
International Journal of Science and Research (IJSR)
ISSN: 2319-7064

ResearchGate Impact Factor (2018): 0.28 | SJIF (2018): 7.426

Volume 9 Issue 3, March 2020

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

How to Subscribe to Google Pub/Sub Topic from

Salesforce using Push Method with Spring Boot

Java Application

Chirag Amrutlal Pethad

PetSmart.com, LLC, Stores and Services

Phoenix, Arizona, USA

Email: ChiragPethad[at]live.com, ChiragPethad[at]gmail.com, Cpethad[at]petsmart.com

Abstract: The document outlines the integration of Google Cloud Pub/Sub with Salesforce using a push mechanism by creating a spring

boot Java application. Key steps include setting up a Pub-Sub topic and subscription, creating an Apex REST service in Salesforce to

handle incoming messages, also creating a spring boot Java application to subscribe to the topic and forward the messages to APEX REST

service, and implementing OAuth 2.0 for secure authentication. It emphasizes security considerations, testing, and best practices for error

handling and scalability, ultimately enhancing Salesforce applications' responsiveness and reliability through real-time messaging.

Keywords: Event Bus, Event Driven Architecture, Google PUB-SUB, Integration, Push vs Pull, REST API, Limits, Scalability, Event

Replay, Spring boot

1. Introduction

Salesforce Event Bus, also known as the Platform Events
framework, is a powerful tool for enabling event-driven
architectures within Salesforce. However, there are several
limitations to consider when using Salesforce Event Bus. The
integration of Google Cloud Pub/Sub with Salesforce enables
businesses to harness the power of real-time data processing
and avoid the limitations associated with Salesforce Event
Bus. This white paper provides a step-by-step guide to setting
up and subscribing to Google Pub/Sub in Salesforce using
Push method leveraging the capabilities of both platforms for
improved operational efficiency, seamless and efficient flow
of information. The objective is to enable real-time messaging
and event-driven architecture in Salesforce by leveraging GCP
Pub/Sub for asynchronous communication. This integration
allows Salesforce to automatically receive messages pushed
from Pub/Sub topics, ensuring efficient and scalable
processing of events.

2. Limitations of Salesforce Event Bus

Salesforce Event Bus, also known as the Platform Events

framework, is a powerful tool for enabling event-driven

architectures within Salesforce and integrating with external

systems. However, there are several limitations to consider

when using Salesforce Event Bus:

1) Event Delivery
a) No Guaranteed Order: While Salesforce attempts to

deliver events in order, it does not guarantee the order
of event delivery.

b) At-Least-Once Delivery: Events may be delivered
more than once. Consumers must handle potential
duplicate events.

2) Event Retention and Replay

a) Retention Period: Platform events are retained for 72

hours. If consumers are offline for longer than this

period, they may miss events.

b) Limited Replay Options: Replay of events is limited

to the last 24 hours. For events older than 24 hours

but within the 72-hour retention period, consumers

must handle gaps manually.

3) Event Size and Volume

a) Payload Size: The maximum size of a platform event

message is 1 MB. This includes the payload and

metadata.

b) Volume Limits: There are limits on the number of

events that can be published and delivered within a

24-hour period, depending on the Salesforce edition

and licensing:

• There are limits on the number of events that can

be published and delivered within a 24-hour

period, depending on the Salesforce edition and

licensing.

• Standard Volume Platform Events: 50,000

events per 24-hour period.

4) Event Publishing Limits

There are limits on the number of events that can be published

per transaction and per hour. Exceeding these limits will

result in errors:

• Per Transaction: 1,000 events

• Per Hour: Limits vary by Salesforce edition and license

count.

5) Event Processing Limits

• Subscriber Limits: Each event can have a maximum of

50 subscribers (including Apex triggers, flows, and

external systems).

• Concurrency Limits: Salesforce imposes limits on the

number of concurrent long-running Apex transactions,

which can impact event processing performance.

6) Platform Events and Triggers

• Governor Limits: Apex triggers on platform events are

subject to Salesforce governor limits, such as CPU time,

heap size, and SOQL/DML limits.

• Error Handling: Errors in triggers can cause event

processing failures. Proper error handling and retry

mechanisms must be implemented.

