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Abstract: The exponential growth in the generation of data related to eCommerce has motivated organizations to seek big data 

architectures that scale both batch and real-time data processing [1]. This paper discusses an architecture that has fault tolerance, 

scalability, and low latency for data processing and was implemented in a large-scale eCommerce organization. This architecture ensures 

integration from varied sources, features data quality, lineage, and provides robust data storage and analytics. It entails design 

considerations for efficient utilization of cloud-native services, event-driven processing and task orchestration. We explain in detail the 

various components and brief on technical implementation details so that this can be a standard architecture that can be adopted to build 

eCommerce data platforms, thereby saving the time and effort in researching and designing such a platform from scratch. 
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1. Introduction  
 

Digital commerce has increased the volume, velocity, and 

variety of data. Traditionally, relational databases and 

monolithic architectures have proved to be inadequate in 

managing such a high volume of data [1]. Scalable and 

distributed architectures continue to gain ground as 

eCommerce platforms need batch and stream processing to 

keep pace with the demands of a personalized customer 

experience, real-time insight, and large-scale operations. 

 

In this paper, we propose a big data architecture tailored for 

large-scale eCommerce platforms. This architecture utilizes 

distributed systems, cloud-native services and adaptive task 

orchestration to provide a resilient, low-latency and highly 

scalable data solution. This paper will cover some of the 

major components of the proposed architecture, including 

event handling, adaptive workload scaling, lineage tracking, 

and data warehousing using some of the contemporary design 

principles in Software Engineering and other open-source 

tools. 

 

2. Literature Review 
 

The rapid growth of data generation from various sources, 

including IoT devices, e-commerce platforms, and social 

media led to the rise of numerous data processing 

frameworks. Traditional data platforms like Hadoop [2] have 

been pivotal in processing large-scale batch data. These 

platforms provide scalable storage and compute capabilities, 

but they primarily cater to batch processing with high latency, 

making them less suitable for real-time data needs. 

 

On the other hand, streaming platforms such as Apache Kafka 

[3] and Apache Flink [4] have gained prominence for 

handling continuous data streams at low-latency. These 

platforms excel in real-time analytics, event-driven 

architectures and supporting microservices, but they often 

lack efficient support for long-running batch processing or 

complex aggregations typically required for business 

intelligence. 

 

To bridge the gap between batch and streaming data, modern 

frameworks like Apache Spark [5] introduced hybrid 

architectures through Spark Streaming. Although it offers 

support for both types of data, Spark's micro-batch processing 

model introduces latency in real-time processing, preventing 

truly instantaneous data handling. Similarly, Lambda 

Architecture [6] was proposed to combine batch and real-time 

processing pipelines, but its dual pipeline nature leads to 

complexity and maintenance. 

 

Several studies highlight these limitations. Kiran et al. [6] 

discuss how maintaining dual pipelines increases system 

complexity, while Yadranjiaghdam et al. [7] note the 

difficulties in achieving exactly-once semantics across batch 

and streaming data in Lambda Architectures. This signifies 

the need for a unified platform capable of seamlessly handling 

both batch and streaming data with low latency, scalability 

and consistency. 

 

3. Objective 
 

The following objectives are derived from challenges that 

were encountered in the production environment of an 

eCommerce system where data volume and velocity can have 

a wide range, reaction time to certain events need to be almost 

immediate, data quality issues and data audits are common. 

 

Design for Massive Scalability: Ensure the architecture can 

seamlessly scale from minimal data loads to extremely large 

data volumes, adapting to the dynamic demands of 

eCommerce systems. 

 

Real-Time Analysis: Enable mechanisms to provide both 

real-time and near real-time data insights, supporting 

business-critical decisions in high-velocity environments. 

 

High Auditability and Data Quality: Establish robust 

mechanisms for ongoing data quality monitoring and 

automated correction to ensure high accuracy in data handling 

across various processes. 

 

 

 

 

Paper ID: SR24923122459 DOI: https://dx.doi.org/10.21275/SR24923122459 1895 

www.ijsr.net
http://creativecommons.org/licenses/by/4.0/


International Journal of Science and Research (IJSR) 
ISSN: 2319-7064 

ResearchGate Impact Factor (2018): 0.28 | SJIF (2019): 7.583 

Volume 9 Issue 5, May 2020 

www.ijsr.net 
Licensed Under Creative Commons Attribution CC BY 

System Architecture  

 

 
  
The System architecture depicted above covers all the 

components, processes and actors that comprise a data 

processing pipeline that can adapt to ingest various sources of 

data, process what is classified as big data [8] at scale and 

explain mechanisms that can be used for auditing, quality 

checking, storing and analyzing the same. Individual 

components and their interactions with actors are explained 

in detail in the sections below. 

