
International Journal of Science and Research (IJSR)
ISSN: 2319-7064

ResearchGate Impact Factor (2018): 0.28 | SJIF (2019): 7.583

Volume 9 Issue 3, March 2020

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

Methods of Improving the Robustness of System

Software

Karthik Poduval

Email: karthik.poduval[at]gmail.com

Abstract: System software refers to all the low-level software that runs on an operating system providing service to application. System

software may provide hardware abstraction or provide an OS abstraction. System software is often expected to be more robust, yet there

may still be different types of problems that can affect the robustness of system software. This review paper firstly defines some of the

common problems related to robustness of system software and does a study of related work that try to address the different problem

areas.

Keywords: system software, operating systems, device drivers

1. Introduction

System software can be termed as the lower layers of

software that are Operating System specific and help build a

layer of service abstraction to user applications. Device

drivers, file system code, networking stack are common

examples of system software. Of the above types of system

software, device drivers are the ones that are subject to more

frequent changes as hardware changes are more rapid as

compared to file system or networking stack changes. A

study [18] has shown that in the Linux 2.4.1 kernel, drivers

constitute 1.5 million lines of code while file system

comprise 0.1 million lines of code. The above statistic is for

the Linux kernel source tree which includes code for

multiple architectures and platforms. Hence various device

driver sources are present in the kernel source tree. There

are even many other driver sources which are often supplied

separately. Based on the architecture and platform, a smaller

set of system software, like one or more file systems, one or

more network stacks and several device drivers are put

together into the kernel configuration. The number of device

drivers usually exceeds the total number of file system and

networking stacks put together. Another important factor is

that device drivers are contributed from a much larger

community and not all drivers are officially made a part of

the Linux kernel source tree.

Drivers downloaded from 3rd party vendor websites, may

often not be tested across various versions of the kernel.

Some of what is said above its even true for file system or

networking code. To summarize, any part of system

software that is external to the core kernel and is permitted

to execute in kernel mode is a potential threat against system

robustness and stability. In the rest of the paper, we study the

different types of problems that could affect robustness and

discuss the solutions to various problems offered by

different operating systems. We continue discussing the

problems that affect robustness in monolithic and

microkernel operating systems. Device drivers in many

monolithic operating systems are run as a part of the kernel

image.

This gives them an added (with respect to user space

programs) capability in the form of: -

• Access to kernel Address Space - possibility of

accidental corruption of kernel data structures.

• Access to kernel functions that go beyond system call’s

behavior.

• Access to system hardware protected by the kernel.

Different systems constrain the way drivers are a part of the

kernel and thus constrain the degree and type of access of

the driver to the rest of the kernel. For example, in Linux, a

driver could be both implemented as module as well as build

as a part of the kernel image. Building the driver as a

module restricts the calling capability of the driver to only

the exported function in the kernel. Some reasons for

allowing the drivers to run in Kernel mode and in the kernel

address space:-

a) Kernel mode is often the privileged mode of a

processor and hence has unrestricted access to the

processor's resources. Some operating systems do not

have a very well build up API framework for low level

access of processor resources in privileged mode

accessible code. Drivers in such operating systems need

to be run in kernel mode so that they do not need to

implement such low-level functions to gain privileged

access to such resources. For example, FreeRTOS,

μCos provide only basic thread context switching

mechanisms. In such operating systems the kernel,

drivers and the user program, all from a part of the

same kernel image. There is no real distinction between

a driver and an application and everything really runs in

most privileged mode of the processor.

b) Being in the kernel address space makes access to the

kernel functions a function call away. This is often used

to reduce the number of user mode to kernel mode

transitions as they can be quite expensive. User mode to

kernel mode transitions is facilitated through system

calls.

c) Most low-level functions (to access processor

architecture specific and platform hardware features)

are implemented in the kernel in case of operating

systems like Linux and only a few of them are available

in the form of system calls to the user mode. Having a

driver in the kernel address space enables the reuse of

such functions.

d) Drivers need Interrupt Service Routines for the

interrupts the Hardware might generate. Most processors

expect the ISR’s to run in the kernel mode or at least in

Paper ID: SR24304165403 DOI: https://dx.doi.org/10.21275/SR24304165403 1649

www.ijsr.net
http://creativecommons.org/licenses/by/4.0/
mailto:karthik.poduval@gmail.com

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

ResearchGate Impact Factor (2018): 0.28 | SJIF (2019): 7.583

Volume 9 Issue 3, March 2020

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

one of the privileged modes of the system.

e) The last argument to support running of drivers in

kernel mode could be that the Kernel mode could be

faster in because of the following reasons: -

• Lesser user-kernel transitions, from an application

perspective a single driver call is made and the

driver completes all the work in kernel mode and

returns when the control is returned back to the user

mode. Compare this with a case in which the

application has to make several system calls to

implement the same functionality the previously

mentioned one driver call could do.

• Kernel code compiled with different compiler

settings, this is true for certain operating systems. In

Linux the kernel mode compiler settings do not

support floating point operations. The Symbian OS

kernel [28] (an OS primarily made for the ARM

based cell phone hardware) is compiled in the more

efficient 32 bit ARM mode while applications by

default usually get compiled with the 16 bit thumb

instruction set unless explicitly set to be compiled in

ARM mode. The Symbian OS kernel also requires

the ARM RVCT compiler as many parts of the

kernel are hand optimized keeping the ARM

compiler settings in mind.

