
International Journal of Science and Research (IJSR)
ISSN: 2319-7064

ResearchGate Impact Factor (2018): 0.28 | SJIF (2018): 7.426

Volume 9 Issue 3, March 2020

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

Performance Evaluation of Software-Defined

Networking (SDN) in Real-World Scenarios

Kodanda Rami Reddy Manukonda

Email: reddy.mkr[at]gmail.com

Abstract: This study compares conventional network systems to SDN-based systems employing Open Flow and Pro GFE

architectures. The performance comparison includes throughput, latency, and jitter across workloads. Implementing network

systems on a simple PC platform and measuring performance is the study method. The results show that Pro GFE outperforms

Open Flow and conventional network solutions in throughput. Complex tasks cause extra latency, affecting performance. The

Pro GFE architecture has less jitter than Open Flow, indicating higher stability. These studies reveal SDN architectural

performance variations and networking task appropriateness.

Keywords: Conventional network systems, Software-Defined Networking (SDN), Open Flow, Pro GFE, throughput, latency,

jitter, workload complexity, network performance

1. Introduction

a) Project Specification

The Open Flow and Pro GFE models will be used to

ponder conventional and SDN-based systems. The

survey will test throughput, latency, and jitter on a

fundamental PC stage under various workloads.

b) Aim and Objectives

Aim

This study analyzes SDN-based and conventional

network systems. The concentrate additionally thinks

about Open Flow and Pro GFE SDN designs under

various workloads. Understanding what network

structures and workload intricacies mean for network

performance is a definitive objective.

Objectives:

• To compare conventional with SDN-based network

systems for throughput, latency, and jitter.

• To assess performance differences between Open

Flow and Pro GFE SDN architectures.

• To evaluate the effect of workload complexity on

SDN-based system performance.

• To analyse findings to determine network

performance aspects including architecture,

workload, and platform.

c) Research Question

• How do Open Flow and Pro GFE SDN architectures

perform differently in different workloads?

• How does workload complexity affect SDN-based

system performance?

• Architecture, workload, and platform affect network

performance?

d) Research Rationale

What is the issue?

This study thinks about the performance of

conventional network systems versus Software-

Defined Networking (SDN)- based systems,

remarkably Open Flow and Pro GFE [1]. The

concentrate likewise investigates what workloads mean

for SDN-based framework performance.

Why is the issue?

Current networks are turning out to be more

convoluted and requesting, making the issue

significant. Conventional network systems might battle

to full-fill these requirements, causing performance

and versatility issues. SDN networking may improve

performance and versatility by being more adaptable

and programmable. Network design and optimization

need understanding these methodologies' performance

disparities.

What is the issue now?

SDN performance compared to conventional network

systems must be understood. SDN is being adopted in

telecommunications and data centres, hence its

performance must be assessed under diverse

workloads and scenarios [2]. This research addresses

this need by examining SDN architecture performance

and applicability for networking jobs.

2. Literature Review

a) Research background

SDN provides industrial flexibility and scalability due

to data plane separation, programmability, and

centralized control [3-4]. Bacon, Floodlight, Maestro,

NOX, POX, and RYU have been assessed using linear

performance and throughput rates in most OpenFlow

controller tests. In other studies, improved controllers

with resolved defects were given.

Paper ID: SR24422163032 DOI: https://dx.doi.org/10.21275/SR24422163032 1665

www.ijsr.net
http://creativecommons.org/licenses/by/4.0/

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

ResearchGate Impact Factor (2018): 0.28 | SJIF (2018): 7.426

Volume 9 Issue 3, March 2020

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

NOX, Beacon, Maestro, NOx, and NOX-MT, an

enhanced NOX controller, were tested by

Tootoonchian, Gorbunov, Ganjali, Casado, and

Sherwood [5]. The regulators might work better in an

ideal network climate than recently expected. They

planned Cbench to test OpenFlow switch copies for

performance. NOX-MT, a multithreading derivative of

NOX, outperforms NOX by 33 with better baseline

performance and I/O batching. This study is outdated

because ONOS, Floodlight, and OpenDaylight were

not tested and newer controllers were produced.

