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Abstract: Generalized Traveling Salesman Problem (GTSP) is a well-known NP-hard problem. In a symmetric GTSP, the salesman 

must pass through a number of predefined subsets of customers, determining the order in which the subsets should be visit ed, and 

visiting exactly one customer in each subset while minimizing the sum of traveling costs of a completed undirected graph. Thi s paper 

introduces a metaheuristic approach for solving this problem. The proposed algorithm is composed of two stages: (1)  the 

constructive algorithm using the nearest neighbor heuristics (NN); and (2) the local improved algorithms consisting of combination 

of the well-known 2-opt search (2-opt classic), the adaptation of 2-opt with the NN (2-opt-NN), and the shortest path approach using 

Dijkstra’s algorithm (2-opt-SP). The computational results on thirty-six TSPLIB problems with up to 442 nodes are presented 

wherein the problems up to 300 nodes have been solved with computational time shorter than previous results cited in the lite rature. 
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1. Introduction 
 

Generalized Traveling Salesman Problem (GTSP) is a 

generalization of the well-known traveling salesman 

problem (TSP) wherein the number of customers is divided 

into clusters. The salesman determines the order of the 

clusters to be visited, and chooses the customer to be visited 

in each cluster.  

 

The symmetric GTSP can be defined as follows. Given an 

undirected graph G = (N,E) where the set of nodes N = {1, 

..., n} is partitioned into m mutually exclusive and 

exhaustive subsets (clusters), Ck (for i ≠ j, Ci ∩ Cj = Ø; N = 

C1C2  …Ck; k = 1, …, m} and to each edge (i, j)   

E, E = {(i, j): i, j   N} is associated a distance (or cost) cij, 

such that cij = cji, determine the minimum-length (cost) m-

edge cycle on G which includes exactly one node from each 

node-subset. The process presented is for the symmetric 

GTSP (sGTSP), in which the travel distances are 

symmetrical (cij = cji) and satisfy the triangle inequality. 

Discussion of asymmetric GTSP (aGTSP) is not included in 

this paper.  

 

The GTSP is a NP-hard problem since it reduces to the TSP 

when each cluster contains exactly one node.  

 

The GTSP is a well-known combinatorial optimization 

problem with a host of applications in planning & 

scheduling, material flow, warehousing, sequencing, post 

box and air-port selection, etc., [6]. 

 

2. Materials - Methods 
 

In 1969, Srivastava et al., and Henry-Labordere addressed 

sGTSP and aGTSP respectively and proposed a dynamic 

programming model for their solutions. Over ten years 

later, Laporte et al., solved these problems by an integer 

programming. Fischetti et al., (1997) developed a branch 

and cut algorithm to solve the symmetric instances for 

optimality. For large problems, there is a need for good 

heuristic methods to solve such problems in order to obtain 

nearly optimal solutions in a reasonable amount of 

computational time. Noon (1988) proposed several 

heuristics, the most promising of which is an adaptation of 

the well-known nearest-neighbor heuristic. Renaud and 

Boctor (1998) developed a heuristic called GI3. Snyder and 

Daskin (2006) described a random-key genetic algorithm. 

Karapetyan and Gutin (2012) proposed an efficient local 

search algorithm for known and new neighborhoods. And 

very recently, a number of other meta-heuristics have also 

been proposed by Pintea et al., (2017) with ant algorithm, 

K. Helsgaun (2015) with lin-kernighan-helsgaun 

algorithm, and Smith and Imeson (2017) with an effective 

large neighborhood search heuristic for solving the GTSP. 

 

This paper proposes a meta-heuristic by using a local 

improvement algorithm called k-opt; more specifically, a 2-

opt local search method. However, additional efforts have 

been spent in fine tuning the search with some basic 

components of moves, random start, neighborhood (NN), 

and shortest path (SP) methodologies to construct more 

efficient optimization procedures. 

 

3. Components 
 

3.1. The k-opt approach.  

 

k-opt attempts to improve a given tour by removing up to k 

edges that are not all adjacent and, replacing them with a 

corresponding number of new edges so that a new tour is 

generated. Note that, in the new tour, some segments of the 

original tour may be reversed.  

 

The complexity of the k-opt procedure is O(mk) where m is 

the number of clusters. In other words, the neighborhood 

contains O(mk) solutions, and checking the objective value 
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of any solution requires a fixed amount of time. The 2-opt 

involves the substitution of two edges, say {i, i+1} and {j, 

j+1}, with two other edges {i, j} and {i+1, j+1}.  

