
International Journal of Science and Research (IJSR)
ISSN: 2319-7064

ResearchGate Impact Factor (2018): 0.28 | SJIF (2019): 7.583

Volume 9 Issue 5, May 2020

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

SAP AWS Cloud Dynamic Adobe Form Solution

Deepak Kumar1, Karthik Matam2

1Wilmington, USA

deepak3830 [at]gmail.com
2Hyderabad, India

karthik452 [at]gmail.com

Abstract: SAP Adobe Interactive Forms are tools that seamlessly integrate with SAP systems allowing for the creation of personalized

and user-friendly documents. By utilizing Adobe technology within the SAP environment these forms enhance the user experience by

enabling real-time data integration interactively. Businesses, and industries, rely on SAP Adobe Interactive Forms to streamline their

document processes such as generating invoices, contracts, and HR-related paperwork. However, frequent changes to the layout of SAP

Interactive Forms can bring about challenges. These challenges include disruptions in data integration compatibility issues with existing

scripts and the need for testing. Maintaining data integrity while adapting to evolving layouts through coordination between design

modifications and system functionalities is crucial. This requires excessive planning and execution. Furthermore, frequent changes in

SAP Interactive Form layouts can have implications as well. These implications may include increased costs for design and development

efforts, potential disruptions in document workflows, and additional expenses for user training. To address these challenges effectively,

integrating SAP with AWS Lambda and AWS S3 offers a proven solution. This collaboration ensures data flow and storage while

enhancing the reliability and efficiency of form maintenance, within the combined SAP AWS environment.

Keywords: SAP, SAP Adobe interactive forms, SAP AWS integration, AWS lambda, AWS S3

1.Introduction

SAP Interactive Forms, by Adobe, is a solution developed

jointly by SAP and Adobe offering capabilities for creating

and manipulating forms. This solution seamlessly

integrates into both the design time and run time

environments of SAP. It empowers businesses to process

data through form-based interactions and can be utilized in

application development settings. SAP Adobe Forms is a

component of the SAP Web Application Server requiring

the installation of Adobe Life Cycle Designer on your

system and the configuration of Adobe Document Services

(ADS) on the server to develop SAP Adobe forms. The

interactive Adobe form and its corresponding driver

program are implemented within the SAP system.

The integration of SAP with Amazon Web Services

(AWS) combines the strengths of SAP enterprise solutions

with the agility, scalability, and cost-effectiveness offered

by AWS cloud infrastructure. This collaboration enables

businesses to leverage cloud resources for running their

SAP applications while fostering innovation.

Amazon Web Services (AWS) Lambda is a computing

service that facilitates serverless execution of code without

any need for server provisioning or management. With

Lambda, users can execute functions in response to events,

automatically scaling based on demand.

Node. js stands as a source, cross-platform JavaScript

runtime built upon the V8 JavaScript engine. It empowers

developers to run JavaScript code on the server side

enabling the creation of network applications that are

scalable and performant. Node. js is a programming

framework that excels, in handling real-time applications,

APIs, and microservices due to its event-driven and

nonblocking nature. It has become a technology in web

development providing a lightweight and versatile runtime

environment for executing server-side JavaScript code.

SAP ABAP (Advanced Business Application

Programming) is a programming language developed by

SAP for creating enterprise-level business applications. At

the heart of SAP's software stack, ABAP empowers

developers to

customize SAP applications by supporting data

manipulation implementing business logic and developing

user interfaces. ABAP programs seamlessly integrate with

SAP systems through the SAP Runtime Environment.

APIs (Application Programming Interfaces) act as sets of

protocols and tools that facilitate communication and

interaction, between software applications. By defining

how various software components should interact APIs

enable developers to access features or data without

exposing the mechanisms underlying them.

2.How to design SAP interactive Adobe form

Step 1: Open transaction code SFP

Paper ID: SR24627191325 DOI: https://dx.doi.org/10.21275/SR24627191325 1877

www.ijsr.net
http://creativecommons.org/licenses/by/4.0/

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

ResearchGate Impact Factor (2018): 0.28 | SJIF (2019): 7.583

Volume 9 Issue 5, May 2020

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

Step 2: Create a form interface to establish the structure

and data elements that the form will interact with. These

can be fields from SAP data structures, internal tables, or

context nodes.

Step 3: Design the form layout by using the LiveCycle

Designer's drag-and-drop interface to design the form

layout. Add form fields, text elements, and graphics as

needed.

