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Abstract: System software refers to all the low-level software that runs on an operating system providing service to application. System 

software may provide hardware abstraction or provide an OS abstraction. System software is often expected to be more robust, yet there 

may still be different types of problems that can affect the robustness of system software. This review paper firstly defines some of the 

common problems related to robustness of system software and does a study of related work that try to address the different problem 

areas. 
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1. Introduction 
 

System software can be termed as the lower layers of 

software that are Operating System specific and help build a 

layer of service abstraction to user applications. Device 

drivers, file system code, networking stack are common 

examples of system software. Of the above types of system 

software, device drivers are the ones that are subject to more 

frequent changes as hardware changes are more rapid as 

compared to file system or networking stack changes. A 

study [18] has shown that in the Linux 2.4.1 kernel, drivers 

constitute 1.5 million lines of code while file system 

comprise 0.1 million lines of code. The above statistic is for 

the Linux kernel source tree which includes code for 

multiple architectures and platforms. Hence various device 

driver sources are present in the kernel source tree. There 

are even many other driver sources which are often supplied 

separately. Based on the architecture and platform, a smaller 

set of system software, like one or more file systems, one or 

more network stacks and several device drivers are put 

together into the kernel configuration. The number of device 

drivers usually exceeds the total number of file system and 

networking stacks put together. Another important factor is 

that device drivers are contributed from a much larger 

community and not all drivers are officially made a part of 

the Linux kernel source tree. 

 

Drivers downloaded from 3rd party vendor websites, may 

often not be tested across various versions of the kernel. 

Some of what is said above its even true for file system or 

networking code. To summarize, any part of system 

software that is external to the core kernel and is permitted 

to execute in kernel mode is a potential threat against system 

robustness and stability. In the rest of the paper, we study the 

different types of problems that could affect robustness and 

discuss the solutions to various problems offered by 

different operating systems. We continue discussing the 

problems that affect robustness in monolithic and 

microkernel operating systems. Device drivers in many 

monolithic operating systems are run as a part of the kernel 

image.  

 

This gives them an added (with respect to user space 

programs) capability in the form of: - 

• Access to kernel Address Space - possibility of 

accidental corruption of kernel data structures. 

• Access to kernel functions that go beyond system call’s 

behavior. 

• Access to system hardware protected by the kernel. 

 

Different systems constrain the way drivers are a part of the 

kernel and thus constrain the degree and type of access of 

the driver to the rest of the kernel. For example, in Linux, a 

driver could be both implemented as module as well as build 

as a part of the kernel image. Building the driver as a 

module restricts the calling capability of the driver to only 

the exported function in the kernel. Some reasons for 

allowing the drivers to run in Kernel mode and in the kernel 

address space:- 

a) Kernel mode is often the privileged mode of a 

processor and hence has unrestricted access to the 

processor's resources. Some operating systems do not 

have a very well build up API framework for low level 

access of processor resources in privileged mode 

accessible code. Drivers in such operating systems need 

to be run in kernel mode so that they do not need to 

implement such low-level functions to gain privileged 

access to such resources. For example, FreeRTOS, 

μCos provide only basic thread context switching 

mechanisms. In such operating systems the kernel, 

drivers and the user program, all from a part of the 

same kernel image. There is no real distinction between 

a driver and an application and everything really runs in 

most privileged mode of the processor. 

b) Being in the kernel address space makes access to the 

kernel functions a function call away. This is often used 

to reduce the number of user mode to kernel mode 

transitions as they can be quite expensive. User mode to 

kernel mode transitions is facilitated through system 

calls. 

c) Most low-level functions (to access processor 

architecture specific and platform hardware features) 

are implemented in the kernel in case of operating 

systems like Linux and only a few of them are available 

in the form of system calls to the user mode. Having a 

driver in the kernel address space enables the reuse of 

such functions. 

d) Drivers need Interrupt Service Routines for the 

interrupts the Hardware might generate. Most processors 

expect the ISR’s to run in the kernel mode or at least in 
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one of the privileged modes of the system. 

e) The last argument to support running of drivers in 

kernel mode could be that the Kernel mode could be 

faster in because of the following reasons: - 

• Lesser user-kernel transitions, from an application 

perspective a single driver call is made and the 

driver completes all the work in kernel mode and 

returns when the control is returned back to the user 

mode. Compare this with a case in which the 

application has to make several system calls to 

implement the same functionality the previously 

mentioned one driver call could do. 

• Kernel code compiled with different compiler 

settings, this is true for certain operating systems. In 

Linux the kernel mode compiler settings do not 

support floating point operations. The Symbian OS 

kernel [28] (an OS primarily made for the ARM 

based cell phone hardware) is compiled in the more 

efficient 32 bit ARM mode while applications by 

default usually get compiled with the 16 bit thumb 

instruction set unless explicitly set to be compiled in 

ARM mode. The Symbian OS kernel also requires 

the ARM RVCT compiler as many parts of the 

kernel are hand optimized keeping the ARM 

compiler settings in mind. 