 

This process is illustrated in Figure 3.1.  

 

Note that the orientation of the path (i+1, i+2, …., j) is 

reversed. Such an exchange results in a local improvement 

if and only if the improvement of move (defined by) is 

greater than 0: 

(i,j) = d(i), (i+1) + d(j), (j+1) - d(i), (j) - 

d(i+1), (j+1) > 0.            (3.1). 

 

A complete iteration of this 2-opt heuristic consists of 

trying all the possible pairs of the current sequence and 

stopping if no improvement can be achieved during a 

complete iteration. 

 

 
Figure 3.1: The 2-opt procedure (k =2). 

 

3.2. Moving procedures 

 

This procedure consists of three specific moves of 

swapping, reversing, and inserting. These moves are 

demonstrated using a tour such as {0-1-2-3-4-5-6-7-8-9}.  

 Swapping two paths means interchanging the places of 

two sequences in the tour. For instance, swapping the 

path {3-4-5} and {7-8} results in {0-1-2-7-8-6-3-4-5-9-

0}. 

 Reversing a path means changing the sequence of nodes 

in a segment of the tour, e.g. reversing the path {3-4-5-6} 

gives the route {0-l-2-6-5-4-3-7-8-9}. 

 Inserting a node/cluster means inserting a number in 

each location of the tour. For instance inserting 5 into the 

above example will result the sequence of {0-5-l-5-2-5-3-

5-4-5-6-5-7-5-8-5-9}. 

 

3.3. Random start 

 

Each run of the proposed algorithm will start at a node 

randomly picked from the set of nodes for the problem. The 

quality of solution will depend on the node where the 

solution starts. The use of multiple trials increases the 

chance of getting closer to the optimum solution. 

 

4. The Proposed Algorithms 
 

4.1 The general outline of the complete algorithm is 

depicted in figure 4.1 (a), (b), and (c). 

 

 

 
(b) Input (construct distance matrix) 

Figure 4.1: Main steps of the procedures. 

 

4.2 The NN heuristic algorithm 

 

The NN procedure is summarized as follows (Figure A.1 in 

the appendix 1). 

The input: The matrix of distances (Figure 4.1.b).  

The output: The initial tour of sGTSP (Figure 4.1.c). 

Step 1: Start randomly at cluster k, and city i that belongs 

to the cluster k. Mark the cluster k = 1 (k=1: visited; k=0: 

not visited yet).   

Step 2: Among non-visited clusters find the nearest node 

with city i and add this node to the tour. Mark this cluster.  

Step 3: Continue this procedure until all clusters are 

marked. This will form the initial m-edge tour. 

Step 4: Construct the tour and print out this tour. Stop the 

NN procedure. 

 

4.3 The 2-opt classic algorithm 

 

This procedure includes two parts: (1) the NN heuristics as 

defined in figure A.1; (2) 2-opt classic heuristics as in 

figure A.2.  

The input: the initial m-edge tour of the sGTSP with the 

distance matrix (Figure 4.1.b).  

The output: an improved tour of the sGTSP. 

Step 1: Construct the initial m-edges tour of the sGTSP by 

NN heuristics (Figure A.1). 

Step 2: Use the 2-opt move with the m-edges tour. Assume 

“Non-fixed cluster, fixed candidate cities”, the problem is 
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now a TSP. Perform the local search move around node i (i 

= 1 to m-2) and node j (j = i+2 to m) (Figure A.2), and 

calculate the  following the equation (3.1):  = d(i-1, i) + 

d(j, j+1) - d(i-1, j) - d(i, j+1) (Figure A.3).  

Step 3: If   0: go to step 2 with the new value of i, j. If  

 0: perform the move i, j (Figure A.4). A new tour is 

constructed with the improved distance. 

Step 4: Go to step 2 with the new tour which now becomes 

the current tour. The procedure is continued until no more 

improvement is made. Stop and print out the current tour 

with its distance. 

 

4.4 The 2-opt–NN algorithm 

 

This algorithm includes two parts: (1) the NN heuristics as 

defined in figure A.1; (2) the 2-opt-NN heuristics as shown 

in figure A.5.  

 

The input is the initial m-edge tour of the sGTSP with the 

distance matrix (Figure 4.1.b).  