The latency and bandwidth performance of RYU, POX,

ONOS, and OpenDaylight controllers were compared

by Stancu, Halunga, Vulpe, Suciu, Fratu, and Popovici

[7]. Controller performance was measured in a 16-host

fixed four-level tree topology. ONOS has the most

bandwidth and RYU the lowest end-to-end latency

among these four controllers. The best controllers for

goals or results were also introduced. Although POX

performs badly compared to RYU, OpenDaylight, and

ONOS controllers, it was chosen for its simplicity in

configuration. Due to its static network architecture and

limited performance characteristics across all test

levels, this study cannot apply to controllers in other

networks with varied priorities.

Cbench latency and throughput were benchmarked for

OpanDaylight and Floodlight [8]. Floodlight is more

mature and industry- efficient than OpenDaylight. We

proposed updating Cbench because it lacks data center

traffic models for testing. This review, similar to other

people, has short number of examined regulators (two),

immateriality of the picked set of regulators to one

another in capability, and fragmented boundaries and

network factors to decide the best regulators.

Floodlight and OpenDaylight controller latency and

packet loss were evaluated in different network

topologies and traffic loads by Shiva, Vajihe, and

Manije [9]. Floodlight performs better in packet loss

under severe loads, but OpenDaylight performs better

in latency in tree-topologies with half-bandwidth traffic.

The study's modest number of controllers, few

comparative factors, and few network features may

affect comparisons in more complex networks.

Two unique and effective distributed OpenFlow

controllers, OpenDaylight and ONOS, were tested by

Darianian, Williamson, and Haque [10]. Cbench

measured real-world and virtual controller throughput

and latency. ONOS tops OpenDaylight in latency and

throughput. This study lacks data center and cloud

network test situations, where these two controllers are

most frequent. The Python and Java controllers POX

and Floodlight were analyzed by Fancy and

Pushpaltha [11] as representative of all controllers in

both languages. Some Mininet topologies were tested.

The study only analyzed two controllers and few

network variables, thus it may not cover all Python or

Java controllers.

b) Critical Assessment

The study covers traditional and SDN-based system

research, focusing on OpenFlow and ProGFE

architectures [15-16]. It emphasizes the necessity of

knowing throughput, latency, and jitter performance

changes across workloads. Although the review

provides a sound framework for the study, it lacks in-

depth analysis of some performance variables and may

benefit from more current investigations [17-18]. It

establishes the importance of comparing network

architectures and workload complexities on

performance, identifies shortcomings for this study,

and suggests further research.

c) Linkage to Aim

To evaluate conventional network systems against

SDN-based architectures like OpenFlow and ProGFE.

The study reviews existing studies to advance field

knowledge. The literature review helps the study

achieve its goal by explaining network performance

measurements and parameters. It identifies research

gaps that the study addresses and provides a theoretical

framework for assessing and interpreting data.

d) Implementation purpose

The study compares conventional network systems to

SDN-based systems employing OpenFlow and ProGFE

designs. Implementing these systems on a simple PC

platform allows the study to assess throughput,

latency, and jitter under various workloads [19]. This

practical application shows how network topologies

and workload complexities affect network

performance, helping to understand SDN technology

and its potential benefits over traditional networking.

e) Theoretical Framework

The study compares SDN to traditional network

technologies. SDN concentrates network asset control

and programming by isolating the control and

information planes. The study examines how

OpenFlow and ProGFE SDN designs affect network

performance measures like throughput, latency, and

jitter [20-21]. The study evaluates these measures to

discover how SDN architectures differ from traditional

networking and how they may improve network

performance.

f) Literature Gap

The study addresses the lack of extensive comparisons

between conventional network systems and Software-

Defined Networking (SDN)-based systems, focusing

on OpenFlow and ProGFE SDN architectural

performance. There is already research on SDN and its

benefits, but more empirical studies that explicitly

compare network designs under different workloads

are needed.