In microkernel and multiserver operating systems, the

drivers are run in user-mode hence they are isolated from

the kernel. Utility functions for the drivers are made

available in the form of system calls to the kernel or IPC

calls to other system servers that implement them. The exact

mechanism that exists in different microkernels differs with

the common policy of having drivers run in user mode. In

certain microkernels, the driver itself serves its clients

(another user space process) through IPC calls. Certain

applications in microkernel OS might even chose to use

shared memory mechanisms to transfer data between user

application and kernel. To summarize driver client

interaction in microkernel may be through IPC mechanisms

or shared memory. In the monolithic vs. microkernel debate,

the monolithic kernels got an early lead. Hence a lot of

applications and support libraries have been developed for

the monolithic kernels (like Linux and Symbian). It could be

argued that Linux is not a monolithic kernel. But most

device drivers, file system and network code are run in

kernel mode in Linux which makes it monolithic from this

perspective. The next section discusses the core issues

present in both monolithic and microkernel operating

systems that impact robustness of system software.

Following section discusses various papers that try to solve

the core issues.

2. Core Issues

There are some core issues present in both monolithic and

microkernel operating systems because of which the

robustness of the system gets affected. In this section, we

look at these issues in greater detail.

a) Monolithic Kernels

What is a monolithic kernel? There are many definitions but

we define them as kernels that allow system software

components like device drivers to execute in kernel mode

and share kernel address space. There are several issues that

arise because of running software in kernel mode, let’s take

a look at some of these issues.

1) Memory Faults

Driver code in a kernel could access invalid memory

locations. Linux example: Invalid memory access in driver

code causes kernel oops and in ISR causes kernel panic.

Such an error can only occur if the driver code accesses a

memory location that has not been defined in the Page

Tables of the MMU or MPU or for instance marked as read

only, or has insufficient access permissions. In all other

cases, such memory access could cause corruption of either

kernel or even user mode data structures.

2) Added Privileges

Being in the kernel mode means that the driver would have

access to all kernel functions that the operating system has

access to. Incorrect use of a kernel function could cause

catastrophic results and may lead to a dramatic change in

behavior of the system. Invalid memory access could also

be done through incorrect programming of the DMA. If an

IOMMU is not associated with the DMA, such an invalid

access of the memory could go totally undetected and might

result in aberrant behavior of the system.

3) Resource Hoarding

Suppose a driver code ends up in a code loop which could

be possible due to a hardware register or unanticipated state

of software, this could lead to hogging of the CPU cycles. In

such cases the other processes of the system might get

starved of the CPU and in certain cases the system could

turn totally unresponsive. To some extent the state of the

system depends on whether the kernel is preemptable or not.

4) Resource Leak

Resource leaks caused by allocating and not freeing

memory. Since all the kernel mode components share a

common heap, such behavior exhibited by kernel mode

components could severely affect the OS operation.

b) Microkernels

Now let us discuss core issues present in microkernels. We

define microkernels as those operating systems which

execute all system software in user space and in a separate

address space. Although the fundamental isolation of device

driver code from the kernel is achieved in this approach,

some issues still do exist. We take a look at these issues.

1) Overhead

Since microkernels drivers run as user mode processes,

several user- kernel mode transitions are needed to

accomplish a given driver function. Additionally, there could

be IPC mechanisms between driver's and their clients that

also involve some call overheads.

2) Resource Hoarding

This core issue is also applicable to microkernels only that in

this case the kernel heap does not get affected. The user

mode programs could end up allocating large amounts of

memory or even get stuck in endless loops. The next two

core issues impact monolithic and microkernels alike.

Paper ID: SR24304165403 DOI: https://dx.doi.org/10.21275/SR24304165403 1650

www.ijsr.net
http://creativecommons.org/licenses/by/4.0/

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

ResearchGate Impact Factor (2018): 0.28 | SJIF (2019): 7.583

Volume 9 Issue 3, March 2020

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

3) Recovery

In general, once the driver has crashed there should be way

to recover the device driver such that the applications using

the drivers do not get affected. Recovery is desirable in both

monolithic kernels and microkernels. Most current systems

do not address recovery resulting in system reboot instead.

c) Hardware Errors

These are the kind of errors that arise due to hardware

malfunction. Many times, such issues cause the operating

system to panic. This often happens because an undefined

state in the hardware causes the corresponding driver to

either memory fault or get stuck in an infinite loop.

3. Analysis of Solutions to Various Core

Issues

In previous section we saw some of the core issues that

exist in Operating Systems that affect robustness. In this

section we look at the solutions so some of these core issues

presented by different researcher papers.

a) Minix 3

Minix 3 [3], [4] is a multi-server operating system. In Minix

3 device drivers, file systems and other system servers

providing various services are implemented as user space

processes with a MMU protected address space. Like any

other user process, the driver is only allowed to read and

write into its own address space. In case of memory mapped

I/O devices, the device memory regions are mapped to the

corresponding driver’s address space using the MEMMAP

kernel call. I/O mapped devices are accessed through the

DEVIO kernel call. The interrupt processing is also moved

to user space through a HWINT IPC mechanism. Now let us

see how Minix 3 tries to solve the core issues. The core

issues Memory Faults and Privileged access are resolved

by bringing the driver to user space. The level of access to

Kernel calls and IPC calls is controlled by a per driver

policy file.