 

In microkernel and multiserver operating systems, the 

drivers are run in user-mode hence they are isolated from 

the kernel. Utility functions for the drivers are made 

available in the form of system calls to the kernel or IPC 

calls to other system servers that implement them. The exact 

mechanism that exists in different microkernels differs with 

the common policy of having drivers run in user mode. In 

certain microkernels, the driver itself serves its clients 

(another user space process) through IPC calls. Certain 

applications in microkernel OS might even chose to use 

shared memory mechanisms to transfer data between user 

application and kernel. To summarize driver client 

interaction in microkernel may be through IPC mechanisms 

or shared memory. In the monolithic vs. microkernel debate, 

the monolithic kernels got an early lead. Hence a lot of 

applications and support libraries have been developed for 

the monolithic kernels (like Linux and Symbian). It could be 

argued that Linux is not a monolithic kernel. But most 

device drivers, file system and network code are run in 

kernel mode in Linux which makes it monolithic from this 

perspective. The next section discusses the core issues 

present in both monolithic and microkernel operating 

systems that impact robustness of system software. 

Following section discusses various papers that try to solve 

the core issues. 

 

2. Core Issues 
 

There are some core issues present in both monolithic and 

microkernel operating systems because of which the  

robustness of the system gets affected. In this section, we 

look at these issues in greater detail. 

 

a) Monolithic Kernels 

What is a monolithic kernel? There are many definitions but 

we define them as kernels that allow system software 

components like device drivers to execute in kernel mode 

and share kernel address space. There are several issues that 

arise because of running software in kernel mode, let’s take 

a look at some of these issues. 

 
1) Memory Faults 

Driver code in a kernel could access invalid memory 

locations. Linux example: Invalid memory access in driver 

code causes kernel oops and in ISR causes kernel panic. 

Such an error can only occur if the driver code accesses a 

memory location that has not been defined in the Page 

Tables of the MMU or MPU or for instance marked as read 

only, or has insufficient access permissions. In all other 

cases, such memory access could cause corruption of either 

kernel or even user mode data structures. 

 
2) Added Privileges 

Being in the kernel mode means that the driver would have 

access to all kernel functions that the operating system has 

access to. Incorrect use of a kernel function could cause 

catastrophic results and may lead to a dramatic change in 

behavior of the system. Invalid memory access could also 

be done through incorrect programming of the DMA. If an 

IOMMU is not associated with the DMA, such an invalid 

access of the memory could go totally undetected and might 

result in aberrant behavior of the system. 

 

3) Resource Hoarding 

Suppose a driver code ends up in a code loop which could 

be possible due to a hardware register or unanticipated state 

of software, this could lead to hogging of the CPU cycles. In 

such cases the other processes of the system might get 

starved of the CPU and in certain cases the system could 

turn totally unresponsive. To some extent the state of the 

system depends on whether the kernel is preemptable or not. 

 

4) Resource Leak 

Resource leaks caused by allocating and not freeing 

memory. Since all the kernel mode components share a 

common heap, such behavior exhibited by kernel mode 

components could severely affect the OS operation. 

 
b) Microkernels 

Now let us discuss core issues present in microkernels. We 

define microkernels as those operating systems which 

execute all system software in user space and in a separate 

address space. Although the fundamental isolation of device 

driver code from the kernel is achieved in this approach, 

some issues still do exist. We take a look at these issues. 

 

1) Overhead 

Since microkernels drivers run as user mode processes, 

several user- kernel mode transitions are needed to 

accomplish a given driver function. Additionally, there could 

be IPC mechanisms between driver's and their clients that 

also involve some call overheads. 

 

2) Resource Hoarding 

This core issue is also applicable to microkernels only that in 

this case the kernel heap does not get affected. The user 

mode programs could end up allocating large amounts of 

memory or even get stuck in endless loops. The next two 

core issues impact monolithic and microkernels alike. 
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3) Recovery 

In general, once the driver has crashed there should be way 

to recover the device driver such that the applications using 

the drivers do not get affected. Recovery is desirable in both 

monolithic kernels and microkernels. Most current systems 

do not address recovery resulting in system reboot instead. 

 

c) Hardware Errors 

These are the kind of errors that arise due to hardware 

malfunction. Many times, such issues cause the operating 

system to panic. This often happens because an undefined 

state in the hardware causes the corresponding driver to 

either memory fault or get stuck in an infinite loop. 

 

3. Analysis of Solutions to Various Core 

Issues 
 

In previous section we saw some of the core issues that 

exist in Operating Systems that affect robustness. In this 

section we look at the solutions so some of these core issues 

presented by different researcher papers. 