 

The output is an improved tour.  

Step 1: This step includes all steps of section 4.2 (Figure 

A.1). This step constructs the initial m-edge tour of the 

sGTSP by NN heuristics. 

Step 2: Use the 2-opt-NN moves with the initial m-edge 

tour. The problem is now a sGTSP. Perform a local search 

move in cluster i (i = 1 to m-1) and cluster j (j = i+1 to m) 

(Fig. A.5), and calculate  following the equation (3.1) with 

a modification as:  = (dist 1 – dist 2) (Figure A.6). 

Step 3: If   0: go to step 2 with the new value of i, j. If  

 0: perform the move for these i, j. (Figure A.7). This 

procedure is continued with value of i increases by 1, while 

j decreases by 1. The new tour of the sGTSP is constructed 

with the improved distance. 

Step 4: Go to step 2 with the new tour as the current tour. 

Continue the procedure until there is no new improvement. 

Stop and print out the current tour with its distance. 

 

 

 

 

4.5 The 2-opt–SP algorithms 

 

This procedure consists of two parts: (1) The NN heuristics 

as defined in figure A.1; (2) The 2-opt-SP heuristics (figure 

A.8). The input: the current tour of sGTSP and weighted 

distance matrix (Figure A.9).  

 

The output: An improved tour of the sGTSP. 

 

Step 1: This step includes all steps of section 4.2 (Figure 

A.1). This step constructs the initial m-edge tour of the 

sGTSP by NN heuristics. 

Step 2: Use the 2-opt-SP moves with the initial m-edge 

tour. The problem becomes a sGTSP. Use Dijstra’s 

algorithm with cluster i (i = 1 to m) and cluster j (j = i+2 to 

m), (Figure A.8) to calculate the improvement  = (dist 1 – 

dist 2) (Figure A.10).  

Step 3: If   0, go to step 2 with the new value of i, j. If  

 0, perform the move of these i, j (Figure A.11). This 

procedure is continued with value of i increases by 1, while 

j decreases by 1. The new tour of the sGTSP is constructed 

with the improved distance. 

Step 4: Go to step 2 with the new tour as the current tour. 

Continue the procedure until there is no more 

improvement. Stop and print out the current tour with its 

distance. 

 

5. Results and Discussions 
 

The four proposed algorithms are implemented in C++ and 

tested on an Intel ® core™ 2Duo CPU E7500@ 2.93GHz, 

2.87GB of RAM running under window XP on 36 TSPLIB 

problems. The abridged data are shown in table 5.1 and 

table 5.2 (full data are in the appendix 2). 

 

For each problem, the algorithms are run five times to 

examine their performance and variation of results from 

trial to trial. The best performance of the five trials is used 

as the solution (UB) and compared to the optimal solution 

(O*) reported by Fischetti et al., [10]. The quality of the 

solution for each problem over the proposed algorithms is 

calculated: gap (%) = 100(UB-O*)/O*. 

 

Table 5.1: Data of four proposed algorithms 

36 Problems O
*
 

The NN The 2-opt-classic The 2-opt-NN The 2-opt-SP 

UB gap Time UB gap Time UB gap Time UB gap Time 

EIL 51 174 189 8.62 0.01 191 9.77 0.01 178 2.30 0.02 174 0.00 0.00 

ST 70 316 350 10.76 0.00 335 6.01 0.00 326 3.16 0.02 320 1.27 0.01 

EIL 76 209 240 14.83 0.01 217 3.83 0.02 214 2.39 0.01 209 0.00 0.02 

PR 76 64925 79114 21.85 0.00 69882 7.63 0.02 66162 1.91 0.03 64925 0.00 0.03 

……….              

PR 226 64007 69241 8.18 0.01 66035 3.17 0.03 64722 1.12 0.08 64007 0.00 1.72 

……….              