Figure 1: The architecture of Minix 3[4]

An additional feature of Minix 3 protects device drivers

from corrupting memory by using DMA. For this Minix 3

requires the presence of IOMMU hardware. DMA,

programming that device drivers might want to do, are done

with the help of IOMMU server, which internally takes care

of programming the IOMMU hardware as well when DMA

programming is done thus preventing accidental

misprogramming of the DMA. Minix 3’s solution to

Resource Hoarding core issue is by sending out periodic

heartbeat requests to all drivers. If a driver fails to respond

to one such request, the reincarnation server restarts the

driver process. The rest of the core issues

remain unaddressed in Minix 3. Minix 3’s implementers

carried out testing of their operating systems features by

introducing software fault isolation techniques. Their system

was able to catch most memory faults and also detect driver

hangs and restart drivers. However, there was no way of

detecting hardware errors and there was no test to determine

the overhead of having several IPC and Kernels calls to

implement driver functionality. Their argument was that

microprocessor systems are fast enough these days and

reliability stands above speed.

b) Domain Specific Code Generation for Linux Device

Driver

In this work [5], they use a domain specific language to auto

generate Device driver code. Details like the class of driver

(video, audio, network, disk), category (char, bus, network)

and the bus it uses (PCI, platform) can be specified and the

tool would generate a template device driver. The domain

specification language is an XML like language.

Figure 2: Steps involved in Device Driver Generation [5]

The framework ensures that the device driver code it

generates makes calls to the kernel that pass the right set of

arguments and have the high degree of correctness with

respect to use of kernel API’s. The tool does not write the

entire driver but helps programmer get through fairly easily

with all the necessary things required by the kernel from a

device driver and lets him focus on the actual device driver

core functionality. This tool does not solve any of the

problems mentioned in the previous section directly. It is

meant to solely reduce the grievances faced by an

inexperienced programmer in figuring out many Linux

driver specific details even before getting to the actual

register programming. In Linux there are many driver

frameworks, for example all video devices including radio

are supported by V4L2 (Video for Linux 2), audio devices

fall under ALSA (Advanced Linux Sound Architecture).

Writing a video driver involves studying the V4L2

subsystem and implementing several callbacks.

Based on the bus technology used by the driver, several bus

specific subsystems of Linux need to be made us of (PCI,

USB, platform etc.). Putting together all of these to get a

working driver can be tedious task. Many times, the

examples available may not be as appropriate, for example

Paper ID: SR24304165403 DOI: https://dx.doi.org/10.21275/SR24304165403 1651

www.ijsr.net
http://creativecommons.org/licenses/by/4.0/

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

ResearchGate Impact Factor (2018): 0.28 | SJIF (2019): 7.583

Volume 9 Issue 3, March 2020

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

we may have the example of a video driver of a PCI based

device but what if we need to write a USB based video

device. This stub code generated by this tool can be thought

of as a very good start point for driver programming. So, in

an indirect sense, this tool helps to bring some form of

reliability in the written driver code by auto generating some

of the code hence making the generated code reliable and

robust.

c) Nooks

In the Nooks architecture, they try to isolate the Linux

kernel drivers into running in a 3rd domain of protection.

The first domain of protection is the user mode which is an

unprivileged mode. The second mode is the kernel mode

which is a privileged mode. In case of Nooks, the drivers are

run in a 3rd mode of protection which is also privileged

mode, but provides MMU protection from kernel data

structures.

Figure 3: The Architecture of Nooks [4]

The mechanism used to implement the 3rd domain of

protection is switching page tables whenever driver code is

executed. Hence a copy of the kernel page table is

maintained for every driver with the kernel pages marked as

read-only. It is difficult to make a clear distinction between

kernel mode and driver mode in the kernel as it used to be

just kernel mode earlier. To make this possible, the Nooks

architecture had to wrap and interposition several kernel-to

driver functions and driver to kernel functions. So every

time a kernel-driver driver-kernel transition was made, page

tables were switched. To make copying safe between driver

to kernel, newly introduced functions had to be made use of

as direct copying was not possible due to the read only

attribute for kernel data in the page table entries of the

driver. Because of the x86 architecture limitation, they had

to flush the TLB’s every time a kernel-driver or driver kernel

transition was made. Driver memory faults were caught by

the Nooks isolation manager and restarted as required. Some

form of recovery was supported. The Nooks wrapper API’s

would log all call and argument information onto a logging

buffer. This information would be used to restart the driver.

A full restart would reload the driver completely i.e. the

driver would be reloaded like it is loaded for the first time.

Rollback is when the driver’s data structures are preserved in

recoverable virtual memory. The advantage of the Nooks

architecture is that it executed the driver in kernel mode

itself. It also provides memory protection (solution to core

issue Memory Faults).

d) Device driver recovery though use of persistent

memory

In this work [8] they have built a recovery framework for

drivers on ARCOS a multiserver Operating System that is

build upon the L4 kernel. The driver stores all of its

significant state bearing variables into a persistent memory.

To do this the driver only needs to declare the variable with

a special compiler directive that would put those variables

into a special section in the elf.

#define IS_PERSISTENT attribute ((section(“.pdata”)))

All variables that the driver author thinks must go into the

persistent memory must be suffixed with this macro

(IS_PERSISTENT) during declaration. The Operating

System puts the .pdata section to a different area in memory

and preserves this memory across restarts but not upon

termination.

Figure 4: Device Driver Base Class [8]

The above figure depicts the driver model. All device

drivers in ArcOS must derive from this base class and

implement the virtual methods. When the driver crashes, it

is restarted and its recovery method (Recover()) is invoked.