 

We will cover details on how some tools like Apache Airflow, 

Apache Hudi and Apache Spark come into play when 

working with data at scale. We will also discuss using the 

Publisher-Consumer architecture to deal with high velocity 

data and also re-purpose the same to deal with smaller batches 

of data as such workloads are very common in e-Commerce 

systems. One of the important requirements of e-Commerce 

systems is tracking the lineage, as audits and compliance 

requirements are common in this domain, and in this 

architecture, we explain mechanisms that can be used to track 

data at a very granular level, for example a single data point 

or a row can be traced back to the ingestion source, 

transformations and to the data warehouse. Some of the 

mechanisms used to ensure data quality, on-demand data 

analysis and long-term storage mechanisms like data 

warehousing are also explored in the context of e-Commerce. 

 

Process Flow 
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Components  

 

Rapid Integration Layer  

This layer is intended to ingest data from multiple sources that 

are classified as either streams or batch. It will guarantee 

ingestion of the data at speed and with high efficiency, 

regardless of the source type. The layer itself will deal with 

the preprocessing of data, ensuring its idempotency as well as 

taking care of metadata enrichment. 

 

Adapter  

The adapter component transforms and enriches the raw 

payload that the event handler receives. This logic is 

decoupled from the event handler, so it keeps the system 

flexible and adaptable to different data sources. The 

idempotency key logic is owned by the transformer since e-

Commerce sources can uniquely be identified only based on 

the content of the event. This is different from the usual 

definition of idempotency. Idempotency is an important 

feature for Lineage Tracking explained in other sections of 

this paper.  

 

Technical Implementation 

Common functionalities, such as telemetry and generating 

idempotent keys, are abstracted into the BaseAdapter class. 

To enable source-specific transformations and prepare per-

source unique idempotency keys, adapters extending this 

class can do so.  

 

The method emit_metrics allows the passing of telemetry data 

to monitoring and alerting systems. 

 

 
 

Event Handler 

This component is in charge of routing and managing 

incoming events. It handles retries, failover mechanisms, and 

guarantees at-least-once delivery. The next code snippet can 

be used as an example to extend this event handler to deal 

with other types of sources. The base Payload model may go 

on to further extend to suit various source formats like Json, 

EDI, or even SFTP. This flexibility, where any real-world 

event can be modeled as a Payload Object, will ensure that 

the event handler has specialized implementations catering to 

any kind of data event, much like what is observed with Event 

Sourcing and Domain-Driven Design [10]. 

 

Technical Implementation 

The EventHandler class is designed as an abstract class with 

customizable event handling logic. 

 

The getConfig method can be extended to pull configuration 

details from external services like AWS AppConfig or 

DynamoDB. This can be useful to implement business logic 

based on properties of the payload. The decoupled 

configuration can also be used to determine the type of nodes 

that may be required to handle the event. 

 

The processEvent method manages the core event processing 

logic, including transforming the payload and handling any 

errors that may occur. 
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-  
 
Kappa Architecture 

The Kappa architecture [9] considers systems where all data 

processing is treated as a real-time stream; batch processing 

is just a particular case of stream processing. The Event 

Handler adapts the Kappa architecture principles to deal with 

data of varying volume and speed. 

 

Reasons to apply principles from Kappa architecture to the 

Event Handler 

Real-Time and Batch Coexistence: While this architecture 

will favor stream-first design, it does allow handling batch 

workloads in processing, if required. Such data, when it 

arrives in bulk, can be ingested and processed in a manner 

consistent with real-time events—to preserve data lineage and 

integrity. 

 

Event-Driven Adaptability: It can be seen that, based on the 

event types, the event handler would change dynamically. For 

example, schema validation and metadata enrichment can be 

applied differently to an incoming event from an SFTP source 

than to a JSON event coming from an API stream. This 

adaptiveness of the architecture makes it robust for different 

use cases. 

