sources. The base Payload model may go

on to further extend to suit various source formats like Json,

EDI, or even SFTP. This flexibility, where any real-world

event can be modeled as a Payload Object, will ensure that

the event handler has specialized implementations catering to

any kind of data event, much like what is observed with Event

Sourcing and Domain-Driven Design [10].

Technical Implementation

The EventHandler class is designed as an abstract class with

customizable event handling logic.

The getConfig method can be extended to pull configuration

details from external services like AWS AppConfig or

DynamoDB. This can be useful to implement business logic

based on properties of the payload. The decoupled

configuration can also be used to determine the type of nodes

that may be required to handle the event.

The processEvent method manages the core event processing

logic, including transforming the payload and handling any

errors that may occur.

Paper ID: SR24923122459 DOI: https://dx.doi.org/10.21275/SR24923122459 1897

www.ijsr.net
http://creativecommons.org/licenses/by/4.0/

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

ResearchGate Impact Factor (2018): 0.28 | SJIF (2019): 7.583

Volume 9 Issue 5, May 2020

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

-

Kappa Architecture

The Kappa architecture [9] considers systems where all data

processing is treated as a real-time stream; batch processing

is just a particular case of stream processing. The Event

Handler adapts the Kappa architecture principles to deal with

data of varying volume and speed.

Reasons to apply principles from Kappa architecture to the

Event Handler

Real-Time and Batch Coexistence: While this architecture

will favor stream-first design, it does allow handling batch

workloads in processing, if required. Such data, when it

arrives in bulk, can be ingested and processed in a manner

consistent with real-time events—to preserve data lineage and

integrity.

Event-Driven Adaptability: It can be seen that, based on the

event types, the event handler would change dynamically. For

example, schema validation and metadata enrichment can be

applied differently to an incoming event from an SFTP source

than to a JSON event coming from an API stream. This

adaptiveness of the architecture makes it robust for different

use cases.

Source-Agnostic Ingestion: The event handler will execute

the same logic for transformation, agnostic of multiple input

sources: SFTP, IoT, or API events. Each source will be

enriched, standardized, and tagged with unique identifiers

like source name, filename, and timestamp.

Idempotency and Deduplication: Since every event gets an

unique id at the time of ingestion, idempotency is taken care

of by the event handler. This is very critical where data might

arrive multiple times due to retries, network issues, or source

errors. The transformation step will make sure to check for

consistency; hence, no duplicate record passes downstream.

Scalability: The Event handler could be deployed using

Kubernetes, a container orchestration solution, to support the

varying volume of data usually experienced in e-Commerce.

This will enable the event handler to scale up or down, and

allow flexibility to choose between mechanisms to prioritize

high volume or throughput.

Lineage Tracking System

The Lineage Tracking System is an important feature for data

integrity and full transparency across complex data pipelines.

In an e-commerce environment, data flows from multiple

sources; therefore, there should be clear visibility into how

every data point evolves from its ingestion to its final

consumption.

Paper ID: SR24923122459 DOI: https://dx.doi.org/10.21275/SR24923122459 1898

www.ijsr.net
http://creativecommons.org/licenses/by/4.0/

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

ResearchGate Impact Factor (2018): 0.28 | SJIF (2019): 7.583

Volume 9 Issue 5, May 2020

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

During ingestion, the system assigns a unique identifier to

each record. Most often, it is a concatenation of source name,

file name, and timestamp, which will then make the record

uniquely traceable across all pipeline stages. More complex

systems could use dedicated Metadata management, to add

more attributes to the unique request. However, the same

unique identifier stays along with the data across all the

transformations—from an initial cleaning and enrichment to

storing columnar formats like Parquet and further into data

warehouses.

Technical Implementation

The lineage tracking metadata is stored with data itself at

every point. It can be integrated into systems like Apache

Atlas, AWS Glue Data Catalog, or even a custom metadata

store. This system can be visualized as a graph where nodes

represent steps of data transformation, edges of the flow of

data along with its unique ID. This type of graphical system

makes it easy to visualize and understand the complexity of

data flows in real time for teams.

The lineage tracking system provides great support not only

in operational efficiency but also in strategic confidence via

data-driven decisions. Whether for compliance, debugging, or

performance optimization, a state-of-the-art lineage tracking

system lends an eCommerce platform the auditability and

accountability that evolving data challenges demand.