This recovery method must be implemented by the driver

writer and it must refer back to the significant state variables

to bring back the driver to its previous state. The core issue

Recovery is being addressed by this paper. The idea of

having a persistent memory, to hold state for the drivers, is

key to recovery for device drivers.

e) L4 Linux

In the L4 Linux Approach [9],[10],[11],[12] Linux is run as

a server on L4. The Linux kernel is run as a L4 user space

process called the Linux server. The L4 Linux Server is a

single L4 Thread. Upon booting, the Linux server requests

memory from its underlying pager. Usually all of the

physical memory available to the Linux personality is

mapped to the Linux server. The actual hardware page

tables are kept within L4 kernel (for security reasons). The

Linux L4 server is responsible for handling all the Linux

activities like handling system calls, handling page faults. In

L4 the interrupts notification is done through IPC and a user

level thread does this top half handling. In L4 Linux, every

interrupt line is given an individual thread for top half

processing. Bottom half processing of an interrupt, if made

use of, is done with another thread. Every user process is

implemented as a regular L4 task. The Linux server creates

these tasks and also takes the role of being its pager. If a

Paper ID: SR24304165403 DOI: https://dx.doi.org/10.21275/SR24304165403 1652

www.ijsr.net
http://creativecommons.org/licenses/by/4.0/

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

ResearchGate Impact Factor (2018): 0.28 | SJIF (2019): 7.583

Volume 9 Issue 3, March 2020

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

page fault occurs in a user process (created by the Linux

Server) is reported to the Linux Server through an IPC. All

system calls are changed to IPC calls to Linux Server. This

is accomplished by a modified version of libc (libc.so and

libc.a). A user level exception handler called trampoline is

created which emulates the native system-call trap. Signals

in native Linux work by modification of the user mode

stack, stack pointer and program counter to make the

process believe that it has made a call to the signal handler

just before it was scheduled out the last time. However, in

L4 Linux, an additional signal handler thread was added to

each Linux process, to achieve signal handling. All Linux

threads are scheduled by the L4’s internal scheduler. The

priorities of all threads are as follows (lowest to highest).

Linux Process < Linux Server < Bottom Half Thread The

L4 Linux approach takes Linux and runs it over a

multiserver operating system. In running Linux this way, we

benefitted from all the advantages of a multiserver operating

system. All the issues that were specific to the kernel mode

are taken away in this approach, however the core issues that

exist in the underlying L4 multiserver OS, like performance

overhead of the IPC mechanisms continue to exist. The L4

Linux is ported to the x86 architecture only, thus restricting

its usability.

f) CuriOS

In CuriOS [15], the concept of persistence is extended to

arguing that persistence must be maintained on a per client

basis for drivers that serve multiple clients and in general

for system servers. In case the driver fails and then restarts, it

would then refer to the client’s persistent memory to recover

state information and resume service. The persistence of this

memory, in this case, is maintained in client's address space.

This way even if the server goes down, no special steps

need to be taken to preserve the client related state is in the

client’s address space as the client is still active and

running. If the client goes down, then it makes sense to

discard the memory as well. CuriOS is comprised of various

objects interacting with each other, such an object is known

as a Protected Object (PO). All methods on a protected

object are executed with reduced privileges and also

memory protected through hardware so that code in a PO

cannot corrupt other code. In many ways a PO is analogous

to a server in microkernel. Each PO has its own private stack

and heap space. A Server State Region (SSR) is used to

store an OS server’s client related information. An SSR is

created whenever a client established a connection with a

server. Memory for the SSR is acquired from the client’s

address space. SSR’s are memory protected from the client

and only the server is allowed to write into it.

Figure 5: SSR based persistent memory in CuriOS [15]

SSR are managed by a SSR Manager singleton object. Upon

restart, a server can query the SSRManager to get

information on what clients it was servicing and get access to

their SSR’s.

Suppose an SSR is corrupted, then only the corresponding

client’s servicing would get affected and the server would

continue to service other clients normally.

Periodic Timer Manager reads clients SSR’s to restore

services to clients after restart. The scheduler saves the

client’s control block in its SSR and uses this information to

resume operation in case of restart. File Systems are also

implemented as PO’s and they maintain client states in

respective SSR’s. In case of a crash, information such as

open files, read position can be retrieved from the SSR of

the client to resume service as last recorded. Similarly,

device drivers are also implemented as PO’s and they too

can store client specific state in SSR’s and use them for

recovery upon restart. The system was implemented on 96

Mhz OMAP 1610 processor. Faults were simulated through

fault injection using a QEMU based fault injection tool.

Types of faults induced were, data aborts and register

bitflip. Faults were injected into the timer, scheduler,

network and file system servers. Recovery was considered

successful if CuriOS could schedule a new process and

access disk. All memory related aborts were recovered, but a

few register bitflips were detected but not recoverable, and

certain others went undetected. The overhead of protected

calls and SSR were recorded to be roughly 200

microseconds more than direct calling (on a 96MHz OMAP

1610 processor). There were overheads like flushing TLB’s

while switching between tables. Overheads in recover,

getting information about all SSR’s from SSR Manager.

This system provides solution to core issue Recovery. The

concept of persistent memory being maintained in the

client’s address space is excellent and can be generally

applied to any system.

g) Exploring Kernel Lockups

This paper [13] discusses the core issue Resource

Hoarding and how Linux detects soft-lockup. In Linux

soft-lockup is detected with the help of a low priority thread

that updates a time stamp every second. This time stamp is

checked by the timer interrupt thread (to see if it was

updated) every 10 seconds. In Linux most errors that are

encountered in the kernel mode are handled by terminating

the thread. However, an OOPS occurs in interrupt mode it is

considered serious and the system turns unusable. Kernel

code also calls panic on detecting serious errors. The soft

lockup detector cannot detect lockups that occur in ISR’s.

This work implements a hardware watchdog timer-based

system to detect lockups and do a soft reboot of the system.