 

Source-Agnostic Ingestion: The event handler will execute 

the same logic for transformation, agnostic of multiple input 

sources: SFTP, IoT, or API events. Each source will be 

enriched, standardized, and tagged with unique identifiers 

like source name, filename, and timestamp. 

 

Idempotency and Deduplication: Since every event gets an 

unique id at the time of ingestion, idempotency is taken care 

of by the event handler. This is very critical where data might 

arrive multiple times due to retries, network issues, or source 

errors. The transformation step will make sure to check for 

consistency; hence, no duplicate record passes downstream. 

 

Scalability: The Event handler could be deployed using 

Kubernetes, a container orchestration solution, to support the 

varying volume of data usually experienced in e-Commerce. 

This will enable the event handler to scale up or down, and 

allow flexibility to choose between mechanisms to prioritize 

high volume or throughput. 

 

Lineage Tracking System 

The Lineage Tracking System is an important feature for data 

integrity and full transparency across complex data pipelines. 

In an e-commerce environment, data flows from multiple 

sources; therefore, there should be clear visibility into how 

every data point evolves from its ingestion to its final 

consumption. 
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During ingestion, the system assigns a unique identifier to 

each record. Most often, it is a concatenation of source name, 

file name, and timestamp, which will then make the record 

uniquely traceable across all pipeline stages. More complex 

systems could use dedicated Metadata management, to add 

more attributes to the unique request. However, the same 

unique identifier stays along with the data across all the 

transformations—from an initial cleaning and enrichment to 

storing columnar formats like Parquet and further into data 

warehouses. 

 

Technical Implementation 

The lineage tracking metadata is stored with data itself at 

every point. It can be integrated into systems like Apache 

Atlas, AWS Glue Data Catalog, or even a custom metadata 

store. This system can be visualized as a graph where nodes 

represent steps of data transformation, edges of the flow of 

data along with its unique ID. This type of graphical system 

makes it easy to visualize and understand the complexity of 

data flows in real time for teams. 

 

The lineage tracking system provides great support not only 

in operational efficiency but also in strategic confidence via 

data-driven decisions. Whether for compliance, debugging, or 

performance optimization, a state-of-the-art lineage tracking 

system lends an eCommerce platform the auditability and 

accountability that evolving data challenges demand. 

 

Transformation Layer 

The transformation layer is the backbone of the data pipeline 

and takes raw, unstructured, or semi-structured data, 

transforming it into clean, structured data ready for storage in 

a data warehouse or direct consumption by analytics. Here, in 

the context of eCommerce, where data comes from multiple 

heterogeneous sources such as sales transactions, clickstream 

logs, customer interactions, and supplier data, the 

transformation layer has an important place to guarantee data 

consistency, accuracy, and usability. 

 

Why is the Transformation Layer Necessary? 

Data Quality Assurance: High-quality data is critical to 

eCommerce, wherein the wrong decisions are made, and 

customers either endure poor experiences or the operations 

become inefficient. The transformation layer will conduct a 

variety of data quality checks, including deduplication, filling 

missing values, and applying business rules. It will ensure, for 

example, that every order event contains the fields for a 

customer ID and product SKU, discarding or quarantining 

any that do not fulfill such checks. This degree of rigor at the 

time of transformation greatly reduces the potential for errors 

to propagate downstream. 

 

Data Enrichment and Improvement: Data enrichment adds 

context and value to raw data by combining the data with 

additional information. This can be metadata attached in 

eCommerce, like geographic locations based on IP addresses 

or product categorization based on machine learning models. 

For instance, clickstream data that is raw can be enriched with 

session identifiers, user demographic data, and product 

attributes, setting the data up for further and meaningful 

analysis later on. The transformation layer is where all this 

enrichment of the raw data happens to present actionable 

information. 

 

Distributed processing frameworks like Apache Spark and 

orchestration tools such as Apache Airflow running on 

Kubernetes are used by the Transformation Layer. These 

technologies enable the dynamic distribution of workloads, 

making it possible for velocity streams—even of the highest 

order—to be processed without bottlenecks in near real-time. 

For instance, an eCommerce platform may receive millions 

of click events per hour during a Black Friday sale. The 

transformation layer processes these events in real time, 

filtering, aggregating, and making data ready for real-time 

dashboards that track user behavior. 

 

Technical Implementation: 

 

Airflow and Task Orchestration 

Airflow is typically used for the orchestration of the 

transformation pipelines. DAGs represent a series of 

transformation tasks that are to be executed in sequence. 