Paper ID: SR24422163032 DOI: https://dx.doi.org/10.21275/SR24422163032 1666

www.ijsr.net
http://creativecommons.org/licenses/by/4.0/

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

ResearchGate Impact Factor (2018): 0.28 | SJIF (2018): 7.426

Volume 9 Issue 3, March 2020

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

3. Methodology

a) Research philosophy

Most traditional and SDN network systems use

powerful platforms. We executed network systems on

a straightforward PC stage to look at the performance

of conventional and SDN- based network systems and

the two SDN designs portrayed previously. We

expected that distinctions in basic stage performance

show contrasts in devoted network framework stage

performance. We tested the performance differences on

a powerful network-processor platform and a simple

PC platform to confirm this notion.

Figure 1: Design of ProGFE

b) Research approach

The study used a simple PC platform to compare the

performance of conventional, Software-Defined

Networking (SDN), OpenFlow, and ProGFE SDN

systems. This arrangement was cheap and easy to

replicate. The systems ran on PCs, with normal tasks

executing directly and SDN tasks using their

architectures. To measure throughput, latency, and

jitter, several workloads were examined. Results were

studied to determine network architecture and

workload complexity effects. Overall, the study sought

to understand SDN architecture performance and

applicability for different networking activities.

c) Research design

This study compares conventional network systems to

Software-Defined Networking (SDN)-based systems,

concentrating on OpenFlow and ProGFE SDN

designs. The study will quantify throughput, latency,

and jitter performance differences. Purposive sampling

is used to choose platforms and configurations that

accurately represent conventional and SDN-based

systems in this study. Throughput, delay, and jitter are

measured using iperf, synthetic frames, and

timestamps.

d) Data Analysis and Collection Method

We thought about the performance of different

networking errands between SDN (Open Flow and Pro

GFE) in Linux's client space, non- SDN (committed

application that executes networking undertakings

straightforwardly, e.g., unadulterated Linux sending) in

the client space (for correlation), and portion space (to

investigate PC potential). Linux Pro GFE and Open

Flow delicate switch v1.0 stable were used.

Figure 2: Steps of Data Collection Method

VLAN labeling was more confounded for a FE than IP

steering. We disregarded backhanded performance

advantages of SDN (e.g., less network systems,

quicker innovation reception) and focused on "crude"

performance estimations to assess performance. This

incorporates throughput, postponement, and jitter.

Iperf was utilized to make a TCP/IP flow with TCP

window widths from 5 Kbytes to 10 Mbytes to test

throughput. Engineered outlines with various casing

widths and a timestamp were utilized to compute

latency. Jitte, or Bundle Postpone Variety (PDV), was

additionally investigated. Two SDN-based span

applications (straightforward and confounded span

executions) and a committed, local extension

application were looked at on superior performance

network processor stages. These platforms used

EZChips NP-2 Network Processor. A simple Ethernet

bridge configuration and a complicated bridge

configuration with over 40 extra workloads were tested.

e) Experimental testbed

The SDNs and committed systems were executed on a

2.4 GHz Intel Core2Duo e6600 central processor, 2

GB of DDR2 memory, and three Intel 82572EI Gigabit

NICs in the unit under test (UUT). A basic source-and-

sink proving ground with two normal computers

associated by means of the UUT PC was utilized for

throughput testing. The two laptops laid out a TCP/IP

flow utilizing iperf, and the UUT exchanged or steered

between them in view of workload. A committed,

implanted MPC8360 microprocessor produced and got

outlines from the UUT and estimated deferral and jitter

in microseconds.