Step 4: Integrate interactive elements such as dropdowns,

checkboxes, and buttons. Utilize scripting (FormCalC) to

add dynamic behaviors to the form.

Step 5: Save and activate the form.

Step 6: Start Transaction SE38 and create a new driver

program.

Step 7: Write ABAP code as per the business requirements

to retrieve the data to be printed on the interactive Adobe

form.

Step 8: Call the below important function modules to

trigger the Adobe interactive form.

To implement any changes in the layout of an Adobe form,

we need to repeat the above steps before testing and

deploying the changes to the production environment.

However, with the SAP cloud Adobe form solution,

business teams can directly modify the interactive PDF

forms using the PDF editor and replace them on the AWS

Paper ID: SR24627191325 DOI: https://dx.doi.org/10.21275/SR24627191325 1878

www.ijsr.net
http://creativecommons.org/licenses/by/4.0/

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

ResearchGate Impact Factor (2018): 0.28 | SJIF (2019): 7.583

Volume 9 Issue 5, May 2020

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

S3 repository. This eliminates the need for repetitive steps

and simplifies the process of making changes to the Adobe

forms.

3.Problem Statement

Designing and maintenance of Interactive Forms works

well when we have a fixed layout on Adobe forms. When

business requirements demand variable layouts that may

be changing more frequently, the above process becomes

very tedious, and it is not possible to make changes in

Adobe Forms without making any technical Changes.

Every time any change is required, business teams must

pass on the requirements to the technical team to perform

the changes and import the change to the production

environment.

4.Solution Details

The approach explained here is a solution to the problem

explained above. In this approach, layout design and

maintenance ownership will reside with the business super

users and does not require the SAP technical team’s

involvement. The business team can identify the sections

of Adobe Forms that will require data to be rendered from

SAP and sections that require fixed data or manual inputs.

In this approach, data can be transferred from SAP by

creating a NodeJS application and deploying it in the AWS

Lambda function and keeping the layouts or the Adobe

interactive forms on AWS S3 buckets. Variable data can

be fetched from the SAP system and passed over to AWS

Lambda functions by using the NodeJS code. In this way

the dynamic and static part of the form can remain in total

control of the business team and the technical team will

just need the variable data to be printed on the form.

5.Business use case to explain the solution

Before showing up at the customer site, the Service

Technicians will download the latest version of the service

manual. These forms are dependent on the instrument and

the type of service. They are typically data sheets or

certificates of calibration. The correct forms will be

available based on the service type and instrument in the

work order. These forms will pre-populate the necessary

customer information. They also will prepopulate the

serial number and required calibration information for the

jigs that the engineer needs to use for the service. Based on

the Service Technician and Instrument, SAP will auto-

populate the serialized, calibrated jigs that are required for

the work. Jig details are pulled from the calibration system

and stored in the SAP System.

6.Technical Solution details

1. Prepare the form using Adobe Acrobat as shown below:

Paper ID: SR24627191325 DOI: https://dx.doi.org/10.21275/SR24627191325 1879

www.ijsr.net
http://creativecommons.org/licenses/by/4.0/

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

ResearchGate Impact Factor (2018): 0.28 | SJIF (2019): 7.583

Volume 9 Issue 5, May 2020

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

2. The process will start from the SAP screen where the

user will click on the button to trigger the display of the

interactive Adobe form.

3. With the click of a button, the SAP code will trigger

which includes the below key components.

4. Create a deep structure to be converted into JSON

format.

5. After getting the details convert the corresponding

structure into JSON using the method

CL_FDT_JSON=>DATA_TO_JSON

6. To send the JSON to AWS get the AWS Key and URL

saved in SAP tables/variables.

7. The factory method

CL_HTTP_CLIENT=>CREATE_BY_URL is used in

this case to instantiate the ABAP HTTP object.

Paper ID: SR24627191325 DOI: https://dx.doi.org/10.21275/SR24627191325 1880

www.ijsr.net
http://creativecommons.org/licenses/by/4.0/

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

ResearchGate Impact Factor (2018): 0.28 | SJIF (2019): 7.583

Volume 9 Issue 5, May 2020

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

8. Replace the SAP field names with the field names

defined on the Adobe interactive forms.

9. Trigger AWS and get the response as a URL.

10. This response is converted to ABAP structure using

method ‘CL_FDT_JSON=>JSON_TO_DATA’.