Every task is independent, which makes scaling and retries 

easy. The tasks are distributed across clusters using 

Kubernetes Pod Operators, scaling dynamically as workload 

demands require. This is where the blob store artifacts 

produced by the event handler can be consumed for batch 

transformations. 

 

Real-Time “Big” data processing 

In the case of high-velocity data, this transformation layer 

could leverage Apache Spark Streaming or Apache Flink for 

real-time processing, where time-critical events are involved. 

This could be user activity at times like flash sales. In this 

architecture, the event handler acts as an in-house message 

queue adhering to the Publisher-Subscriber pattern. Instances 

of an event handler play the role of publishers, while some 

kind of consumer service subscribes to these events. It makes 

use of one of the well-known patterns, such as Long Polling, 

which allows the Consumer to process events in real time.  

 

 

 

Paper ID: SR24923122459 DOI: https://dx.doi.org/10.21275/SR24923122459 1899 

www.ijsr.net
http://creativecommons.org/licenses/by/4.0/


International Journal of Science and Research (IJSR) 
ISSN: 2319-7064 

ResearchGate Impact Factor (2018): 0.28 | SJIF (2019): 7.583 

Volume 9 Issue 5, May 2020 

www.ijsr.net 
Licensed Under Creative Commons Attribution CC BY 

 
 

Operational Data Analysis 

The result of the transformation layer will be stored in special 

file formats like Apache Parquet or ORC, which are designed 

with an aim to reduce as much latency connected with data 

access as possible. All of these formats compressed column 

by column making a query faster for large-scale in-memory 

analytics. This kind of data can be analyzed using big data 

processing frameworks such as Apache Druid, or Apache 

Hudi. The main aim of this component is to enable fast data 

summary by efficient partitioning strategies. This is mainly 

useful for operational data analysis where large amounts of 

data needs to be analyzed in near real-time to enable faster 

responses from Marketing and Sales teams in reaction to 

changes in customer behavior and inventory sales. 

 

Quarantine Area 

The quarantine area is primarily responsible for data integrity 

by catching and isolating all records that fail transformation—

for example, validation errors, missing fields, or format 

inconsistencies. To make this fault-tolerant—to guarantee 

that no data will be lost while it is being processed—the 

quarantine area can be combined with a Dead Letter Queue, 

which is a standard pattern in dealing with records that 

continue to fail after reprocessing attempts. 

 

 
Technical Implementation 

 

Error Detection and Initial Quarantine 

All records failing transformation are sent to a quarantine area 

for inspection and editing. If the error is a common problem 

with known resolutions to that problem, then the record is 

edited to correct the problem and re-ingested into the pipeline. 

However, if an error continues to manifest or is one that 

requires complex handling, then, after a certain number of 

reprocessing attempts, it will be moved to a dead-letter queue. 

Example: An order record missing the mandatory field 

customer_id would first be quarantined. If the attempts at 

automated correction fail more than once, then the record is 

sent to the DLQ for further investigation. 
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Dead Letter Queue (DLQ) Implementation 

The DLQ works in a manner similar to a persistent store for 

all those records that cannot be processed after several retries. 

Removing such problematic records into the DLQ ensures 

you do not clog the pipeline with them; at the same time, you 

will have them saved for further analysis or manual 

correction. Traditionally, DLQs are combined with message 

brokers like Amazon SQS, Kafka, and Google Pub/Sub, 

which are in charge of retry logic and message persistence. In 

this architecture, the retry and failover mechanisms would be 

contained within the EventHandler implementation. 

Example: A batch of records from an unreliable data source 

fails validation repeatedly. Rather than trying and failing to 

process these records again and again, they go into the DLQ, 

where they can be inspected and repaired manually or 

resolved by correcting upstream data ingestion processes. 

 

Error Categorization and Routing Logic  

Before any record is sent to the DLQ, quarantine categorizes 

the errors by type, such as missing data, invalid format, and 

out-of-bounds values. This grouping will help in diagnosis of 

the root cause and help decide whether reprocessing should 

be automatic or to route directly to the DLQ. Example: In case 

of format inconsistencies in a high percentage of records from 

one source, the system will automatically mark this source as 

inappropriate and suspend further ingestion from it; then, 

quarantined records will be redirected to the DLQ. 