The soft reboot done here is different is from regular soft

reboot of systems. The argument presented here is that if

one driver causes a fault that must reboot the system, why

should all the other innocent processes of the system be

restarted, instead only the culprit thread is killed and

restarted leaving all the other threads unaffected. The

mechanism is described below. They added a new kernel

thread that wakes up periodically and pats the watchdog

timer. If this thread is not scheduled periodically, the

processor is reset. The bootloader was patched so that

Paper ID: SR24304165403 DOI: https://dx.doi.org/10.21275/SR24304165403 1653

www.ijsr.net
http://creativecommons.org/licenses/by/4.0/

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

ResearchGate Impact Factor (2018): 0.28 | SJIF (2019): 7.583

Volume 9 Issue 3, March 2020

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

restarts caused by the watchdog take an alternate route. The

Linux bootup code was also modified to support his

operation. The alternate startup includes turning on the

MMU, terminating the task that caused the lockup, re-

enabling the watchdog and peripheral interrupts. The code is

then made to enter the idle loop which then starts to

schedule the runnable threads. Lock and semaphore tracking

mechanisms need to be implemented in par with this

technique to increase the chances of better recovery. On the

choices Operating system [14] too, a hardware watchdog

was implemented. If a hard lockup occurs, the watchdog

bites. Like the Linux implementation, the Choices too had a

different recovery startup code to deal with watchdog resets.

The recovery routine pretends to be idle thread, switches the

MMU ON and restores interrupts. It then pretends to be the

locked up thread and calls die() directly to terminate the

thread. Killing of this thread restores the next runnable

thread in the system. The implementation provides a way of

detecting lockups. If a hardware error causes a lockup, that

too would be detected by this system and hence we could

say that it provides a solution to core issues Recovery and

Hardware Errors.

Choices Operating System

The Choices operating system is a research operating system

developed in C++. It has some very innovative features for

robustness which are described in the following sections.

1) Exception Handling in Kernel

We discuss some robust features of the Choices OS [14].

Usually when a processor encounters a processor exception, it

fail-stops the program except for the cases when the

processor exceptions generate a page fault and the virtual

memory finds the page in swap space. The Choices OS

makes processor exceptions available as C++ exceptions.

This gives a chance to the program to react to such issues

instead of ending in a fail-stop. In choices OS every

interrupt in the system passes through the interrupt manager.

Processor exceptions too are delivered to the same Interrupt

manager. Hence the interrupt manager checks to see if the

interrupt is a processor exception. If yes then it creates an

exception object and stores the context and stack trace into

the exception object. The handler then changes the PC to the

interrupted process’s ThrowException Function. After this

the regular C++ exception handling takes over. This system

was implemented only on the ARM port of the Choices

Operating System and for this port 3 types of exception

could be thrown.

1) ArmDataAccessException

2) ArmInstructionAccessException

3) ArmUndefinedException

An additional advantage brought in by the exception

handling facility of C++ is the stack unwinding and calling of

destructors by the C++ exception handling code. This in

effect prevents memory leaks making it a solution to core

issue of Resource Leak.

2) Code Reloading

The code-reloading feature of the choices Operating System

helps prevent prefetch abort. It does so by periodically

checking the CRC of kernel critical code and in case of

mismatch, it is reloaded from the disk. This feature in

specific tries to reduce the occurrence of core issue

Memory Faults.

a) VINO

The VINO [16] kernel makes use of a Software Fault

Isolation technique called MISFit [17] to provide protection

to drivers and extensions. The MISFit technique involves

passing code through a post compilation tool that inserts

assembly code that converts an invalid address to a valid

range. It does this by masking out the upper few bits of an

address with a fixed value. Valid address would remain

unchanged after this step whereas invalid addresses would

get changed into a valid range. For function pointer-based

calls and C++ Virtual functions, some OS support is taken

from the kernel and a hash table of function pointers is

searched through to see if the address is that of a valid

function or method. The VINO kernel allows extension in

the form of grafts. Grafts may either replace an existing

function in the kernel to provide alternate functionality or it

may be added to a list of handlers that associate with a given

kernel service. Every graft invocation is wrapped into a

transaction that is managed by the transaction manager. The

transaction mechanism involves pushing of an undo

operation into an undo call stack. If the transaction aborts,

the undo operation is invoked. At the end of a successful

transaction the undo operation is popped back from the undo

call stack. To prevent resource holding the VINO kernel

introduces time constrained locking mechanism, hence

every lock has an associated timeout mechanism. However,

the most appropriate timeout to be associated with a lock

must be experimentally verified. The MISFit software Fault

isolation technique is solution core issue Memory Faults

with a difference that it does not make use of MMU

hardware to provide address space protection. The

transaction mechanism provides immediate recovery from

unsuccessful transactions by invoking the undo functions in

the undo call stack thus providing some form of recovery.

The timed lock makes sure that no thread can hold on to a

resource for more than the stipulated timeout period hence

providing a solution to core issue of Resource Hoarding.

b) Shadow Driver

This work [19] introduces a concept called shadow driver

framework to support device driver recovery. It is built on

top of the Nooks architecture. Device drivers often fall under

different classes. Drivers falling under the same class have

similar kernel-programming interfaces. Hence the recovery

once the failed driver is recovered, the taps are re enabled

and the shadow driver goes back into passive mode. The

driver however is not run from the start as some things like

kernel registration are preserved by the shadow drivers. This

is done through the wrapper calls of Nooks which can

record the calls the driver makes to the kernel along with the

arguments.