PCB 442 21657 28996 33.89 0.05 24817 14.59 0.03 23804 9.91 3.47 23329 7.72 44.76 

Average   16.92 0.02  10.53 0.02  5.62 0.50  3.17 7.20 

 

From table 5.1, it is clear that the 2-opt-SP outperforms the 

other solution heuristics. On the average it gives solutions 

within 3.17% of the optimum in an average of 7.2 seconds 

of CPU. The second good result is given by the 2-opt–NN, 

which produced an average percentage increase over the 

optimum of 5.62% in an average time of 0.5 CPU seconds.  
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Table 5.2: Data of the GI3, the G-NN, the GA and the 2-opt-SP 

36 

Problems 

 

O
*
 

The GI
3
 The G-NN The GA The 2-opt-SP 

UB gap Time UB gap Time UB gap Time UB gap Time 

EIL 51 174 174 0.00 0.30 174 0.00 0.40 174 0.00 0.10 174 0.00 0.00 

ST 70 316 316 0.00 1.70 316 0.00 0.80 316 0.00 0.20 320 1.27 0.01 

EIL 76 209 209 0.00 2.20 209 0.00 1.10 209 0.00 0.20 209 0.00 0.02 

PR 76 64925 64925 0.00 2.50 64925 0.00 1.90 64925 0.00 0.20 64925 0.00 0.03 

…………              

PR 226 64007 64007 0.00 25.50 65395 2.17 67.60 64007 0.00 1.00 64007 0.00 1.72 

…………              

PCB 442 21657 22936 5.91 567.70 21704 0.22 838.40 22025.8 1.70 10.10 23329 7.72 44.76 

Average   1.05 82.61  1.48 171.56  0.13 1.63  3.17 7.20 

 

Table 5.2 compares the 2-opt-SP with other composite 

heuristics presented in literature including the GI3 by 

Renaud and Boctor [7]; the G-NN by Noon [3] and the GA 

by Snyder et al., [9]. It shows that the GA produces the best 

results within 0.13% of the optimum in an average of 1.63 

seconds of CPU. Although the solutions produced by the 

GI3 are almost as good with 1.05 % of the optimum, its 

average computation time is 82.61 CPU seconds. It is over 

11 times slower compared with the 2-opt-SP (7.2 CPU 

seconds).  

 

Table 5.3: Summary of performance measures for 36 

TSPLIB problems 

Measure 
The 

NN 

The 2- 

opt-

classic 

The 2- 

opt-

NN 

The 2- 

opt- 

SP 

Number of optimum solutions 0 0 0 4 

Average of gap (%) 16.92 10.53 5.62 3.17 

Min % increase above the 

optimum 
3.24 2.19 0.90 0.00 

Max % increase above the 

optimum 
33.89 19.32 13.32 9.90 

Average computational time 0.02 0.02 0.50 7.20 

Min computation time 0.00 0.00 0.01 0.00 

Max computation time 0.05 0.05 5.27 87.38 

 

Table 5.3 summarizes the results given in the previous 

tables and shows that the 2-opt-SP produced the smallest 

average percentage increase above the optimum (3.17%), 

and in four occasions it reached the optimum. This table 

also shows that the 2-opt–NN produces good results. 

Generally, the average computational time of the 2-opt-SP 

is comparable with the GA (Figure 5.1).  

 

 
Figure 5.1:  Comparison of the GI3, the G-NN, the GA, and 

the 2-opt-SP. 

Specially, the 2-opt-SP produced the shortest computational 

time with the problems up to 300 nodes (0.86 CPU seconds) 

(Figure 5.2). 

 
Figure 5.2: Time comparison of the GI3, the G-NN, the GA, 

and the 2-opt-SP. 

 

6. Conclusions and Recommendations 
 

This paper investigated the symmetric generalized traveling 

salesman problem. The GTSP provides an attractive way of 

modeling a wide range of situations.  

 

The most efficient local searches in this research are the 

adaptations of the well-known 2-opt with the neighborhood 

search (called the 2-opt-NN), and the shortest path approach 

(called the 2-opt-SP) for solving the sGTSP. The 

assessment of the quality of the solution has been made by 

treating the proposed algorithms as a “black-box” routine 

for 36 TSPLIB problems, for which optimal solutions are 

available. Three other composite heuristics as well as the 

optimal solution were used as the basis for comparison. It 

has been shown that with problems up to 300 nodes and 

when there is a need for a fast solution, the 2-opt-SP 

requires the smallest average CPU seconds and may turn 

out to be the preferred approach.  

 

For example, delivery routes for companies like DHL and 

UPS are quickly changing every day. Companies cannot 

take too much time to find optimal solution for their tours. 

They need fast algorithms to recalculate tours in a few 

seconds. In such cases, the 2-opt-SP can be the best choice.  