 

Manual Review and Escalation from the DLQ 

Records in the DLQ require manual intervention, typically 

from data engineers, operations teams, or business 

stakeholders. The DLQ maintains an exhaustive log and 

metadata of each record that has been problematic, and root 

cause analysis is hence very simple to do. Furthermore, 

integration with workflow management tools like Jira or 

ServiceNow allows the tracking, escalation, and resolution of 

issues in a very organized way. Example: An EDI file with 

several errors could be escalated through a ticketing system 

to an operation team, who can correct the data manually and 

trigger the re-ingestion of corrected records back into the 

pipeline. 

 

Automated Alerts and Notifications  

The DLQ is integrated into monitoring and alerting systems 

that convey to stakeholders, through alerts and notifications, 

whenever records are added to the queue. Alerts can then be 

set on thresholds, such as when there is a sudden spike in 

entries into the DLQ, thus pointing toward a possible systemic 

issue that warrants immediate attention. Example: If the count 

of records in the DLQ exceeds the threshold, Slack will send 

an alert to the data engineering team to investigate 

immediately. 

 

Data Warehouse Layer 

This layer serves as the backbone of analytics and reporting 

for eCommerce platforms. A data warehouse holds 

transactional and analytical data models that are particularly 

optimized to query and report. Normally, they contain 

dimensional models and star schemas which help in running 

OLAP workloads efficiently. The warehouse becomes a 

single, focused location for business intelligence activities to 

pull data from multiple sources, including sales transactions, 

customer interaction, and logistics data. A modern warehouse 

is set on a cloud-native platform like Snowflake and Amazon 

Redshift that offers scalable, distributed storage and 

processing. This scalability is critical to e-commerce because 

of the high transaction rates and large data sets that may result 

in rapid growth in volume. It also hosts ETL processes that 

clean, enrich, and transform data before consumption by 

downstream applications. In addition, the data warehouse 

provides advanced analytics, real-time reporting, and 

machine learning applications with reliable and high-quality 

data. 

 

Technical Implementation 

Star and snowflake schemas optimize the designs for OLAP 

workloads that support the analytical query and reporting 

needs. These models structurally place the data into fact and 

dimension tables and assist in today's data aggregation and 

filtering of huge datasets. Star schemas are preferred most of 

the time as they are simple and faster, whereas snowflake 

schemas further normalize the dimension tables for better data 

integrity and working. All such models are optimized 

techniques of business intelligence tools and data marts where 

querying is to be fast and ad hoc. In the field of e-commerce, 

dimensional models apply to analysis on the metrics that 

reflect the trend of sales, customer behavior, and the 

effectiveness of marketing campaigns through the 

segmentation of data across several dimensions, such as time, 

geography, and the set product categorization of sales in a 

given period of time. These techniques become highly 

relevant in streaming data systems because of the likelihood 

that events will arrive out of order or with variable latencies. 

Late-arriving data in an e-commerce setting might include 

delayed transaction logs, inventory updates that are out of 

sync, or backlogged shipping records. 

 

4. Result 
 

The adopted architecture is designed with one fundamental 

principle - “What works for one should work for one million” 

- and hence adopts best practices from designing microservice 

architectures, horizontal scaling as opposed to vertical scaling 

and best practices for data partitioning. With this as the 

operating principle, this architecture is designed to scale from 

handling kilobytes to petabytes of data, as such variance is 

very common in eCommerce systems. It has also been 

observed to provide accurate real-time and near real-time 

insights, mechanisms to handle data audits in highly sensitive 

eCommerce environments such as hazardous / classified 

inventory sales, mechanisms to scale-out as much as 

infrastructure permits and robust data quality monitoring and 

correction strategies. 

 

5. Conclusion 
 

The proposed architecture stems from various experiences 

through trial and error while working with data in large scale 

eCommerce environments where the volume and velocity of 

data has wide lower and upper bounds. Any version of a data 

platform that builds on top of this architecture will resolve the 

issues with respect to scalability in modern eCommerce data 

engineering. It incorporates features like fault tolerance, data 

quality monitoring and auditability, which are highly 

desirable features of a data pipeline in an eCommerce 

environment. It also sets up the infrastructure to derive 
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insights from data at scale through distributed systems and 

cloud-native services. This allows engineers to focus on 

implementation and saves much time due to research and 

design of such a platform. Future works should focus on fine-

tune cost optimization strategies and integrate AI-driven 

automation for better data-processing capabilities. 
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