Paper ID: SR24627191325 DOI: https://dx.doi.org/10.21275/SR24627191325 1881

www.ijsr.net
http://creativecommons.org/licenses/by/4.0/

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

ResearchGate Impact Factor (2018): 0.28 | SJIF (2019): 7.583

Volume 9 Issue 5, May 2020

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

11. The ‘WINDOW. OPEN’ in will be called to open the

URL in a new window in DO_PREPARE_OUTPUT.

12. We send values that need to be populated in the Form

template in API request BODY.

13. The AWS Lambda NodeJS function will fetch the

template from S3 based on the template ID in the API

request Body, populate the other values in the

template, and provide the URL which is the endpoint

for the updated PDF document.

Paper ID: SR24627191325 DOI: https://dx.doi.org/10.21275/SR24627191325 1882

www.ijsr.net
http://creativecommons.org/licenses/by/4.0/

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

ResearchGate Impact Factor (2018): 0.28 | SJIF (2019): 7.583

Volume 9 Issue 5, May 2020

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

14. We need to use the URL returned from the POST call

to launch the PDF.

7.Conclusion

1. Reduced efforts by 70% as compared to the traditional

way of building layout using Adobe Forms in SAP

2. Adobe template maintenance is taken care of by the

business.

3. The SAP Technical team only focuses on sending the

dynamic data to AWS if any new dynamic fields are

added to the template.

4. One solution for all the templates irrespective of

different forms

Declarations:

• Ethics approval and consent to participate: Not

Applicable

• Consent for publication: All authors have consent to

submit this paper to the Journal of Cloud Computing.

Also, we confirm that this paper or any part of this paper

was not submitted anywhere.

• Availability of data and materials: Not Applicable

• Competing interests: Not Applicable

• Funding: Not Applicable

• Authors' contributions:

R. A. Topics Covered: SAP AWS Cloud Dynamic Adobe

Form Solution

R. K. Topics Covered: Abstract, Introduction, and How to

Design SAP interactive Adobe form.

D. N. M. Topics Covered: Conclusion and Declarations

All Authors have reviewed the manuscript.

Acknowledgments

Thank you co-author, Karthik Matam, for his expertise and

assistance throughout all aspects of our study and for your

help in covering a few topics and reviewing the

manuscript.

References

[1] “SAP Help Portal,” help.sap.com.

https://help.sap.com/docs/SAP_NETWEAVER_740/6

f3c61a7a5b94447b80e72f722b0aad7/a9b128543eaa4

a508b5120b695e29391.html

[2] “SAP Adobe Form - Steps to create simple ADOBE

Form and calling it from ABAP Program.” https://an-

sap-consultant.blogspot.com/2014/04/sap-adobe-

form-steps-to-create-simple-ADOBE-Form-and-

calling-it-from-ABAP-Program.html

[3] “How to create interactive PDF files: interactive PDFs

| Adobe Acrobat,” www.adobe.com.

https://www.adobe.com/acrobat/hub/how-to-make-a-

pdf-interactive.html

[4] “SAP IDoc integration with Amazon S3 by using

Amazon API Gateway | AWS for SAP,”

aws.amazon.com, Jul. 11, 2019.

https://aws.amazon.com/blogs/awsforsap/sap-idoc-

integration-with-amazon-s3-by-using-amazon-api-

gateway/

[5] “AWS Lambda | AWS Blog,” aws.amazon.com.

https://aws.amazon.com/blogs/aws/category/aws-

lambda/

[6] “Best Practices for Amazon S3.”

https://d1.awsstatic.com/events/reinvent/2019/REPE

AT_1_Best_practices_for_Amazon_S3_(including_st

orage_classes)_ft._Instructure_STG302-R1.pdf

[7] “ABAP to JSON Conversion | SAP Blogs,”

blogs.sap.com.

https://blogs.sap.com/2019/10/21/abap-to-json-with-

custom-transformation/

[8] S. PRESS, “How to Prepare an Interactive PDF Form

for SAP,” blog.sap-press.com. https://blog.sap-

press.com/how-to-prepare-an-interactive-pdf-form-

for-sap

[9] former_member, “Step By Step Method To Create An

Adobe Form With Dynamic Variables Along With An

External Layout,” SAP Community, Jan. 27, 2013.

https://community.sap.com/t5/technology-blogs-by-

members/step-by-step-method-to-create-an-adobe-

form-with-dynamic-variables-along/ba-p/13232494

Paper ID: SR24627191325 DOI: https://dx.doi.org/10.21275/SR24627191325 1883

www.ijsr.net
http://creativecommons.org/licenses/by/4.0/