 

a) Minix 3 

Minix 3 [3], [4] is a multi-server operating system. In Minix 

3 device drivers, file systems and other system servers 

providing various services are implemented as user space 

processes with a MMU protected address space. Like any 

other user process, the driver is only allowed to read and 

write into its own address space. In case of memory mapped 

I/O devices, the device memory regions are mapped to the 

corresponding driver’s address space using the MEMMAP 

kernel call. I/O mapped devices are accessed through the 

DEVIO kernel call. The interrupt processing is also moved 

to user space through a HWINT IPC mechanism. Now let us 

see how Minix 3 tries to solve the core issues. The core 

issues Memory Faults and Privileged access are resolved 

by bringing the driver to user space. The level of access to 

Kernel calls and IPC calls is controlled by a per driver 

policy file. 
 

 
Figure 1: The architecture of Minix 3[4] 

 

An additional feature of Minix 3 protects device drivers 

from corrupting memory by using DMA. For this Minix 3 

requires the presence of IOMMU hardware. DMA, 

programming that device drivers might want to do, are done 

with the help of IOMMU server, which internally takes care 

of programming the IOMMU hardware as well when DMA 

programming is done thus preventing accidental 

misprogramming of the DMA. Minix 3’s solution to 

Resource Hoarding core issue is by sending out periodic 

heartbeat requests to all drivers. If a driver fails to respond 

to one such request, the reincarnation server restarts the 

driver process. The rest of the core issues 

 

remain unaddressed in Minix 3. Minix 3’s implementers 

carried out testing of their operating systems features by 

introducing software fault isolation techniques. Their system 

was able to catch most memory faults and also detect driver 

hangs and restart drivers. However, there was no way of 

detecting hardware errors and there was no test to determine 

the overhead of having several IPC and Kernels calls to 

implement driver functionality. Their argument was that 

microprocessor systems are fast enough these days and 

reliability stands above speed. 

 

b) Domain Specific Code Generation for Linux Device 

Driver 

In this work [5], they use a domain specific language to auto 

generate Device driver code. Details like the class of driver 

(video, audio, network, disk), category (char, bus, network) 

and the bus it uses (PCI, platform) can be specified and the 

tool would generate a template device driver. The domain 

specification language is an XML like language. 

 

 
Figure 2: Steps involved in Device Driver Generation [5] 

 

The framework ensures that the device driver code it 

generates makes calls to the kernel that pass the right set of 

arguments and have the high degree of correctness with 

respect to use of kernel API’s. The tool does not write the 

entire driver but helps programmer get through fairly easily 

with all the necessary things required by the kernel from a 

device driver and lets him focus on the actual device driver 

core functionality. This tool does not solve any of the 

problems mentioned in the previous section directly. It is 

meant to solely reduce the grievances faced by an 

inexperienced programmer in figuring out many Linux 

driver specific details even before getting to the actual 

register programming. In Linux there are many driver 

frameworks, for example all video devices including radio 

are supported by V4L2 (Video for Linux 2), audio devices 

fall under ALSA (Advanced Linux Sound Architecture). 

Writing a video driver involves studying the V4L2 

subsystem and implementing several callbacks. 

 

Based on the bus technology used by the driver, several bus 

specific subsystems of Linux need to be made us of (PCI, 

USB, platform etc.). Putting together all of these to get a 

working driver can be tedious task. Many times, the 

examples available may not be as appropriate, for example 
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we may have the example of a video driver of a PCI based 

device but what if we need to write a USB based video 

device. This stub code generated by this tool can be thought 

of as a very good start point for driver programming. So, in 

an indirect sense, this tool helps to bring some form of 

reliability in the written driver code by auto generating some 

of the code hence making the generated code reliable and 

robust. 

 

c) Nooks 

In the Nooks architecture, they try to isolate the Linux 

kernel drivers into running in a 3rd domain of protection. 

The first domain of protection is the user mode which is an 

unprivileged mode. The second mode is the kernel mode 

which is a privileged mode. In case of Nooks, the drivers are 

run in a 3rd mode of protection which is also privileged 

mode, but provides MMU protection from kernel data 

structures. 

 

 
Figure 3: The Architecture of Nooks [4] 

 

The mechanism used to implement the 3rd domain of 

protection is switching page tables whenever driver code is 

executed. Hence a copy of the kernel page table is 

maintained for every driver with the kernel pages marked as 

read-only. It is difficult to make a clear distinction between 

kernel mode and driver mode in the kernel as it used to be 

just kernel mode earlier. To make this possible, the Nooks 

architecture had to wrap and interposition several kernel-to 

driver functions and driver to kernel functions. So every 

time a kernel-driver driver-kernel transition was made, page 

tables were switched. To make copying safe between driver 

to kernel, newly introduced functions had to be made use of 

as direct copying was not possible due to the read only 

attribute for kernel data in the page table entries of the 

driver. Because of the x86 architecture limitation, they had 

to flush the TLB’s every time a kernel-driver or driver kernel 

transition was made. Driver memory faults were caught by 

the Nooks isolation manager and restarted as required. Some 

form of recovery was supported. The Nooks wrapper API’s 

would log all call and argument information onto a logging 

buffer. This information would be used to restart the driver. 