Transformation Layer

The transformation layer is the backbone of the data pipeline

and takes raw, unstructured, or semi-structured data,

transforming it into clean, structured data ready for storage in

a data warehouse or direct consumption by analytics. Here, in

the context of eCommerce, where data comes from multiple

heterogeneous sources such as sales transactions, clickstream

logs, customer interactions, and supplier data, the

transformation layer has an important place to guarantee data

consistency, accuracy, and usability.

Why is the Transformation Layer Necessary?

Data Quality Assurance: High-quality data is critical to

eCommerce, wherein the wrong decisions are made, and

customers either endure poor experiences or the operations

become inefficient. The transformation layer will conduct a

variety of data quality checks, including deduplication, filling

missing values, and applying business rules. It will ensure, for

example, that every order event contains the fields for a

customer ID and product SKU, discarding or quarantining

any that do not fulfill such checks. This degree of rigor at the

time of transformation greatly reduces the potential for errors

to propagate downstream.

Data Enrichment and Improvement: Data enrichment adds

context and value to raw data by combining the data with

additional information. This can be metadata attached in

eCommerce, like geographic locations based on IP addresses

or product categorization based on machine learning models.

For instance, clickstream data that is raw can be enriched with

session identifiers, user demographic data, and product

attributes, setting the data up for further and meaningful

analysis later on. The transformation layer is where all this

enrichment of the raw data happens to present actionable

information.

Distributed processing frameworks like Apache Spark and

orchestration tools such as Apache Airflow running on

Kubernetes are used by the Transformation Layer. These

technologies enable the dynamic distribution of workloads,

making it possible for velocity streams—even of the highest

order—to be processed without bottlenecks in near real-time.

For instance, an eCommerce platform may receive millions

of click events per hour during a Black Friday sale. The

transformation layer processes these events in real time,

filtering, aggregating, and making data ready for real-time

dashboards that track user behavior.

Technical Implementation:

Airflow and Task Orchestration

Airflow is typically used for the orchestration of the

transformation pipelines. DAGs represent a series of

transformation tasks that are to be executed in sequence.

Every task is independent, which makes scaling and retries

easy. The tasks are distributed across clusters using

Kubernetes Pod Operators, scaling dynamically as workload

demands require. This is where the blob store artifacts

produced by the event handler can be consumed for batch

transformations.

Real-Time “Big” data processing

In the case of high-velocity data, this transformation layer

could leverage Apache Spark Streaming or Apache Flink for

real-time processing, where time-critical events are involved.

This could be user activity at times like flash sales. In this

architecture, the event handler acts as an in-house message

queue adhering to the Publisher-Subscriber pattern. Instances

of an event handler play the role of publishers, while some

kind of consumer service subscribes to these events. It makes

use of one of the well-known patterns, such as Long Polling,

which allows the Consumer to process events in real time.

Paper ID: SR24923122459 DOI: https://dx.doi.org/10.21275/SR24923122459 1899

www.ijsr.net
http://creativecommons.org/licenses/by/4.0/

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

ResearchGate Impact Factor (2018): 0.28 | SJIF (2019): 7.583

Volume 9 Issue 5, May 2020

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

Operational Data Analysis

The result of the transformation layer will be stored in special

file formats like Apache Parquet or ORC, which are designed

with an aim to reduce as much latency connected with data

access as possible. All of these formats compressed column

by column making a query faster for large-scale in-memory

analytics. This kind of data can be analyzed using big data

processing frameworks such as Apache Druid, or Apache

Hudi. The main aim of this component is to enable fast data

summary by efficient partitioning strategies. This is mainly

useful for operational data analysis where large amounts of

data needs to be analyzed in near real-time to enable faster

responses from Marketing and Sales teams in reaction to

changes in customer behavior and inventory sales.

Quarantine Area

The quarantine area is primarily responsible for data integrity

by catching and isolating all records that fail transformation—

for example, validation errors, missing fields, or format

inconsistencies. To make this fault-tolerant—to guarantee

that no data will be lost while it is being processed—the

quarantine area can be combined with a Dead Letter Queue,

which is a standard pattern in dealing with records that

continue to fail after reprocessing attempts.

Technical Implementation

Error Detection and Initial Quarantine

All records failing transformation are sent to a quarantine area

for inspection and editing. If the error is a common problem

with known resolutions to that problem, then the record is

edited to correct the problem and re-ingested into the pipeline.

However, if an error continues to manifest or is one that

requires complex handling, then, after a certain number of

reprocessing attempts, it will be moved to a dead-letter queue.