Paper ID: SR24819205532 DOI: https://dx.doi.org/10.21275/SR24819205532 1697

www.ijsr.net
http://creativecommons.org/licenses/by/4.0/
mailto:ChiragPethad@live.com
mailto:ChiragPethad@gmail.com
mailto:Cpethad@petsmart.com

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

ResearchGate Impact Factor (2018): 0.28 | SJIF (2018): 7.426

Volume 9 Issue 3, March 2020

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

7) Integration and External Systems

• External System Dependencies: Integrating with external

systems can introduce latency and reliability issues.

Ensure that external systems can handle the volume and

frequency of events.

• API Limits: Calling external APIs from Salesforce is

subject to API call limits and rate limits imposed by the

external system.

8) Maintenance and Upgrades

• API Versioning: Changes to Salesforce API versions can

impact event processing. Ensure compatibility with the

latest API versions.

• Platform Upgrades: Salesforce platform upgrades may

introduce changes that impact event bus functionality.

Monitor release notes and perform testing during

upgrades.

9) Monitoring and Debugging

• Limited Monitoring Tools: Salesforce provides limited

built-in tools for monitoring platform events. Additional

third-party tools or custom monitoring solutions may be

needed for comprehensive monitoring and alerting.

• Debugging Challenges: Debugging issues with event

processing can be challenging due to asynchronous

nature and potential delays in event delivery.

3. Understanding Google Cloud Pub Sub

Google Cloud Pub/Sub is a fully-managed real-time
messaging service that allows you to send and receive
messages between independent applications. It decouples
services that produce events from services that process events,
enhancing scalability and reliability.

a) Key Features

• Scalability: Handle high throughput and low-latency

messages.

• Reliability: Ensure message delivery with at-least-once

delivery.

• Flexibility: Integrate with various GCP services and

external systems.

b) Overview of Salesforce Apex
Apex is a strongly-typed, object-oriented programming
language used by developers to execute flow and transaction
control statements on the Salesforce platform. It enables the
creation of web services, email services, and complex business
processes.

c) Key Features

• Scalability: Handle large volumes of data and

transactions.

• Robustness: Build complex logic and automation

workflows.

• Integration Capabilities: Interact with external systems

via REST and SOAP APIs.

d) Overview of Salesforce Apex
Spring Boot is an extension of the Spring framework that
simplifies the setup and development of new Spring
applications. It provides a range of features and tools for
building production-ready applications with minimal
configuration. Spring Boot aims to simplify the development

of Spring-based applications by providing a convention-over-
configuration approach. It offers a range of pre-configured
components and sensible defaults, reducing the need for
extensive setup and boilerplate code. Some of the Key
Features of Spring Boot includes:

• Auto-Configuration: Automatically configures Spring

and third-party libraries whenever possible.

• Standalone: Creates standalone applications with

embedded servers (e.g., Tomcat, Jetty) that can be run

with “java -jar” command.

• Production-Ready: Includes production-ready features

such as metrics, health checks, and externalized

configuration.

• Opinionated Defaults: Provides opinionated defaults for

application setup to speed up development.

• Micro-services Support: Ideal for building micro-

services with features like embedded servers, health

checks, and distributed tracing.

4. Implementation Plan

The implementation plan involves setting up a Google Cloud
Pub/Sub topic, configuring service accounts and permissions,
and implementing Java application to subscribe to the Pub/Sub
topic and then publish / forward those messages to Salesforce
endpoint. The process includes:

a) Setting up Google Cloud Pub/Sub

Create a Pub-Sub topic and configure necessary IAM

roles.

b) Salesforce Setup

Create a web service to receive messages.

c) Create a Spring Boot Java Application

Develop Java application that Subscribes to Pub/Sub and

push messages to the Salesforce endpoint.

5. Step by Step Implementation

a) Create a Pub/Sub Topic
• Go to Google Cloud Console
• Navigate to Pub/Sub section
• Create a New Topic

b) Create a Subscription

• In the Google Cloud Console, navigate to the Pub-Sub

topic you created.

• Create a new subscription and select the "Pull" delivery

type.

c) Configure IAM permissions

• Step 1: Create a Service Account

• Navigate to IAM & Admin > Service Accounts.

• Click + CREATE SERVICE ACCOUNT.