A full restart would reload the driver completely i.e. the 

driver would be reloaded like it is loaded for the first time. 

Rollback is when the driver’s data structures are preserved in 

recoverable virtual memory. The advantage of the Nooks 

architecture is that it executed the driver in kernel mode 

itself. It also provides memory protection (solution to core 

issue Memory Faults). 

 

 

 

d) Device driver recovery though use of persistent 

memory 

In this work [8] they have built a recovery framework for 

drivers on ARCOS a multiserver Operating System that is 

build upon the L4 kernel. The driver stores all of its 

significant state bearing variables into a persistent memory. 

To do this the driver only needs to declare the variable with 

a special compiler directive that would put those variables 

into a special section in the elf. 
 

#define IS_PERSISTENT     attribute ((section(“.pdata”))) 

 

All variables that the driver author thinks must go into the 

persistent memory must be suffixed with this macro 

(IS_PERSISTENT) during declaration. The Operating 

System puts the .pdata section to a different area in memory 

and preserves this memory across restarts but not upon 

termination. 

 

 
Figure 4: Device Driver Base Class [8] 

 

The above figure depicts the driver model. All device 

drivers in ArcOS must derive from this base class and 

implement the virtual methods. When the driver crashes, it 

is restarted and its recovery method ( Recover() ) is invoked. 

This recovery method must be implemented by the driver 

writer and it must refer back to the significant state variables 

to bring back the driver to its previous state. The core issue 

Recovery is being addressed by this paper. The idea of 

having a persistent memory, to hold state for the drivers, is 

key to recovery for device drivers. 

 

e) L4 Linux 

In the L4 Linux Approach [9],[10],[11],[12] Linux is run as 

a server on L4. The Linux kernel is run as a L4 user space 

process called the Linux server. The L4 Linux Server is a 

single L4 Thread. Upon booting, the Linux server requests 

memory from its underlying pager. Usually all of the 

physical memory available to the Linux personality is 

mapped to the Linux server. The actual hardware page 

tables are kept within L4 kernel (for security reasons). The 

Linux L4 server is responsible for handling all the Linux 

activities like handling system calls, handling page faults. In 

L4 the interrupts notification is done through IPC and a user 

level thread does this top half handling. In L4 Linux, every 

interrupt line is given an individual thread for top half 

processing. Bottom half processing of an interrupt, if made 

use of, is done with another thread. Every user process is 

implemented as a regular L4 task. The Linux server creates 

these tasks and also takes the role of being its pager. If a 
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page fault occurs in a user process (created by the Linux 

Server) is reported to the Linux Server through an IPC. All 

system calls are changed to IPC calls to Linux Server. This 

is accomplished by a modified version of libc (libc.so and 

libc.a). A user level exception handler called trampoline is 

created which emulates the native system-call trap. Signals 

in native Linux work by modification of the user mode 

stack, stack pointer and program counter to make the 

process believe that it has made a call to the signal handler 

just before it was scheduled out the last time. However, in 

L4 Linux, an additional signal handler thread was added to 

each Linux process, to achieve signal handling. All Linux 

threads are scheduled by the L4’s internal scheduler. The 

priorities of all threads are as follows (lowest to highest). 

 

Linux Process < Linux Server < Bottom Half Thread The 

L4 Linux approach takes Linux and runs it over a 

multiserver operating system. In running Linux this way, we 

benefitted from all the advantages of a multiserver operating 

system. All the issues that were specific to the kernel mode 

are taken away in this approach, however the core issues that 

exist in the underlying L4 multiserver OS, like performance 

overhead of the IPC mechanisms continue to exist. The L4 

Linux is ported to the x86 architecture only, thus restricting 

its usability. 

 

f) CuriOS 

In CuriOS [15], the concept of persistence is extended to 

arguing that persistence must be maintained on a per client 

basis for drivers that serve multiple clients and in general 

for system servers. In case the driver fails and then restarts, it  

would then refer to the client’s persistent memory to recover 

state information and resume service. The persistence of this 

memory, in this case, is maintained in client's address space. 