Paper ID: SR24422163032 DOI: https://dx.doi.org/10.21275/SR24422163032 1667

www.ijsr.net
http://creativecommons.org/licenses/by/4.0/

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

ResearchGate Impact Factor (2018): 0.28 | SJIF (2018): 7.426

Volume 9 Issue 3, March 2020

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

4. Result

We look at the crude performance of PC- based bit space

and client space executions of unadulterated Linux

sending, the client space Linux Pro GFE, and the clients

pace Open Flow delicate switch, and a fundamental

extension and the Pro GFE for the network processor.

a) Critical Analysis

SDN and native implementations of bridging on

network processor.

Table 1 looks at the typical latency of a fundamental,

local Ethernet span executed by committed software

on the network processor (explained span in the

figures) and two NP- based ProGFE spans, one plain

and one complex, utilizing NP-2 network processor.

The ProGFE has around 10 microseconds of above

when designed with further developed capabilities.

The bridge implementation did not reduce throughput

because both NP kinds worked at wire speed (1 Gbps

was tested). The straightforward version of ProGFE

bridging introduced 5 microseconds of latency, whereas

the sophisticated implementation added 5

microseconds, on average, in both NP kinds.

Table 1: NP2 ProGFE bridging time
Frame NP2 NP2 NP2

Size Bridge ProGFE

Plain

ProGFE

complex

100 2 4 9

200 3 4 9

300 5 6 11

400 8 9 14

500 10 12 15

600 15 16 16

700 18 19 18

800 20 21 20

900 24 22 22

1000 28 26 26

1100 33 28 30

1200 34 30 36

1300 36 33 40

1400 40 34 41

1500 42 36 42

Throughput- PC platform

Table 2 compares the throughput of PC- based SDN

systems versus pure Linux forwarding for switching,

routing, and VLAN workloads).

Table 2: Throughput
Throughput / T C P

window size
0.005 0.05 0.5 5

Routing

Direct

Connection
150 200 350 500

Linux Kernel

Space
120 300 450 550

Linux user-

space
110 230 430 500

Linux

ProGFE
100 250 300 400

Openflow

v1.0
100 160 260 300

VLAN Linux user- 150 200 550 600

Both part space and client space executions of

unadulterated Linux sending were estimated. SDN

executions are Linux ProFGE and OpenFlow v1.0, and

direct associations among source and sink laptops

without the UUT are immediate association. ProGFE is

the more complex SDN engineering, yet it outflanks

OpenFlow in throughput for most edge sizes.

Additionally, the kernel-space Linux forwarding solution

outperforms the tested SDNs' user-space

implementations. These results show that SDN

architecture complexity does not necessarily affect

implementation performance, but workload complexity

does.

Latency - PC platform

In Table 3, routing and VLAN tagging processing times

(latency) are compared. Figures 5 and 8 show that

ProGFE has somewhat diminished latency for steering

and comparative latency to OpenFlow for VLAN

labeling.

Table 3: Latency

Paper ID: SR24422163032 DOI: https://dx.doi.org/10.21275/SR24422163032 1668

www.ijsr.net
http://creativecommons.org/licenses/by/4.0/

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

ResearchGate Impact Factor (2018): 0.28 | SJIF (2018): 7.426

Volume 9 Issue 3, March 2020

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

Latency 500 1000 1500 2000

Latency

–

Routing

Open Flow 1.0 83 86 89 90

Linux ProGFE 82 85 88 89

Linux user space 63 66 67 69

Linux kernel space 42 45 46 48

 Loop back 15 16 17 20

Latency - VLAN Open Flow 1.0 60 62 65 70

tagging Linux ProGFE 89 102 110 130

 Linux user space 90 103 111 131

Jitter (Packet platform:

Delay Variation) PC

The study identified performance differences between

conventional network systems, Software-Defined

Networking (SDN)-based systems, and OpenFlow and

ProGFE SDN designs. Most SDN-based systems,

notably ProGFE ones, offer better throughput ProGFE

managed enormous data volumes efficiently under

intense workloads [22-24]. Both SDN architectures

have similar IP routing latency to conventional systems

for simple workloads. ProGFE was faster than

OpenFlow and other solutions for complicated tasks

like VLAN tagging. SDN-based systems, especially

ProGFE installations, have decreased jitter.