• Enter a name and description for the service account, then

click CREATE.

• Assign the required roles to the service account, such as

Pub/Sub Subscriber.

• Step 2: Create a Key for the Service Account

• In the Service Accounts page, find your new service

account.

• Click the Actions column (three dots) for your service

account and select Manage keys.

• Click ADD KEY > Create new key.

Paper ID: SR24819205532 DOI: https://dx.doi.org/10.21275/SR24819205532 1698

www.ijsr.net
http://creativecommons.org/licenses/by/4.0/

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

ResearchGate Impact Factor (2018): 0.28 | SJIF (2018): 7.426

Volume 9 Issue 3, March 2020

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

• Select JSON and click Create to download the JSON key

file.

d) Create a Service Account User with required permissions

in Salesforce

• Step 1: Create New User

• Log in to your Salesforce instance with an account that has

administrative privileges.

• Click on the gear icon in the top right corner to open the

Setup menu.

• In the Quick Find box on the left, type Users and select

Users under the Users section.

• Click on the New User button.

o First Name: Service (or a name indicating the

account's purpose)

o Last Name: Account

o Email: Provide a valid email address (for notifications

and password reset)

o Username: Must be in the format of an email address

(unique across all Salesforce instances)

o User License: Select the appropriate license type,

typically Salesforce or API Only.

o Profile: Assign a profile that provides the necessary

permissions (e.g., System Administrator or a custom

profile with specific API permissions).

• Ensure the Generate new password and notify user

immediately option is checked if you want the login

credentials to be sent to the email address specified. Click

Save.

Step 2: Assign Permissions

o After creating the user, you may need to assign

additional permissions via Permission Sets to grant

specific access required for the service account.

o In the Setup menu, type Permission Sets in the Quick

Find box and select Permission Sets.

o Create a new Permission Set or use an existing one.

o Assign the necessary permissions (e.g., API access,

specific object permissions).

o Go to the Users section of the Permission Set and

assign the newly created service account user to this

Permission Set.

o If the service account will be used for API access,

ensure the profile or permission set assigned to the

user includes API Enabled permissions.

• Navigate to the System Permissions section within the

Profile or Permission Set and ensure API Enabled is

checked.

Step 3: Set-Up Connected App

o If the service account will be used with OAuth for

authentication, you need to create a Connected App.

o In the Setup menu, type App Manager in the Quick

Find box and select App Manager.

o Click New Connected App.

o Fill in the required fields, such as Connected App

Name, API Name, Contact Email.

o Under API (Enable OAuth Settings), check the

Enable OAuth Settings box.

o Provide the Callback URL and select the necessary

OAuth scopes (e.g., Full Access, Perform requests on

your behalf at any time).

o Save the Connected App and note the Consumer Key

and Consumer Secret for API integration.

e) Create and Configure Salesforce Service to Receive

Pub/Sub Messages

Step 1: Create a Salesforce APEX REST Service

o In Salesforce, navigate to Setup.

o Go to Apex Classes and click "New" to create a new

Apex class that will handle incoming Pub/Sub

messages.

o Grant access to PubSubHandler for the Service

Account

f) Create and Configure Spring Boot Java Application

Step 1: Configure and Create the Project

• Open Spring Initializr. - https://start.spring.io/

• Project: Select "Maven Project"

• Language: Select "Java" and the version you want to use.

• Spring Boot: Choose the version of Spring Boot you want

to use.

• Project Metadata:

o Group: com.example

o Artifact: demo, Name: demo

o Description: Demo project for Spring Boot

o Package name: com.example.demo

o Packaging: Jar

• Add Dependencies

o Spring Web

o Google Cloud Messaging

o Spring Boot DevTools

o Spring Integration

• Generate and Download the Project: Click on the

"Generate" button. A ZIP file will be downloaded. Extract

this ZIP file to your desired location.

• Import the Project into your IDE: Open your preferred

IDE (e.g., IntelliJ IDEA, Eclipse, Visual Studio Code),

and import the project as a Maven project.