This way even if the server goes down, no special steps 

need to be taken to preserve the client related state is in the 

client’s address space as the client is still active and 

running. If the client goes down, then it makes sense to 

discard the memory as well. CuriOS is comprised of various 

objects interacting with each other, such an object is known 

as a Protected Object (PO). All methods on a protected 

object are executed with reduced privileges and also 

memory protected through hardware so that code in a PO 

cannot corrupt other code. In many ways a PO is analogous 

to a server in microkernel. Each PO has its own private stack 

and heap space. A Server State Region (SSR) is used to 

store an OS server’s client related information. An SSR is 

created whenever a client established a connection with a 

server. Memory for the SSR is acquired from the client’s 

address space. SSR’s are memory protected from the client 

and only the server is allowed to write into it. 

 

 
Figure 5: SSR based persistent memory in CuriOS [15] 

 

SSR are managed by a SSR Manager singleton object. Upon 

restart, a server can query the SSRManager to get 

information on what clients it was servicing and get access to 

their SSR’s. 

 

Suppose an SSR is corrupted, then only the corresponding 

client’s servicing would get affected and the server would 

continue to service other clients normally. 

 

Periodic Timer Manager reads clients SSR’s to restore 

services to clients after restart. The scheduler saves the 

client’s control block in its SSR and uses this information to 

resume operation in case of restart. File Systems are also 

implemented as PO’s and they maintain client states in 

respective SSR’s. In case of a crash, information such as 

open files, read position can be retrieved from the SSR of 

the client to resume service as last recorded. Similarly, 

device drivers are also implemented as PO’s and they too 

can store client specific state in SSR’s and use them for 

recovery upon restart. The system was implemented on 96 

Mhz OMAP 1610 processor. Faults were simulated through 

fault injection using a QEMU based fault injection tool. 

Types of faults induced were, data aborts and register 

bitflip. Faults were injected into the timer, scheduler, 

network and file system servers. Recovery was considered 

successful if CuriOS could schedule a new process and 

access disk. All memory related aborts were recovered, but a 

few register bitflips were detected but not recoverable, and 

certain others went undetected. The overhead of protected 

calls and SSR were recorded to be roughly 200 

microseconds more than direct calling (on a 96MHz OMAP 

1610 processor). There were overheads like flushing TLB’s 

while switching between tables. Overheads in recover, 

getting information about all SSR’s from SSR Manager. 

This system provides solution to core issue Recovery. The 

concept of persistent memory being maintained in the 

client’s address space is excellent and can be generally 

applied to any system. 

 

g) Exploring Kernel Lockups 

This paper [13] discusses the core issue Resource 

Hoarding and how Linux detects soft-lockup. In Linux 

soft-lockup is detected with the help of a low priority thread 

that updates a time stamp every second. This time stamp is 

checked by the timer interrupt thread (to see if it was 

updated) every 10 seconds. In Linux most errors that are 

encountered in the kernel mode are handled by terminating 

the thread. However, an OOPS occurs in interrupt mode it is 

considered serious and the system turns unusable. Kernel 

code also calls panic on detecting serious errors. The soft 

lockup detector cannot detect lockups that occur in ISR’s. 

This work implements a hardware watchdog timer-based 

system to detect lockups and do a soft reboot of the system. 

The soft reboot done here is different is from regular soft 

reboot of systems. The argument presented here is that if 

one driver causes a fault that must reboot the system, why 

should all the other innocent processes of the system be 

restarted, instead only the culprit thread is killed and 

restarted leaving all the other threads unaffected. The 

mechanism is described below. They added a new kernel 

thread that wakes up periodically and pats the watchdog 

timer. If this thread is not scheduled periodically, the 

processor is reset. The bootloader was patched so that 
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restarts caused by the watchdog take an alternate route. The 

Linux bootup code was also modified to support his 

operation. The alternate startup includes turning on the 

MMU, terminating the task that caused the lockup, re-

enabling the watchdog and peripheral interrupts. The code is 

then made to enter the idle loop which then starts to 

schedule the runnable threads. Lock and semaphore tracking 

mechanisms need to be implemented in par with this 

technique to increase the chances of better recovery. On the 

choices Operating system [14] too, a hardware watchdog 

was implemented. If a hard lockup occurs, the watchdog 

bites. Like the Linux implementation, the Choices too had a 

different recovery startup code to deal with watchdog resets. 

The recovery routine pretends to be idle thread, switches the 

MMU ON and restores interrupts. It then pretends to be the 

locked up thread and calls die() directly to terminate the 

thread. Killing of this thread restores the next runnable 

thread in the system. The implementation provides a way of 

detecting lockups. If a hardware error causes a lockup, that 

too would be detected by this system and hence we could 

say that it provides a solution to core issues Recovery and 

Hardware Errors. 

 

Choices Operating System 

The Choices operating system is a research operating system 

developed in C++. It has some very innovative features for 

robustness which are described in the following sections. 

 

1) Exception Handling in Kernel 

We discuss some robust features of the Choices OS [14]. 

Usually when a processor encounters a processor exception, it 

fail-stops the program except for the cases when the 

processor exceptions generate a page fault and the virtual 

memory finds the page in swap space. The Choices OS 

makes processor exceptions available as C++ exceptions. 