 

Further research is required to study more combinations of 

GTSP local searches, in which we could develop more k-opt 

procedures with k > 2. It is expected that there are yet 

additional opportunities to significantly improve the 

performance of GTSP.  
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Moreover, it seems worthwhile to combine some meta-

heuristics as GA, guided local search, ant colony approaches 

are also recommended for investigation. 
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Appendices 
 

Appendix 1: The Proposed Algorithms 

 

Figure A.1 The NN procedure 
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Figure A.2: The random start + 2-opt-classic procedure 

 

 
Figure A.3 The  calculation for the 2-opt-classic 

 

 
Figure A.4 The 2-opt-classic moves 

 
Figure A.5 The 2-opt-NN procedure 
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Figure A.6  The  calculation for the 2-opt-NN 

 

 
Figure A.7 The 2-opt-NN moves 
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Figure A.8 The 2-opt-SP procedure 
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Figure A.9 The weight distance matrix 
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START 

For k=0 to m+1 

candidate_cities[k]=cities[k]; 

For k=i to j+1 

dist1+=dist[cities[k-1]][cities[k]]; 

          inf=99999999; 

(Dijkstra) 

! final[city_sp] 
No 

Yes for (v=1 to city_sp) 

(w[recent][v]<inf) &&(!final[v]) 
No 

Yes 

newlabel=distsp[recent]+w[recent][v] 

 

Yes 

newlabel<distsp[v]; 

 
Yes 

distsp[v]=newlabel; 

pred[v]=recent; 

 

 

No 

(ii) 

For v=1 to city_sp{ 
distsp[v]=inf; final[1]=false; 

pred[v]=-1;} 

distsp[1]=0; final[1]=true; 

path=true; recent=1; 

Build weight dist. matrix w 

[k][l] 

(! final[u]) && (distsp[u]<temp)  

No 

Yes 

q=u; 

temp=distsp[u]; 

for (u=1 to city_sp) 

temp<inf 
No 

Yes 

temp2++; 

w[1][temp2]=dist[ord[1]][l]; 

temp=inf; 

path=false; 

final[city_sp]=true; 

cluster_sp=(j-i)+1; 

ref=city_sp;  
numcities_sp[1]=1; 

numcities_sp[cluster_sp]=city_sp; 

k=1; 

k<=cluster_sp-2 

No 

Yes 

numcities_sp[k+1]=pred[ref]; 

ref=numcities_sp[k+1]; 

k++; 

END 

l=1; 

for (k=i+1,k<j,k--) 

{candidate_cities[k]=ord[numcities_sp[l]]; 

l++;} 

dist2=distsp[city_sp]; 

imp=dist1-dist2; 

return 

imp; 

 
Figure A.10  The Dijstra’s algorithm 
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Figure A.11: The 2-opt-SP moves 

 

Appendix 2: Computational data. 