5. Conclusion

We analyzed OpenFlow and ProGFE's performance in

view of their complexity, Table 4 displays steering and

VLAN labeling jitter. Client space ProGFE scores are

practically basically as great as portion space Linux,

while OpenFlow PDV values are high for the two

workloads. The findings also suggest that workload

complexity does not significantly effect jitter. OpenFlow

has considerable jitter, which may explain why its

throughput is lower than the ProGFE despite similar

latency figures. TCP timeouts due to large delay values

degrade TCP protocol rate and throughput.

Table 4: Jitter Routing

Fra me Size Ope n flow 1.0 Linux ProG EF
Linu x user

space

Linu x Kern el

space
Loopba ck

200 62 12 12 12 0

400 60 13 12 12 1

600 61 14 12 12 2

800 62 12 12 12 1

1000 63 12 12 12 2

1200 63 15 12 12 1

1400 65 14 12 12 0

6. Findings and Discussion

Versatility, and prospective usefulness and capacities

in this article. We found that SDN adaptability

diminishes crude performance and adds above for

muddled usefulness. The authors felt their

implementations were improper, however their

conclusion contradicts [25]. For switching, routing,

and VLAN tagging, ProGFE outperformed OpenFlow

in throughput for most frame sizes and had similar

latency. We also found that workload complexity

influences SDN-based system throughput and latency,

supporting [26]. OpenFlow has significantly more

jitter than ProGFE (unaffected by task complexity),

bringing about second-rate throughput in spite of

comparable latency. The outcomes likewise propose

that a more perplexing SDN with more noteworthy

adaptability, usefulness, and limits doesn't necessarily

in all cases debase performance [26]. Performance

relies upon SDN execution. Performance differences

will be bigger in workloads that need control plane

involvement in the simpler SDN, favouring the more

complicated SDN.

7. Research Recommendations

Software-Defined Networking (SDN) designs,

particularly Pro GFE-based ones, can improve network

performance, according to the study. Comparatively,

SDN-based systems, especially Pro GFE, have higher

throughput, lower latency, and lower jitter.

Organizations should consider networking job

complexity when choosing SDN architecture, as Pro

GFE performed better. For optimal performance and

efficiency, SDN-based systems should be monitored

and optimized [27-30]. Managing and optimizing

SDN-based systems requires IT team training. SDN-

based systems, particularly the Pro GFE architecture,

need more research on scalability and realistic

application.

8. Future Work

SDN designs are studied in several important areas to

improve our understanding and use of them. To assess

their efficacy in bigger and more complicated network

contexts, SDN- based systems, notably the ProGFE

architecture, need additional scalability research.

Finally, SDN-based system integration and

management in heterogeneous network settings require

Paper ID: SR24422163032 DOI: https://dx.doi.org/10.21275/SR24422163032 1669

www.ijsr.net
http://creativecommons.org/licenses/by/4.0/

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

ResearchGate Impact Factor (2018): 0.28 | SJIF (2018): 7.426

Volume 9 Issue 3, March 2020

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

study on standardization and interoperability.

References

[1] Lu, Jie and Zhang, Zhen and Hu, Tao and Yi,

Peng and Lan, Julong, “A survey of controller

placement problem in software-defined

networking,” IEEE Access, vol. 7, pp. 24290-

24370, (2019).

[2] D. Kreutz, F. Ramos, P. Verissimo, C. Rothenberg,

S. Azodolmolky, and S. Uhlig,” Software-Defined

Networking: A Comprehensive Survey,”

Proceedings of the IEEE, pp.14–76, (2015).

[3] A. Dixit, F. Hao, S. Mukherjee, T. V. Lakshman

and R. R. Kompella, "ElastiCon: an elastic

distributed SDN controller," In Proceedings of the

ACM/IEEE Symposium on Architectures for

Networking and Communications Systems, pp. 17-

27, (2014)

[4] P. Berde, M. Gerola, J. Hart, Y. Higuchi, “ONOS:

Towards an open, distributed SDN OS,” In

Proceedings of the third workshop on Hot topics

in software defined networking, pp.1-6, (2014).