This gives a chance to the program to react to such issues 

instead of ending in a fail-stop. In choices OS every 

interrupt in the system passes through the interrupt manager. 

Processor exceptions too are delivered to the same Interrupt 

manager. Hence the interrupt manager checks to see if the 

interrupt is a processor exception. If yes then it creates an 

exception object and stores the context and stack trace into 

the exception object. The handler then changes the PC to the 

interrupted process’s ThrowException Function. After this 

the regular C++ exception handling takes over. This system 

was implemented only on the ARM port of the Choices 

Operating System and for this port 3 types of exception 

could be thrown. 

1) ArmDataAccessException 

2) ArmInstructionAccessException 

3) ArmUndefinedException 

 

An additional advantage brought in by the exception 

handling facility of C++ is the stack unwinding and calling of 

destructors by the C++ exception handling code. This in 

effect prevents memory leaks making it a solution to core 

issue of Resource Leak. 

 

2) Code Reloading 

The code-reloading feature of the choices Operating System 

helps prevent prefetch abort. It does so by periodically 

checking the CRC of kernel critical code and in case of 

mismatch, it is reloaded from the disk. This feature in 

specific tries to reduce the occurrence of core issue 

Memory Faults. 

a) VINO 

The VINO [16] kernel makes use of a Software Fault 

Isolation technique called MISFit [17] to provide protection 

to drivers and extensions. The MISFit technique involves 

passing code through a post compilation tool that inserts 

assembly code that converts an invalid address to a valid 

range. It does this by masking out the upper few bits of an 

address with a fixed value. Valid address would remain 

unchanged after this step whereas invalid addresses would 

get changed into a valid range. For function pointer-based 

calls and C++ Virtual functions, some OS support is taken 

from the kernel and a hash table of function pointers is 

searched through to see if the address is that of a valid 

function or method. The VINO kernel allows extension in 

the form of grafts. Grafts may either replace an existing 

function in the kernel to provide alternate functionality or it 

may be added to a list of handlers that associate with a given 

kernel service. Every graft invocation is wrapped into a 

transaction that is managed by the transaction manager. The 

transaction mechanism involves pushing of an undo 

operation into an undo call stack. If the transaction aborts, 

the undo operation is invoked. At the end of a successful 

transaction the undo operation is popped back from the undo 

call stack. To prevent resource holding the VINO kernel 

introduces time constrained locking mechanism, hence 

every lock has an associated timeout mechanism. However, 

the most appropriate timeout to be associated with a lock 

must be experimentally verified. The MISFit software Fault 

isolation technique is solution core issue Memory Faults 

with a difference that it does not make use of MMU 

hardware to provide address space protection. The 

transaction mechanism provides immediate recovery from 

unsuccessful transactions by invoking the undo functions in 

the undo call stack thus providing some form of recovery. 

The timed lock makes sure that no thread can hold on to a 

resource for more than the stipulated timeout period hence 

providing a solution to core issue of Resource Hoarding. 

 

b) Shadow Driver 

This work [19] introduces a concept called shadow driver 

framework to support device driver recovery. It is built on 

top of the Nooks architecture. Device drivers often fall under 

different classes. Drivers falling under the same class have 

similar kernel-programming interfaces. Hence the recovery 

once the failed driver is recovered, the taps are re enabled 

and the shadow driver goes back into passive mode. The 

driver however is not run from the start as some things like 

kernel registration are preserved by the shadow drivers. This 

is done through the wrapper calls of Nooks which can 

record the calls the driver makes to the kernel along with the 

arguments. 

 

However, tasks like enabling interrupts, remapping I/O 

memory are re-performed. The exact steps of recovery 

would depend on the class of the driver. This work is a clear 

example of device driver Recovery core issue. However, the 

recovery technique presented here is closer to being 

stateless. Some parts of the state are being captured in the 

form of arguments to the calls the driver would make to the 

kernel. But the actual driver’s internal state variables are not 

preserved. This model is an improvement over the Nooks 
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driver recovery as it takes into account the possibility of 

driver’s clients making calls at the time the driver is down 

and in the process of restarting. 

 

c) Exceptional Kernel. Using C++ exceptions in the 

Linux kernel 

In this work [21], a new C++ runtime support was added to 

the Linux kernel. The runtime was initially derived from the 

user mode, but enhanced later for performance. The 

implementation was done by purely implementing the ABI 

calls of the compiler (for example the throw operator 

translates to ABI call     cxa_allocate_exception followed by 

strategy presented here is implemented on a per class basis, 

cxa_throw), hence eliminating the need for a special i.e. 

there is one shadow driver per class of drivers. But there 

may be several instances of it running for each driver. Thus 

having a few shadow drivers, one per class, is sufficient and 

driver developers need not worry about developing them. 