• Add Additional dependencies to “pom.xml” file in the

project:

Paper ID: SR24819205532 DOI: https://dx.doi.org/10.21275/SR24819205532 1699

www.ijsr.net
http://creativecommons.org/licenses/by/4.0/
https://start.spring.io/

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

ResearchGate Impact Factor (2018): 0.28 | SJIF (2018): 7.426

Volume 9 Issue 3, March 2020

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

• Configure Application / Environment Properties

Step 2: Develop the Spring Boot Application

• First, we create the Main Class of our application. This

class should get autogenerated when we download the

project zip file.

• Constant Interface for all environment variables and

Constants.

• Next, we create a Service for handling the Salesforce

Login to get the access token.

• Next, we write a Service to Call the Salesforce REST

endpoint to publish the message

Paper ID: SR24819205532 DOI: https://dx.doi.org/10.21275/SR24819205532 1700

www.ijsr.net
http://creativecommons.org/licenses/by/4.0/

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

ResearchGate Impact Factor (2018): 0.28 | SJIF (2018): 7.426

Volume 9 Issue 3, March 2020

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

• Finally, we create a service class that subscribes to the

Pub-Sub Topic and then calls the ApexEventService to

publish / push the message to Salesforce for further

processing.

Step 3: Build, Deploy and Test the application locally or on

Cloud infrastructure

Once the Code is deployed application is ready to consume

messages and push it to Salesforce as and when it arrives.

6. Security Considerations

• Authentication: Use OAuth 2.0 for secure authentication.

• Data Encryption: Ensure data encryption in transit and at

rest.

• Secure Storage: Ensure the JSON key file is securely store

and access is limited.

• Access Control: Implement proper IAM roles and

permissions for the service account.

• Data Encryption: Ensure data encryption in transit and at

rest.

• Validation: Validate incoming requests to ensure they are

from trusted sources.

Paper ID: SR24819205532 DOI: https://dx.doi.org/10.21275/SR24819205532 1701

www.ijsr.net
http://creativecommons.org/licenses/by/4.0/

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

ResearchGate Impact Factor (2018): 0.28 | SJIF (2018): 7.426

Volume 9 Issue 3, March 2020

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

7. Testing and Validation

• Unit Testing: Write unit tests for Apex classes to ensure
functionality.

• Integration Testing: Validate end-to-end integration
between Salesforce and GCP Pub/Sub.

• Send Test Messages: Use the Google Cloud Console to
publish test messages to the Pub/Sub topic.

• Monitor Salesforce Logs: Check Salesforce debug logs to
verify that the messages are received and processed
correctly.

• Validate Data: Ensure the processed data is correctly
updated or created in Salesforce as per your business logic.

• Performance Testing: Ensure the system can handle the
expected message load.

8. Best Practices

• Error Handling: Implement robust error handling and retry

mechanisms.

• Logging: Use Salesforce logging to monitor and

troubleshoot issues.

• Scalability: Design the system to handle growth in

message volume.

• Batch Processing: Implement batching to process

messages in bulk in Apex.

9. Conclusion

Integrating Google Cloud Pub/Sub with Salesforce provides

a powerful solution for real-time messaging and event-driven

architecture. By following the steps outlined in this white

paper, organizations can enhance their Salesforce

applications' responsiveness, scalability, and reliability. This

white paper serves as a guide for developers and architects

looking to leverage the combined capabilities of Google

Cloud Pub/Sub and Salesforce applications.

References

[1] Apex Developer Guide -

https://developer.salesforce.com/docs/atlas.en-

us.apexcode.meta/apexcode/apex_dev_guide.htm

[2] Google Pub/Sub - https://cloud.google.com/pubsub/docs

[3] Google Pub/Sub Architecture -

https://cloud.google.com/pubsub/architecture

[4] Google Pub/Sub basics -

https://cloud.google.com/pubsub/docs/pubsub-basics

[5] Apex Integration -

https://developer.salesforce.com/docs/atlas.en-

us.apexcode.meta/apexcode/apex_integration_intro.htm

[6] Named Credentials -

https://developer.salesforce.com/docs/atlas.en-

us.apexcode.meta/apexcode/apex_callouts_named_cred

entials.htm

[7] Google Pub/Sub Pull Subscription -

https://cloud.google.com/pubsub/docs/create-

subscription

Paper ID: SR24819205532 DOI: https://dx.doi.org/10.21275/SR24819205532 1702

www.ijsr.net
http://creativecommons.org/licenses/by/4.0/