[5] A. Tootoonchian, S. Gorbunov, Y. Ganjali, M.

Casado, and R. Sherwood,” On Controller

Performance in Software-Defined Networks,” In

Proceedings of the 2nd USENIX Workshop on Hot

Topics in Management of Internet, Cloud, and

Enterprise Networks and Services, (2012).

[6] A. L. Stancu, S. Halunga, A. Vulpe, G. Suciu, O.

Fratu and E. C. Popovici, "A comparison

between several Software Defined Networking

controllers," In Proceedings of the 12th

International Conference on Telecommunication in

Modern Satellite, Cable and Broadcasting

Services (TELSIKS), pp. 223-226, (2015).

[7] Z. Khattak, M. Awais, and A. Iqbal,

“Performance Evaluation of OpenDaylight SDN

Controller, “In Proceedings of the 20th IEEE

International Conference on Parallel an

Distributed Systems, pp. 671-676, (2014).

[8] R. Shiva, A. Vajihe and K. Manijeh,

“Performance evaluation of sdn controllers:

Floodlight and OpenDaylight,” IIUM Engineering

Journal, vol. 17, pp. 47-57, (2016).

[9] M. Darianian, C. Williamson, I. Haque,

“Exprimental evaluation of two openflow

controllers,” In Proceeding of the 25th

international conference on Network Protocols,

pp. 1-6, (2017).

[10] M. Sanaei and S. Mostafavi, "Multimedia delivery

techniques over software-defined networks: A

survey," 5th International Conference on Web

Research (ICWR), pp. 105-110, (2019).

[11] D. Kreutz, F. M. V. Ramos, P. E. Veríssimo, C.

E. Rothenberg, S. Azodolmolky and S. Uhlig,

"Software defined networking: a comprehensive

survey," In Proceedings of the IEEE, vol. 103, no.

1, pp. 14-76, (2015).

[12] A. Dixit, F. Hao, S. Mukherjee, T. V. Laseshman

and R. Kompella, "Towards an elastic distributed

SDN Controller,” In Proceedings of the second

ACM SIGCOMM workshop on Hot Topics in

Software Defined Networking, pp. 7-12, (2013)

[13] D. Erickson, “The Beacon OpenFlow Controller,”

In Proceedings of The Second ACM SIGCOMM

Workshop on Hot Topics in Software Defined

Networking, p. 13- 18, (2013)

[14] B. Heller, S. Seetharaman, P. Mahadevan, Y.

Yiakoumis, P. Sharma, S. Banerjee, and N.

McKeown, "Elastictree: saving energy in data

center networks," in 7th USENIX conference on

Networked systems design and implementation,

2010.

[15] N. Gude, T. Koponen, J. Pettit, B. Pfaff, M.

Casado, N. McKeown, and S. Shenker, "Nox:

towards an operating system for networks," ACM

SIGCOMM Computer Communication Review,

vol. 38, no. 3, pp. 105-110, 2008.

[16] A. Tootoonchian, S. Gorbunov, Y. Ganjali, M.

Casado, and R. Sherwood, "On controller

performance in software-defined networks," in 2nd

USENIX conference on Hot Topics in

Management of Internet, Cloud, and Enterprise

Networks and Services, 2012.

[17] A. Curtis, J. Mogul, J. Tourrilhes, P. Yalagandula,

P. Sharma, and S. Banerjee, "Devoflow: Scaling

flow management for high-performance

networks," in ACM SIGCOMM, 2011.

[18] T. Benson, A. Akella, and D. A. Maltz, "Network

traffic characteristics of data centers in the wild,"

in the 10th ACM SIGCOMM conference on

Internet measurement, 2010.

[19] M. APPELMAN and M. D. BOER, "Performance

analysis of openflow hardware," Master’s thesis,

University of Amsterdam, February 2012.