Shadow drivers can only recover from transient and fail-

stop driver failures. This is because it makes use of the 

Nooks system which could only detect these two types of 

failures and restart the driver. The shadow driver executes in 

two modes, passive and active. The implementers created a 

tap system where calls from kernel to driver and vice versa 

are also redirected to the shadow driver. All of this call 

redirection is managed by the shadow manager. The shadow 

manager also receives notification from the fault-isolation 

subsystem when a driver fails. At that time, it switches the 

shadow driver from passive to active mode. In passive mode 

driver records several kinds of information which differs 

based on the class of the driver. Generally, in passive mode 

driver records the registration with specific subsystems of 

the kernel, interrupt lines acquired by the driver. The 

shadow driver however does not maintain any persistent 

state of the drivers, it expects the clients to do so. The active 

mode is triggered when shadow manager informs the 

shadow driver about the failed driver and asks it to switch to 

active mode. In active mode the shadow driver disabled the 

interrupt of the hardware so that the hardware does not 

continue to fire interrupts during recovery (may not work 

with shared interrupt lines). The I/O mappings of the 

hardware are also removed, to prevent any DMA into kernel 

memory. For most application calls during recovery, the 

driver may give a busy error code as most applications may 

be designed to handle it. For certain other applications 

blocking the call until the driver recovers is a better solution. 

 

The GNU G++ compiler generates a crtbegin.o and crtend.o 

ELF’s in addition to compiled code object which it uses to 

invoke the C++ runtime and call global constructors and 

destructors. In the EFL section, these appear as .init and .fini 

sections. In this implementation, the Linix kernel module 

loader was modified to call these sections along with the 

calls to module initialization and module exit codes. The 

ABI’s implemented for the C++ runtime constituted about 

7000 LOC in length. With respect to their kernel 

configuration, this caused an image size increase of 2%. 

Their analysis of user side ABI revealed that 93% of the 

total ABI execution time was devoted to unwinding of the 

stack. This was because it was a two stage process in the 

user side ABI. The first optimization was done in making 

the 2 stage unwinding of the G++ ABI as one step. This 

brought down the execution time from an earlier 12.7μs to 

6μs. The evaluations further revealed that the cost of 

throwing exceptions increased as the number of stack 

frames increased. The overall effect of having C++ code in 

kernel (especially for drivers) mean that code could be 

written with exception handlers. This provides robustness in 

a more generic way meaning the code gets a chance to 

correct itself. So in a general sense this could be categorized 

as a solution to the core issue Recovery. The recovery is on 

a smaller level with one catch block serving a recovery 

routine for several code blocks and several such catch 

blocks forming the total recovery code. 

 

d) D-Bus Based User Device Driver Framework Design 

for Linux Mobile Software Platform 

This work [22] explores the feasibility of having user mode 

device drivers in Linux. They implemented several device 

drivers on Linux running over a mobile phone hardware. 

They made use of the UIO framework to implement the 

drivers. In addition, they made use of udev subsystem to 

give the UIO based driver device nodes a more logical 

name. The UIO kernel driver creates device node entries at 

the time of registration in the form of /dev/uiox where x 

represents an incrementing minor number. This number 

depends on the order in which the device nodes are created. 

The HAL daemon, through the udev notification then 

creates symbolic links for each UIO user mode driver with a 

more logical name, like /dev/uio/leds for an LED driver. 

This paper serves a proof of concept that user mode device 

drivers are feasible in Linux. The UIO framework provides 

solution to core issue Memory Faults and Added 

Privileges. 

 

e) Safe Device Driver Model Based on Kernel-Mode 

JVM 

This paper [23] explores and evaluates the idea of running a 

Kernel Mode JVM and running device drivers under it. The 

kernel mode JVM was a modified version of the Tiny-VM, 

an open source JVM which can run on an OS less 

Microcontroller. The kernel-mode JVM incorporated 

Device Driver Interface (DDI) to the Tiny-VM. The DDI 

manages type conversions between C and java and vice 

versa. Inside the JVM an object consists of two parts, 

Object Head and Object Body. JVM needs to read 

information off the Object Head to access the Object. In 

typical JVM’s these are in contiguous memory locations. 

But in the Kernel mode JVM, since it needs to data access 

to kernel, it manages this by maintaining a Object head in its 

local memory and a pointer to the actual object (which could 

be a kernel data structure). This also simplifies the memory 

management as the JVM now needs to maintain a list of 

Object heads with pointer references. This makes the 

structure of identical sizes which is maintained in the form 

of a Link list in the JVM. The actual object body could be 

preexisting (as a kernel data structure) or else it is allocated 

using the regular kmalloc and kfree kernel calls. Unlike 

regular JVM’s this JVM does not include a Garbage 

Collector since the semantics for garbage collection in user-

mode do not apply to kernel mode. As a result, a free_object 

API is defined to free object and drivers would explicitly 

call them when they need to free objects. Driver ISR’s are 

also written in Java. The JDD ISR also runs in borrowed 

context like in the regular case. Like ISR’s implemented in 

C in the Linux kernel, even JDD ISR is not permitted to 
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sleep. This is checked by the JVM at the time of invocation. 