However, tasks like enabling interrupts, remapping I/O

memory are re-performed. The exact steps of recovery

would depend on the class of the driver. This work is a clear

example of device driver Recovery core issue. However, the

recovery technique presented here is closer to being

stateless. Some parts of the state are being captured in the

form of arguments to the calls the driver would make to the

kernel. But the actual driver’s internal state variables are not

preserved. This model is an improvement over the Nooks

Paper ID: SR24304165403 DOI: https://dx.doi.org/10.21275/SR24304165403 1654

www.ijsr.net
http://creativecommons.org/licenses/by/4.0/

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

ResearchGate Impact Factor (2018): 0.28 | SJIF (2019): 7.583

Volume 9 Issue 3, March 2020

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

driver recovery as it takes into account the possibility of

driver’s clients making calls at the time the driver is down

and in the process of restarting.

c) Exceptional Kernel. Using C++ exceptions in the

Linux kernel

In this work [21], a new C++ runtime support was added to

the Linux kernel. The runtime was initially derived from the

user mode, but enhanced later for performance. The

implementation was done by purely implementing the ABI

calls of the compiler (for example the throw operator

translates to ABI call cxa_allocate_exception followed by

strategy presented here is implemented on a per class basis,

cxa_throw), hence eliminating the need for a special i.e.

there is one shadow driver per class of drivers. But there

may be several instances of it running for each driver. Thus

having a few shadow drivers, one per class, is sufficient and

driver developers need not worry about developing them.

Shadow drivers can only recover from transient and fail-

stop driver failures. This is because it makes use of the

Nooks system which could only detect these two types of

failures and restart the driver. The shadow driver executes in

two modes, passive and active. The implementers created a

tap system where calls from kernel to driver and vice versa

are also redirected to the shadow driver. All of this call

redirection is managed by the shadow manager. The shadow

manager also receives notification from the fault-isolation

subsystem when a driver fails. At that time, it switches the

shadow driver from passive to active mode. In passive mode

driver records several kinds of information which differs

based on the class of the driver. Generally, in passive mode

driver records the registration with specific subsystems of

the kernel, interrupt lines acquired by the driver. The

shadow driver however does not maintain any persistent

state of the drivers, it expects the clients to do so. The active

mode is triggered when shadow manager informs the

shadow driver about the failed driver and asks it to switch to

active mode. In active mode the shadow driver disabled the

interrupt of the hardware so that the hardware does not

continue to fire interrupts during recovery (may not work

with shared interrupt lines). The I/O mappings of the

hardware are also removed, to prevent any DMA into kernel

memory. For most application calls during recovery, the

driver may give a busy error code as most applications may

be designed to handle it. For certain other applications

blocking the call until the driver recovers is a better solution.

The GNU G++ compiler generates a crtbegin.o and crtend.o

ELF’s in addition to compiled code object which it uses to

invoke the C++ runtime and call global constructors and

destructors. In the EFL section, these appear as .init and .fini

sections. In this implementation, the Linix kernel module

loader was modified to call these sections along with the

calls to module initialization and module exit codes. The

ABI’s implemented for the C++ runtime constituted about

7000 LOC in length. With respect to their kernel

configuration, this caused an image size increase of 2%.

Their analysis of user side ABI revealed that 93% of the

total ABI execution time was devoted to unwinding of the

stack. This was because it was a two stage process in the

user side ABI. The first optimization was done in making

the 2 stage unwinding of the G++ ABI as one step. This

brought down the execution time from an earlier 12.7μs to

6μs. The evaluations further revealed that the cost of

throwing exceptions increased as the number of stack

frames increased. The overall effect of having C++ code in

kernel (especially for drivers) mean that code could be

written with exception handlers. This provides robustness in

a more generic way meaning the code gets a chance to

correct itself. So in a general sense this could be categorized

as a solution to the core issue Recovery. The recovery is on

a smaller level with one catch block serving a recovery

routine for several code blocks and several such catch

blocks forming the total recovery code.

d) D-Bus Based User Device Driver Framework Design

for Linux Mobile Software Platform

This work [22] explores the feasibility of having user mode

device drivers in Linux. They implemented several device

drivers on Linux running over a mobile phone hardware.

They made use of the UIO framework to implement the

drivers. In addition, they made use of udev subsystem to

give the UIO based driver device nodes a more logical

name. The UIO kernel driver creates device node entries at

the time of registration in the form of /dev/uiox where x

represents an incrementing minor number. This number

depends on the order in which the device nodes are created.

The HAL daemon, through the udev notification then

creates symbolic links for each UIO user mode driver with a

more logical name, like /dev/uio/leds for an LED driver.

This paper serves a proof of concept that user mode device

drivers are feasible in Linux. The UIO framework provides

solution to core issue Memory Faults and Added

Privileges.

e) Safe Device Driver Model Based on Kernel-Mode

JVM

This paper [23] explores and evaluates the idea of running a

Kernel Mode JVM and running device drivers under it. The

kernel mode JVM was a modified version of the Tiny-VM,

an open source JVM which can run on an OS less

Microcontroller. The kernel-mode JVM incorporated

Device Driver Interface (DDI) to the Tiny-VM. The DDI

manages type conversions between C and java and vice

versa. Inside the JVM an object consists of two parts,

Object Head and Object Body. JVM needs to read

information off the Object Head to access the Object. In

typical JVM’s these are in contiguous memory locations.