Example: An order record missing the mandatory field

customer_id would first be quarantined. If the attempts at

automated correction fail more than once, then the record is

sent to the DLQ for further investigation.

Paper ID: SR24923122459 DOI: https://dx.doi.org/10.21275/SR24923122459 1900

www.ijsr.net
http://creativecommons.org/licenses/by/4.0/

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

ResearchGate Impact Factor (2018): 0.28 | SJIF (2019): 7.583

Volume 9 Issue 5, May 2020

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

Dead Letter Queue (DLQ) Implementation

The DLQ works in a manner similar to a persistent store for

all those records that cannot be processed after several retries.

Removing such problematic records into the DLQ ensures

you do not clog the pipeline with them; at the same time, you

will have them saved for further analysis or manual

correction. Traditionally, DLQs are combined with message

brokers like Amazon SQS, Kafka, and Google Pub/Sub,

which are in charge of retry logic and message persistence. In

this architecture, the retry and failover mechanisms would be

contained within the EventHandler implementation.

Example: A batch of records from an unreliable data source

fails validation repeatedly. Rather than trying and failing to

process these records again and again, they go into the DLQ,

where they can be inspected and repaired manually or

resolved by correcting upstream data ingestion processes.

Error Categorization and Routing Logic

Before any record is sent to the DLQ, quarantine categorizes

the errors by type, such as missing data, invalid format, and

out-of-bounds values. This grouping will help in diagnosis of

the root cause and help decide whether reprocessing should

be automatic or to route directly to the DLQ. Example: In case

of format inconsistencies in a high percentage of records from

one source, the system will automatically mark this source as

inappropriate and suspend further ingestion from it; then,

quarantined records will be redirected to the DLQ.

Manual Review and Escalation from the DLQ

Records in the DLQ require manual intervention, typically

from data engineers, operations teams, or business

stakeholders. The DLQ maintains an exhaustive log and

metadata of each record that has been problematic, and root

cause analysis is hence very simple to do. Furthermore,

integration with workflow management tools like Jira or

ServiceNow allows the tracking, escalation, and resolution of

issues in a very organized way. Example: An EDI file with

several errors could be escalated through a ticketing system

to an operation team, who can correct the data manually and

trigger the re-ingestion of corrected records back into the

pipeline.

Automated Alerts and Notifications

The DLQ is integrated into monitoring and alerting systems

that convey to stakeholders, through alerts and notifications,

whenever records are added to the queue. Alerts can then be

set on thresholds, such as when there is a sudden spike in

entries into the DLQ, thus pointing toward a possible systemic

issue that warrants immediate attention. Example: If the count

of records in the DLQ exceeds the threshold, Slack will send

an alert to the data engineering team to investigate

immediately.

Data Warehouse Layer

This layer serves as the backbone of analytics and reporting

for eCommerce platforms. A data warehouse holds

transactional and analytical data models that are particularly

optimized to query and report. Normally, they contain

dimensional models and star schemas which help in running

OLAP workloads efficiently. The warehouse becomes a

single, focused location for business intelligence activities to

pull data from multiple sources, including sales transactions,

customer interaction, and logistics data. A modern warehouse

is set on a cloud-native platform like Snowflake and Amazon

Redshift that offers scalable, distributed storage and

processing. This scalability is critical to e-commerce because

of the high transaction rates and large data sets that may result

in rapid growth in volume. It also hosts ETL processes that

clean, enrich, and transform data before consumption by

downstream applications. In addition, the data warehouse

provides advanced analytics, real-time reporting, and

machine learning applications with reliable and high-quality

data.

Technical Implementation

Star and snowflake schemas optimize the designs for OLAP

workloads that support the analytical query and reporting

needs. These models structurally place the data into fact and

dimension tables and assist in today's data aggregation and

filtering of huge datasets. Star schemas are preferred most of

the time as they are simple and faster, whereas snowflake

schemas further normalize the dimension tables for better data

integrity and working. All such models are optimized

techniques of business intelligence tools and data marts where

querying is to be fast and ad hoc. In the field of e-commerce,

dimensional models apply to analysis on the metrics that

reflect the trend of sales, customer behavior, and the

effectiveness of marketing campaigns through the

segmentation of data across several dimensions, such as time,

geography, and the set product categorization of sales in a

given period of time. These techniques become highly

relevant in streaming data systems because of the likelihood

that events will arrive out of order or with variable latencies.