Table 5.1: Data of four proposed algorithms 

36 Problems O
*
 

The NN The 2-opt-classic The 2-opt-NN The 2-opt-SP 

UB gap Time UB gap Time UB gap Time UB gap Time 

EIL 51 174 189 8.62 0.01 191 9.77 0.01 178 2.30 0.02 174 0.00 0.00 

ST 70 316 350 10.76 0.00 335 6.01 0.00 326 3.16 0.02 320 1.27 0.01 

EIL 76 209 240 14.83 0.01 217 3.83 0.02 214 2.39 0.01 209 0.00 0.02 

PR 76 64925 79114 21.85 0.00 69882 7.63 0.02 66162 1.91 0.03 64925 0.00 0.03 

RAT 99 497 578 16.30 0.01 563 13.28 0.01 511 2.82 0.03 499 0.40 0.06 

KRO A100 9711 11171 15.03 0.01 10615 9.31 0.02 10385 6.94 0.02 10507 8.20 0.03 

KRO B100 10328 11136 7.82 0.01 11136 7.82 0.02 10836 4.92 0.02 10335 0.07 0.02 

KRO C100 9554 11842 23.95 0.02 10974 14.86 0.03 10827 13.32 0.03 10035 5.03 0.05 

KRO D100 9450 10383 9.87 0.00 10127 7.16 0.01 10138 7.28 0.02 9528 0.83 0.03 

KRO E100 9523 10469 9.93 0.01 10469 9.93 0.03 10078 5.83 0.03 9633 1.16 0.05 

RD 100 3650 4199 15.04 0.00 3937 7.86 0.01 3796 4.00 0.03 3795 3.97 0.01 

EIL 101 249 273 9.64 0.02 268 7.63 0.02 264 6.02 0.01 251 0.80 0.03 

LIN 105 8213 8829 7.50 0.01 8760 6.66 0.02 8439 2.75 0.03 8232 0.23 0.05 

PR 107 27898 28803 3.24 0.00 28509 2.19 0.01 28150 0.90 0.01 27990 0.33 0.06 

PR 124 36605 40000 9.27 0.01 39520 7.96 0.03 37993 3.79 0.03 36805 0.55 0.11 

BIER 127 72418 85262 17.74 0.00 79168 9.32 0.01 75059 3.65 0.05 78329 8.16 0.11 

PR 136 42570 51026 19.86 0.01 47349 11.23 0.03 45111 5.97 0.05 44305 4.08 0.23 

PR 144 45886 47905 4.40 0.01 47541 3.61 0.02 46468 1.27 0.05 45890 0.01 0.28 

KRO A150 11018 13091 18.81 0.01 12664 14.94 0.01 11854 7.59 0.05 11298 2.54 0.19 

KRO B150 12196 13786 13.04 0.01 13504 10.72 0.03 13026 6.81 0.06 12419 1.83 0.25 

PR 152 51576 56852 10.23 0.01 55483 7.58 0.01 52722 2.22 0.05 51820 0.47 0.50 

U 159 22664 28330 25.00 0.01 26443 16.67 0.01 24483 8.03 0.05 23813 5.07 0.36 

RAT 195 854 1128 32.08 0.01 1019 19.32 0.02 951 11.36 0.31 884 3.51 0.95 

D 198 10557 12369 17.16 0.01 11450 8.46 0.03 10843 2.71 0.14 10637 0.76 3.03 

KRO A200 13406 17225 28.49 0.02 15937 18.88 0.03 14768 10.16 0.11 14059 4.87 1.16 

KRO B200 13111 17544 33.81 0.02 15480 18.07 0.01 14115 7.66 0.16 13805 5.29 1.59 

TS 225 68340 76395 11.79 0.01 75887 11.04 0.03 72090 5.49 0.06 70251 2.80 0.50 

PR 226 64007 69241 8.18 0.01 66035 3.17 0.03 64722 1.12 0.08 64007 0.00 1.72 

GIL 262 1013 1227 21.13 0.02 1186 17.08 0.01 1106 9.18 0.48 1057 4.34 2.92 

PR 264 29549 34697 17.42 0.02 32686 10.62 0.03 30858 4.43 0.34 31555 6.79 4.63 

PR 299 22615 29271 29.43 0.02 25463 12.59 0.03 24477 8.23 0.69 24009 6.16 7.66 

LIN 318 20765 26520 27.71 0.02 24256 16.81 0.03 22332 7.55 1.42 22433 8.03 13.63 

RD 400 6361 8045 26.47 0.05 7573 19.05 0.01 7105 11.70 2.94 6991 9.90 47.00 

FL 417 9651 10662 10.48 0.05 9954 3.14 0.03 9870 2.27 1.80 9866 2.23 39.93 

PR 439 60099 71002 18.14 0.05 66325 10.36 0.05 64195 6.82 5.27 64205 6.83 87.38 

PCB 442 21657 28996 33.89 0.05 24817 14.59 0.03 23804 9.91 3.47 23329 7.72 44.76 

Average   16.92 0.02  10.53 0.02  5.62 0.50  3.17 7.20 
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Table 5.2 Data of the GI3, the G-NN, the GA and the 2-opt-SP 

36 Problems 

 