But in the Kernel mode JVM, since it needs to data access

to kernel, it manages this by maintaining a Object head in its

local memory and a pointer to the actual object (which could

be a kernel data structure). This also simplifies the memory

management as the JVM now needs to maintain a list of

Object heads with pointer references. This makes the

structure of identical sizes which is maintained in the form

of a Link list in the JVM. The actual object body could be

preexisting (as a kernel data structure) or else it is allocated

using the regular kmalloc and kfree kernel calls. Unlike

regular JVM’s this JVM does not include a Garbage

Collector since the semantics for garbage collection in user-

mode do not apply to kernel mode. As a result, a free_object

API is defined to free object and drivers would explicitly

call them when they need to free objects. Driver ISR’s are

also written in Java. The JDD ISR also runs in borrowed

context like in the regular case. Like ISR’s implemented in

C in the Linux kernel, even JDD ISR is not permitted to

Paper ID: SR24304165403 DOI: https://dx.doi.org/10.21275/SR24304165403 1655

www.ijsr.net
http://creativecommons.org/licenses/by/4.0/

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

ResearchGate Impact Factor (2018): 0.28 | SJIF (2019): 7.583

Volume 9 Issue 3, March 2020

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

sleep. This is checked by the JVM at the time of invocation.

If called within Interrupt context, and a sleep is

encountered, an exception is thrown. For accessing register

memory (something very often required by a driver), a JNI

call is made. Writing device drivers in Java sure provides

isolation and provides the driver with the language provided

safety, but the performance penalty is quite high. The ISR’s

in particular are expected to have very low processing time

and a Java ISR cannot guarantee that. The system provides

solutions to the core issues Memory Faults and Added

Privileges.

f) Creating User-Mode Device Drivers with Proxy

In this paper, user-mode driver for Windows NT is

developed using a Proxy driver. The proxy driver makes no

changes to the NT Operating system. In Windows NT, I/O

is packet driver. Once a driver I/O call(from application)

enters the NT executive, individual I/O requests are encoded

into an I/O Request Packet. IRP’s could pass through

multiple drivers. (Example: file System driver to disk driver

and back).

Figure 6: Proxy Driver [28]

IRP’s are passed to the corresponding driver through the

Device Entry. In this system the user mode drivers are

implemented using a kernel-mode proxy driver. The user-

mode driver connects to the proxy through a special device

entry called the host entry. The user-mode driver registers

with the proxy driver informing it about the I/O requests it

would process. In response to this registration, the proxy

driver creates a stub entry. All access to the user-mode

driver is through this stub-entry. Whenever an application

makes an IRP request, it is routed through the stub-entry to

the proxy driver. The IRP then gets forwarded to the Host

Entry and then further to the user mode device driver,

through the proxy service. The evaluations suggested that

proxy based user drivers had a 50% performance overhead

for the calls that made data transfers between the user and

the kernel. Calls bearing no data transfer may not suffer

from this overhead as much. The technique presented here is

very interesting as the user application remains unmodified

as it still thinks that it is calling the kernel mode driver.

Having the real driver in user mode brings in the automatic

advantages of user space protection (core issues Memory

Faults and Added Privileges).

4. Conclusion

In all the techniques seen so far, we have seen that each

operating system has its own approach to the core issues

that impact robustness. Overall, from the protection and

robustness point of view the microkernels have shown better

robustness because of the system software components

being executed in user mode. Minix 3 in its current from

implements all drivers and other system software

components in user mode. It has provided solution to most

core issues. The POSIX compatibility makes application

porting easier. The only unaddressed problem is the

performance overhead of the IPC mechanisms. As CPU

speeds keep increasing this problem is becoming less

important as compared to the reliability aspects. L4 Linux

patch makes Linux very reliable by putting the entire Linux

OS into user mode. The L4 Linux patch is being actively

being maintained by the Operating Systems Group at TU

Dresden. Nooks and shadow drivers are excellent pieces of

demonstrating that driver in kernel mode too can be robust

can recover from fault. These patches are not being actively

maintained and were last seen working on 2.4 versions of

Linux. The group at University of Illinois at Urbana-

Champaign [13] work on recovering from Linux lockups

with a modified startup is also very interesting and is

available for download from their site. This idea of user

mode drivers generally accepted by the Linux community as

well. For example, the X Server for example in Linux has its

drivers written in user mode. This also allows the graphic

card manufacturers to supply their drivers as binaries. There

is a framework for writing drivers in user mode in Linux

that is known as UIO (Universal Fieldbus and Industrial I/O

Framework). UIO was developed by OSADL (Open Source

Automation Development Lab) and is now available as

config option under the Linux kernel source tree. The

Window Server and File Server of Symbian OS [28] are

written in user mode. Even in Windows operating system a

user mode driver programming framework has been

introduced with Windows Vista [29]. In general, we see that

the focus is generally shifting from functionality alone to

functionality and robustness. So not only is a piece of

system software expected to work right but work reliably as

well. Because of the pace at which newer hardware arrives,

it is almost impossible to ensure perfect testing of newly

written drivers and hence the robustness support must be

enforced by the operating system itself. In the era when only

monolithic operating system existed, the microkernels

introduced the concept of having a small kernel providing

just the core kernel services and having the rest of system

services to be implemented as user mode servers. This

definition is sometimes referred to as a multiserver

operating system. The microkernels have made their point

as we can see that the initially believed monolithic kernels

like Linux are having more and more microkernel like

features.

References

[1] Jacob B, Mudge T, "Virtual Memory:Issues of

Implementation", IEEE Computer Society

journal,Volume: 31 , Issue: 6, Publication Year: 1998,

Page(s): 33 - 43.

[2] Khalidi Y.A., Talluri M, Nelson M.N., Williams, D,

"Virtual memory support for multiple page sizes",

Proceedings of the Fourth Workshop on Workstation

Operating Systems, 1993.