Late-arriving data in an e-commerce setting might include

delayed transaction logs, inventory updates that are out of

sync, or backlogged shipping records.

4. Result

The adopted architecture is designed with one fundamental

principle - “What works for one should work for one million”

- and hence adopts best practices from designing microservice

architectures, horizontal scaling as opposed to vertical scaling

and best practices for data partitioning. With this as the

operating principle, this architecture is designed to scale from

handling kilobytes to petabytes of data, as such variance is

very common in eCommerce systems. It has also been

observed to provide accurate real-time and near real-time

insights, mechanisms to handle data audits in highly sensitive

eCommerce environments such as hazardous / classified

inventory sales, mechanisms to scale-out as much as

infrastructure permits and robust data quality monitoring and

correction strategies.

5. Conclusion

The proposed architecture stems from various experiences

through trial and error while working with data in large scale

eCommerce environments where the volume and velocity of

data has wide lower and upper bounds. Any version of a data

platform that builds on top of this architecture will resolve the

issues with respect to scalability in modern eCommerce data

engineering. It incorporates features like fault tolerance, data

quality monitoring and auditability, which are highly

desirable features of a data pipeline in an eCommerce

environment. It also sets up the infrastructure to derive

Paper ID: SR24923122459 DOI: https://dx.doi.org/10.21275/SR24923122459 1901

www.ijsr.net
http://creativecommons.org/licenses/by/4.0/

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

ResearchGate Impact Factor (2018): 0.28 | SJIF (2019): 7.583

Volume 9 Issue 5, May 2020

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

insights from data at scale through distributed systems and

cloud-native services. This allows engineers to focus on

implementation and saves much time due to research and

design of such a platform. Future works should focus on fine-

tune cost optimization strategies and integrate AI-driven

automation for better data-processing capabilities.

References

[1] A. Gandomi and M. Haider, "Beyond the hype: Big data

concepts, methods, and analytics," International Journal

of Information Management, vol. 35, no. 2, pp. 137-144,

2015. doi: 10.1016/j.ijinfomgt.2014.10.007.

[2] Borthakur, D.: HDFS architecture guide. Hadoop

Apache Project, 1–13 (2008).

https://hadoop.apache.org/docs/r1.2.1/hdfs_design.pdf

[3] Apache Kafka. http://kafka.apache.org.

[4] Apache Flink. https://flink.apache.org

[5] Apache Spark. https://spark.apache.org/

[6] M. Kiran, P. Murphy, I. Monga, J. Dugan and S. S.

Baveja, "Lambda architecture for cost-effective batch

and speed big data processing," 2015 IEEE International

Conference on Big Data (Big Data), Santa Clara, CA,

USA, 2015, pp. 2785-2792, doi:

10.1109/BigData.2015.7364082.

[7] Yadranjiaghdam, Babak & Pool, Nathan & Tabrizi,

Nasseh. (2016). A Survey on Real-Time Big Data

Analytics: Applications and Tools. 404-409.

10.1109/CSCI.2016.0083.

[8] S. Sagiroglu and D. Sinanc, "Big data: A review," 2013

International Conference on Collaboration

Technologies and Systems (CTS), San Diego, CA,

USA, 2013, pp. 42-47, doi:

10.1109/CTS.2013.6567202.

[9] Lin, Jimmy. "The lambda and the kappa." IEEE Internet

Computing 21, no. 05 (2017): 60-66.

[10] Uludağ, Ö., Hauder, M., Kleehaus, M., Schimpfle, C.,

Matthes, F. (2018). Supporting Large-Scale Agile

Development with Domain-Driven Design. In:

Garbajosa, J., Wang, X., Aguiar, A. (eds) Agile

Processes in Software Engineering and Extreme

Programming. XP 2018. Lecture Notes in Business

Information Processing, vol 314. Springer, Cham.

https://doi.org/10.1007/978-3-319-91602-6_16

Paper ID: SR24923122459 DOI: https://dx.doi.org/10.21275/SR24923122459 1902

www.ijsr.net
http://creativecommons.org/licenses/by/4.0/
https://hadoop.apache.org/docs/r1.2.1/hdfs_design.pdf
https://hadoop.apache.org/docs/r1.2.1/hdfs_design.pdf
https://hadoop.apache.org/docs/r1.2.1/hdfs_design.pdf
http://kafka.apache.org/
http://kafka.apache.org/
https://flink.apache.org/
https://flink.apache.org/
https://spark.apache.org/
https://spark.apache.org/