[Online]. Available:

http://staff.science.uva.nl/delaatlrp/2011-

2012/p18/report. pdf

[20] N. Gude, T. Koponen, J. Pettit, B. Pfaff, M.

Casado, N. McKeown and S. Shenker, "NOX:

towards an operating system for networks," In

Proceeding of the ACM SIGCOMM Computer

Communication Review, pp. 105- 110, (2008)

[21] "Software-defined networking: The new norm for

networks," April 2012. [Online]. Available:

https://www.opennetworking.org/images/stori es/

downloads/white-papers/wp-sdn- newnorm.pdf

[22] Mamushiane, L.; Lysko, A.; Dlamini, S. A

comparative evaluation of the performance of

popular SDN controllers. IFIP Wirel. Days 2018,

2018, 54–59. [Google Scholar] [CrossRef]

[23] Rastogi, A.; Bais, A. Comparative analysis of

software defined networking (SDN) controllers-In

terms of traffic handling capabilities. In

Proceedings of the 2016 19th International Multi-

Topic Conference (INMIC), Islamabad, Pakistan,

5–6 December 2016; pp. 1–6. [Google Scholar]

[CrossRef]

[24] Kumar, A.; Goswami, B.; Augustine, P.

Experimenting with resilience and scalability of

wifi mininet on small to large SDN networks. Int.

J. Recent Technol. Eng. 2019, 7, 201–207.

[Google Scholar]

[25] Taha, M. An efficient software defined network

controller-based routing adaptation for enhancing

Paper ID: SR24422163032 DOI: https://dx.doi.org/10.21275/SR24422163032 1670

www.ijsr.net
http://creativecommons.org/licenses/by/4.0/
http://staff.science.uva.nl/delaatlrp/2011-
http://staff.science.uva.nl/delaatlrp/2011-
http://www.opennetworking.org/images/stori

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

ResearchGate Impact Factor (2018): 0.28 | SJIF (2018): 7.426

Volume 9 Issue 3, March 2020

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

QoE of multimedia streaming service. Multimed.

Tools Appl. 2023. [Google Scholar] [CrossRef]

[26] Zhu, L.; Karim, M.; Sharif, K.; Xu, C.; Li, F.; Du,

X.; Guizani, M. SDN Controllers. ACM Comput.

Surv. 2020, 53, 1–40. [Google Scholar]

[CrossRef]

[27] Muqaddas, A.S.; Bianco, A.; Giaccone, P.; Maier,

G. Inter-controller traffic in ONOS clusters for

SDN networks. In Proceedings of the 2016 IEEE

International Conference on Communications

(ICC), Kuala Lumpur, Malaysia, 22–27 May

2016; pp. 1–6. [Google Scholar] [CrossRef]

[Green Version]

[28] Bianco, A.; Giaccone, P.; Mashayekhi, R.; Ullio,

M.; Vercellone, V. Scalability of ONOS reactive

forwarding applications in ISP networks. Comput.

Commun. 2017, 102, 130-138. [Google Scholar]

[CrossRef] [Green Version]

[29] Secci, S.; Diamanti, A.; Sanchez, J.M.V.; Bah,

M.T.; Vizarreta, P.; Machuca, C.M.; Scott-

Hayward, S.; Smith, D. Security and Performance

Comparison of ONOS and ODL Controllers.

2019. Available online: https://hal.science/hal-

03188550 (accessed on 15 August 2021).

[30] Gude, N.; Koponen, T.; Pettit, J.; Pfaff, B.;

Casado, M.; McKeown, N.; Shenker, S. NOX:

Towards an operating system for networks. ACM

SIGCOMM Comput. Commun. Rev. 2008, 38,

105–110. [Google Scholar] [CrossRef]

Paper ID: SR24422163032 DOI: https://dx.doi.org/10.21275/SR24422163032 1671

www.ijsr.net
http://creativecommons.org/licenses/by/4.0/