Paper ID: SR24304165403 DOI: https://dx.doi.org/10.21275/SR24304165403 1656

www.ijsr.net
http://creativecommons.org/licenses/by/4.0/

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

ResearchGate Impact Factor (2018): 0.28 | SJIF (2019): 7.583

Volume 9 Issue 3, March 2020

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

[3] Herder J.N, Bos H, Gras B, Homburg P, Tanenbaum

A.S, "Fault isolation for device drivers", Dependable

Systems & Networks, 2009.

[4] Tanenbaum A.S, Herder J.N, Bos H, "Can we make

operating systems reliable and secure?", IEEE

Computer Society Journal Volume: 39 , Issue: 5,

Publication Year: 2006 , Page(s): 44 - 51.

[5] Park J.C, Choi Y.H, Kim T.H, "Domain Specific Code

Generation For Linux Device Driver", Advanced

Communication Technology, 2008. ICACT 2008.

[6] Swift M, Martin S, Levy H.M, Edders S.J, "Nooks: an

architecture for reliable device drivers", Proceedings of

the 10th workshop on ACM SIGOPS European

workshop, Year of Publication: 2002.

[7] Hunt G.C., “Creating User-Mode Device Drivers with

a Proxy”, Proceedings of the USENIX Windows NT

Workshop, Seattle, Washington, August 1997.

[8] Ishikawa H, Courbot A,Nakajima T, "A Framework

for Self-Healing Device Drivers", Proceedings of the

2008 Second IEEE International Conference on Self-

Adaptive and Self Organizing Systems, Year of

Publication: 2008.

[9] Häig H, Hohmuth M, Wolter J, "Taming

Linux",Proceedings of the 5th Annual Australasian

Conference on Parallel And Real-Time Systems, Year

of Publication: 1998.

[10] Häi H, Hohmuth M, Wolter J,L iedtke J, Schörg S S,

"The performance of μ-kernel-based systems",

Proceedings of the sixteenth ACM symposium on

Operating systems principles, Year of Publication:

1997.

[11] http://os.inf.tu-dresden.de/papers_ps/adam-diplom.pdf

[12] http://os.inf.tu-dresden.de/papers_ps/adam-beleg.pdf

[13] David F.M, Carlyle J.C, Campbell R.H, "Exploring

Recovery from Operating System Lockups", USENIX

Annual Technical Conference (USENIX.07), June,

2007.

[14] David F.M, Carlyle J.C, Campbell R.H, "Building a

Self-Healing Operating System", 3rd IEEE

International Symposium on Dependable, Autonomic

and Secure Computing, September, 2007.

[15] David F.M, Chan, E.M, Carlyle J.C, Campbell R.H,

"CuriOS: Improving Reliability through Operating

System Structure", USENIX Symposium on Operating

Systems Design and Implementation, December,

2008".

[16] Seltzer M.I, Endo Y, Small C, SmithK.A,"Dealing

with disaster: surviving misbehaved kernel extensions"

- Proceedings of the second USENIX symposium on

Operating systems design and implementation 1996.

[17] Small C, Seltzer M, "MiSFIT", Third Conference on

Object-Oriented Technologies and Systems (COOTS

.97).

[18] Chou A, Yang J, Chelf B, Hallem S, Engler D, "An

Empirical Study of Operating Systems Errors",

Proceedings of the eighteenth ACM symposium on

Operating systems principles.

[19] Swift M.M, Annamalai M, Bershad B.N, Levy H.M,

"Recovering Device Drivers". In Symposium on

Operating Systems Design and Implementation (2004).

[20] David F.M, Carlyle J.C, Chan E.M, Raila D.K,

Campbell R.H, "Exception Handling in the Choices

Operating System", Advanced Topics in Exception

Handling Techniques , Vol. 4119 Springer (2006).

[21] Gylfason H, "Exceptional Kernel. Using C++

exceptions in the Linux kernel", Department of

Computer Science. ReykjavÃ University.

[22] Cho Y.J, Cho Y.C, Jeon J.W,"D-Bus based user

device driver framework design for Linux mobile

software platform", ISIE 2009 IEEE International

Symposium on Digital Industrial Electronics, 2009,

Publication Year 2009.

[23] Chen S, Zhou L, Ying R, Ge Y, "Safe device driver

model based on kernel-mode JVM" Virtualization

Technology in Distributed Computing archive

Proceedings of the 2nd international workshop on

Virtualization technology in distributed computing

(Year of Publication: 2007).

[24] Bovet D.P, Cesati M, "Understanding the Linux

Kernel 3rd Edition".

[25] Sloss A.N, Symes D, Wright C, "ARM System

Developer's Guide".

[26] Beck M, Bohme H, Dziadzka M, Kunitz U, Magnus

R, Verworner, " Linux Kernel Internals 2nd Edition".

[27] Stallings W, "Operating Systems internals and Design

Principles 6th Edition".

[28] Sales J, “Symbian OS Internals, Real-time Kernel

Programming”.

[29] http://channel9.msdn.com/blogs/charles/peter-wieland-

user-mode- driver-framework.

Paper ID: SR24304165403 DOI: https://dx.doi.org/10.21275/SR24304165403 1657

www.ijsr.net
http://creativecommons.org/licenses/by/4.0/
http://os.inf.tu-dresden.de/papers_ps/adam-diplom.pdf
http://os.inf.tu-dresden.de/papers_ps/adam-beleg.pdf
http://channel9.msdn.com/blogs/charles/peter-wieland-user-mode-
http://channel9.msdn.com/blogs/charles/peter-wieland-user-mode-