If called within Interrupt context, and a sleep is 

encountered, an exception is thrown. For accessing register 

memory (something very often required by a driver), a JNI 

call is made. Writing device drivers in Java sure provides 

isolation and provides the driver with the language provided 

safety, but the performance penalty is quite high. The ISR’s 

in particular are expected to have very low processing time 

and a Java ISR cannot guarantee that. The system provides 

solutions to the core issues Memory Faults and Added 

Privileges. 

 

f) Creating User-Mode Device Drivers with Proxy 

In this paper, user-mode driver for Windows NT is 

developed using a Proxy driver. The proxy driver makes no 

changes to the NT Operating system. In Windows NT, I/O 

is packet driver. Once a driver I/O call(from application) 

enters the NT executive, individual I/O requests are encoded 

into an I/O Request Packet. IRP’s could pass through 

multiple drivers. (Example: file System driver to disk driver 

and back). 

 

 
Figure 6: Proxy Driver [28] 
 

IRP’s are passed to the corresponding driver through the 

Device Entry. In this system the user mode drivers are 

implemented using a kernel-mode proxy driver. The user- 

mode driver connects to the proxy through a special device 

entry called the host entry. The user-mode driver registers 

with the proxy driver informing it about the I/O requests it 

would process. In response to this registration, the proxy 

driver creates a stub entry. All access to the user-mode 

driver is through this stub-entry. Whenever an application 

makes an IRP request, it is routed through the stub-entry to 

the proxy driver. The IRP then gets forwarded to the Host 

Entry and then further to the user mode device driver, 

through the proxy service. The evaluations suggested that 

proxy based user drivers had a 50% performance overhead 

for the calls that made data transfers between the user and 

the kernel. Calls bearing no data transfer may not suffer 

from this overhead as much. The technique presented here is 

very interesting as the user application remains unmodified 

as it still thinks that it is calling the kernel mode driver. 

Having the real driver in user mode brings in the automatic 

advantages of user space protection (core issues Memory 

Faults and Added Privileges). 

 

4. Conclusion 
 

In all the techniques seen so far, we have seen that each 

operating system has its own approach to the core issues 

that impact robustness. Overall, from the protection and 

robustness point of view the microkernels have shown better 

robustness because of the system software components 

being executed in user mode. Minix 3 in its current from 

implements all drivers and other system software 

components in user mode. It has provided solution to most 

core issues. The POSIX compatibility makes application 

porting easier. The only unaddressed problem is the 

performance overhead of the IPC mechanisms. As CPU 

speeds keep increasing this problem is becoming less 

important as compared to the reliability aspects. L4 Linux 

patch makes Linux very reliable by putting the entire Linux 

OS into user mode. The L4 Linux patch is being actively 

being maintained by the Operating Systems Group at TU 

Dresden. Nooks and shadow drivers are excellent pieces of 

demonstrating that driver in kernel mode too can be robust 

can recover from fault. These patches are not being actively 

maintained and were last seen working on 2.4 versions of 

Linux. The group at University of Illinois at Urbana- 

Champaign [13] work on recovering from Linux lockups 

with a modified startup is also very interesting and is 

available for download from their site. This idea of user 

mode drivers generally accepted by the Linux community as 

well. For example, the X Server for example in Linux has its 

drivers written in user mode. This also allows the graphic 

card manufacturers to supply their drivers as binaries. There 

is a framework for writing drivers in user mode in Linux 

that is known as UIO (Universal Fieldbus and Industrial I/O 

Framework). UIO was developed by OSADL (Open Source 

Automation Development Lab) and is now available as 

config option under the Linux kernel source tree. The 

Window Server and File Server of Symbian OS [28] are 

written in user mode. Even in Windows operating system a 

user mode driver programming framework has been 

introduced with Windows Vista [29]. In general, we see that 

the focus is generally shifting from functionality alone to 

functionality and robustness. So not only is a piece of 

system software expected to work right but work reliably as 

well. Because of the pace at which newer hardware arrives, 

it is almost impossible to ensure perfect testing of newly 

written drivers and hence the robustness support must be 

enforced by the operating system itself. In the era when only 

monolithic operating system existed, the microkernels 

introduced the concept of having a small kernel providing 

just the core kernel services and having the rest of system 

services to be implemented as user mode servers. This 

definition is sometimes referred to as a multiserver 

operating system. The microkernels have made their point 

as we can see that the initially believed monolithic kernels 

like Linux are having more and more microkernel like 

features. 
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