O
*
 

The GI
3
 The G-NN The GA The 2-opt-SP 

UB gap Time UB gap Time UB gap Time UB gap Time 

EIL 51 174 174 0.00 0.30 174 0.00 0.40 174 0.00 0.10 174 0.00 0.00 

ST 70 316 316 0.00 1.70 316 0.00 0.80 316 0.00 0.20 320 1.27 0.01 

EIL 76 209 209 0.00 2.20 209 0.00 1.10 209 0.00 0.20 209 0.00 0.02 

PR 76 64925 64925 0.00 2.50 64925 0.00 1.90 64925 0.00 0.20 64925 0.00 0.03 

RAT 99 497 497 0.00 5.00 497 0.00 7.30 497 0.00 0.70 499 0.40 0.06 

KRO A100 9711 9711 0.00 6.80 9711 0.00 3.80 9711 0.00 0.40 10507 8.20 0.03 

KRO B100 10328 10328 0.00 6.40 10328 0.00 2.40 10328 0.00 0.40 10335 0.07 0.02 

KRO C100 9554 9554 0.00 6.50 9554 0.00 6.30 9554 0.00 0.30 10035 5.03 0.05 

KRO D100 9450 9450 0.00 8.60 9450 0.00 5.60 9450 0.00 0.40 9528 0.83 0.03 

KRO E100 9523 9523 0.00 6.70 9523 0.00 2.80 9523 0.00 0.80 9633 1.16 0.05 

RD 100 3650 3653 0.08 7.30 3653 0.08 8.30 3650 0.00 0.30 3795 3.97 0.01 

EIL 101 249 250 0.40 5.20 250 0.40 3.00 249 0.00 0.20 251 0.80 0.03 

LIN 105 8213 8213 0.00 14.40 8213 0.00 3.70 8213 0.00 0.30 8232 0.23 0.05 

PR 107 27898 27898 0.00 8.70 27898 0.00 5.20 27898 0.00 0.40 27990 0.33 0.06 

PR 124 36605 36762 0.43 12.20 36605 0.00 12.00 36605 0.00 0.60 36805 0.55 0.11 

BIER 127 72418 76439 5.55 36.10 79431 9.68 7.80 72418 0.00 0.50 78329 8.16 0.11 

PR 136 42570 43117 1.28 12.50 44930 5.54 9.60 42570 0.00 0.50 44305 4.08 0.23 

PR 144 45886 45886 0.00 16.30 45886 0.00 11.80 45886 0.00 0.30 45890 0.01 0.28 

KRO A150 11018 11018 0.00 17.80 11018 0.00 22.90 11018 0.00 1.30 11298 2.54 0.19 

KRO B150 12196 12196 0.00 14.20 12196 0.00 20.10 12196 0.00 1.00 12419 1.83 0.25 

PR 152 51576 51820 0.47 17.60 52506 1.80 10.30 51576 0.00 1.50 51820 0.47 0.50 

U 159 22664 23254 2.60 18.50 23296 2.79 26.50 22664 0.00 0.60 23813 5.07 0.36 

RAT 195 854 854 0.00 37.20 865 1.29 86.00 854.0 0.00 0.70 884 3.51 0.95 

D 198 10557 10620 0.60 60.40 10620 0.60 118.80 10557 0.00 1.20 10637 0.76 3.03 

KRO A200 13406 13406 0.00 29.70 14110 5.25 53.00 13406 0.00 2.70 14059 4.87 1.16 

KRO B200 13111 13111 0.00 35.80 13111 0.00 135.20 13111.6 0.00 1.40 13805 5.29 1.59 

TS 225 68340 68756 0.61 89.00 68340 0.00 117.80 68352.0 0.02 2.40 70251 2.80 0.50 

PR 226 64007 64007 0.00 25.50 65395 2.17 67.60 64007 0.00 1.00 64007 0.00 1.72 

GIL 262 1013 1064 5.03 115.40 1032 1.88 122.70 1020.6 0.75 1.90 1057 4.34 2.92 

PR 264 29549 29655 0.36 64.40 31241 5.73 147.20 29549 0.00 1.30 31555 6.79 4.63 

PR 299 22615 23119 2.23 90.30 23069 2.01 281.80 22638.8 0.11 6.10 24009 6.16 7.66 

LIN 318 20765 21719 4.59 206.80 21787 4.92 317.00 20893.6 0.62 3.50 22433 8.03 13.63 

RD 400 6361 6439 1.23 386.10 6614 3.98 1137.10 6436.4 1.19 3.50 6991 9.90 47.00 

FL 417 9651 9932 2.91 427.10 9754 1.07 1341.00 9655.6 0.05 2.40 9866 2.23 39.93 

PR 439 60099 62215 3.52 611.00 62514 4.02 1238.90 60258.4 0.27 9.10 64205 6.83 87.38 

PCB 442 21657 22936 5.91 567.70 21704 0.22 838.40 22025.8 1.70 10.10 23329 7.72 44.76 

Average   1.05 82.61  1.48 171.56  0.13 1.63  3.17 7.20 
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