Study of Homocystein Level in Myocardial Infarction in Rural Background of Jharkhand

Dr. Ruby Kumari¹, Dr. Kumar Pankaj Prabhat², Dr. Saurav Kumar³

¹Prabhat Medical Centre, Near Kali Mandir, Main Road Garhwa, Jharkhand, India 822114 (Corresponding Author)
²Prabhat Medical Centre, Near Kali Mandir, Main Road Garhwa, Jharkhand, India 822114
³Fred Hutchinson Cancer Research Institute, Seattle, Washington, USA 98109

Abstract: Cardiovascular disease (CVD) is the main cause of death worldwide. Among several causes of cardiovascular risk factors, such as age, food habits, smoking and hyperlipidaemia, hyperhomocysteinemia has emerged as important factor in increasing risk of CVD. However, the clear relationship between the level of homocysteine and increasing risk of CVD remain poorly understood. The aim of the study is to evaluate the association between homocysteine in serum and increasing risk of CVD in patients with acute myocardial infarction in the rural Garhwa, Jharkhand. In addition, correlation of age, smoking, body weight, food habit with homocysteine level in myocardial infarction patients were studied. This association might act as a surrogate marker to identify early case to diagnose patients with myocardial infarction.

Keywords: hyperhomocysteinemia, myocardial infarction, rural background

1. Introduction

Atherosclerotic coronary artery disease (CAD) remains a major cause of death worldwide. Finding an effective way or strategies in reducing the risk of CAD can be key to reduce the rate of mortality and morbidity (Ahmadi et al., 2011). Myocardial infarction (MI) is the manifestation of coronary artery disease. MI is defect in the coronary artery, which caused due rupture of plaque resulting in thrombosis (atherothrombosis) and stroke (Davies, 1996). The reasons for the development of CAD and MI are not completely understood. However, numbers of factors have been identified in the patients with myocardial infarction, like abnormal level of circulating cholesterol with elevated levels of Low Density Lipoprotein (LDL) and reduced level of High density Lipoprotein (HDL), increase in total level of creatine kinase-myocardial band (CK-MB), aspartate aminotransferase (AST) and lactate dehydrogenase (LDH) (Mythili and Malathi, 2015).

Homocysteine is a sulfur containing amino acid formed of methionine. Hyperhomocysteinemia has been identified as a new risk factor or diagnostic factor for the MI. Increase in blood level of homocysteine can be cause by many factors, such as deficiency of nutritional cofactors or genetic defects in enzymes required for the metabolism of homocysteine methionine, in which folate and vitamins B12, B6 and B2 play a key role (Zylberstein et al., 2004). There are evidence that homocysteine can act as a causative agent for the MI by promoting endothelial cell injuries, stimulates smooth muscle cell proliferation in the vessels which results in inflammation and plaque formation. In this study we have analysed the association between elevated level of homocysteine and MI in Garhwa, Jharkhand.

2. Method and materials

The serum homocysteine, CK-MB and serum LDH were analysed in 30 control healthy normal and 50 patients of clinically diagnosed case of acute myocardial infarction of 40-70 years age. 3ml of venous blood samples were collected from antecubital vein by all antiseptic precautions. Serum was collected after 30 minutes followed by centrifugation at 2000 rpm for 7 minutes. We analysed homocysteine level using Gen X homocysteine enzymatic method by proton company kit as suggested by manufacturer. Likewise, we have used immunoinhibition/mod. IFCC method from Crest Biosystem to analyse CK-MB level. LDL level was analysed using UV kinetic method from AccurexBiomediacELPVT. LTD (Kit) using semi-autoanlyser.

3. Results and Discussion

This work has been done in rural Garhwa, Jharkhand-India, where we have included 30 control and 50 case of myocardial infarction which includes age groups from 40-70 years (Figure 1) that belongs to both genders (Figure 2). Both the control and study group were further categorised on the basis of age, food habit, alcohol intake, body weight and smoking habit. We analysed different parameter in the control and study groups.

The mean level of homocysteine in the healthy control group was 11.61±4.81 μmol/L with a range of 3.8-4.0 μmol/L. This range for the homocysteine is accordance with the reported literature (Deepa et al., 2001). We also observed that males (6.8-24.06 μmol/L with mean of 11.38±1.77 μmol/L) have higher level of homocysteine than females (3.8-18.4 μmol/L with the mean of 9.67±1.77 μmol/L) but this difference was found to be non-significant (p value=0.532)(Figure 3). This difference in homocysteine level between males and females could be due to difference in sex hormone, and difference in live style (Mayer et al., 1999). There was age associated increase in homocysteine observed (Figure 4). This increased homocysteine level with age could be due to decline in kidney function and impaired glucose tolerance (Brattström et al., 1994; Norlund et al., 1998). In other group, we have observed higher homocysteine level.

Volume 9 Issue 5, May 2020

www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

Paper ID: SR20507192358
DOI: 10.21275/SR20507192358
in smoker with respect to non-smoker of the control group (Figure 5). This increased homocysteine level in smoker could be due to decrease vitamin B12 levels which could be leading cause for increase in cardiovascular disease risk (O’callaghan et al., 2002). We have also included the drinking behaviour of the control and case, where we observed higher value of homocysteine in the alcoholic (3.8-18.4 μmol/L with a mean of 11.2 ±3.16 μmol/L) with respect to non-alcoholic (6.1-24.0 μmol/L with a mean of 6.1±2.16 μmol/L) (Figure 6). This was again in line with the previously reported case study, where authors have observed vitamin B12 and folate deficiency along with increase in the serum homocysteine (Gibson et al., 2008). Next, we access the homocysteine level in vegetarian and non-vegetarian, and observed higher in non-vegetarian (Figure 7). This may be due to less intake of fresh fruits and vegetables which are rich source of folate (Krajčovičová-Kudláčková et al., 2000). We also observed higher homocysteine level in the control with body weight of more than 70 kg (Figure 8), this could be again due to non-healthy life style and decreased level of vitamin B12. Other parameter, like CK-MB level and LDL level were analysed in the control and found to be increased with the age (Figure 9 and 10, respectively).

After analysis of CK-MB, LDL, and homocysteine in the control group, we sought to compare these value with the patient of acute myocardial infarction. We observed significant increase in the level of CK-MB (range 71.8-94.3 IU/L with mean of 14.68±5.77 IU/L) (Figure 11), LDL (450.6-500.2 IU/L with mean 478.46±12.56 IU/L) (Figure 12) and homocysteine (3.61-48.2 μmol/L with mean 29.76±8.26 μmol/L) (Figure 13) in the case group with respect to the control CK-MB (range 10.6-21.8 IU/L with mean 14.68±3.2 IU/L), LDL (87.7-91.2 IU/L with mean 83.5±3.46 IU/L) and homocysteine (range 3.8-24 μmol/L with mean 11.61±4.18 μmol/L) (Figure 14).
4. Conclusion

Myocardial infarction is leading cause of sudden cardiac arrest and followed by death. The present study shows association between elevated homocysteine level and myocardial infarction. Compare to other traditional factors, person with elevated homocysteine level have greater chance of developing myocardial infarction. Thus, homocysteine can act as better prognostic marker for the myocardial infarction.

References


