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Abstract: Sparse representation of image could reduce the amount of original data and facilitate the subsequent processing. When using 

the redundant dictionary to represent the images, we need to look for an efficient optimal algorithm to seek the optimal atoms. In this 

paper, an immune clone algorithm for sparse representation of image based on harmonic wavelet packet dictionary is proposed. The 

proposed algorithm relies on the global optimal search ability of immune clone algorithm to realize the process of looking for optimal 

atoms. The fitness function for immune clone algorithm is designed and the implementation process for sparse representation is shown. 

Experimental results show that compared with orthogonal matching pursuit algorithm, the proposed algorithm could improve the 

computational efficiency while guarantee the reconstruction accuracy. 
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1. Introduction 
 

Effective sparse representation could capture the main 

features of the signal, which leads to achieve a small amount 

of data for signal description. Its applications include image 

classification Error! Reference source not found., signal 

de-noising Error! Reference source not found., object 

detection [3], and face recognition [4]. Especially in the field 

of compressed sensing, sparse representation of the signal [5] 

[6] is the prerequisite for efficient observation. The basic idea 

of sparse representation is, from the set of basic functions of 

the signal projection, extracting only a small number of the 

basic functions could represent the original signal without 

little distortion. Sparse representation model requires that in 

the signal expansion, the coefficients of most of the basic 

functions are zero, only a few basic functions have large 

non-zero coefficients. The basic function is referred as an 

atom, and the set of all atoms is called dictionary.  

 

The image is a two-dimensional complex signals with a 

variety of structural components. It is difficult to form an 

effective representation with the orthogonal decomposition 

method, such as the Fourier transform or cosine transform. 

Increasing the number of atoms in the dictionary to form 

non-orthogonal dictionary would improve the matching 

flexibility, which is beneficial for sparse representation of 

image. When the number of atoms in the dictionary is greater 

than the signal dimension, the dictionary is over-complete or 

redundant [7] [8]. Because of the various choice of the 

redundant dictionary, to design an efficient dictionary is the 

first event for sparse representation. Meanwhile, since the 

sparse representation of a signal under such redundant 

dictionary is not unique, looking for the best combination 

from all the atoms is the focus. 

 

Many redundant dictionaries have been proposed, such as the 

wavelet packet dictionary [9] and isotropic Gabor dictionary 

[10]. The wavelet packet dictionary contains wavelet atoms, 

but it could not represent the edge structure of image due to its 

separability and isotropic. Isotropic Gabor dictionary with a 

single spatial frequency bandwidth Gabor atom is not 

conducive to capture the geometric structure of the image 

edge contour regularity. Harmonic wavelet proposed by D. E. 

Newland has caused attentions. Compared with other wavelet 

function, harmonic wavelet dictionary [11] [12] has the 

orthogonality with more general sense and excellent time- 

frequency decomposition. 

 

The typical way to obtain such signal sparse representation is 

orthogonal matching pursuit (OMP) algorithm [13]. OMP, an 

iterative greedy algorithm, chooses the best atom from the 

dictionary to match the signal which leads high reconstruction 

accuracy. In order to reduce the computational complexity or 

improve the reconstruction accuracy, there emerges some 

improved OMP algorithms [14] [15]. In fact, sparse 

representation process is a searching process for optimal 

atoms, the evolutionary algorithms [16] [17] could be used to 

achieve the sparse representation. Immune clone algorithm 

(ICA) with global optimal search ability [18] obtains wide 

attention. 

 

On the basis of above analysis, a sparse representation 

algorithm with immune clone algorithm based on harmonic 

wavelet packet dictionary is proposed. The harmonic wavelet 

packet dictionary is constructed for image sparse 

representation. The affinity function and the main operators in 

ICA, including cloning, cloning mutation and cloning 

selection, are designed. Moreover, the implementation 

process for searching optimal atoms using ICA is shown. Four 

classic images are used to test the effectiveness of the 

proposed algorithm.  

 

The remainder of this paper is arranged as follows. In Section 

2, the construction of harmonic wavelet packet redundancy 

dictionary and the searching process using OMP are 

introduced. And then in Section 3, the three aspects of the 

proposed algorithm, namely initial antibody production, 

affinity function design and main operators design are 
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presented. Next in Section 4, experimental results are shown 

and analyzed. Finally, in Section 5, some concluding remarks 

are made. 

 

2. Dictionary construction and OMP algorithm 

for sparse representation 
 

The signal sparse representation model based on redundant 

dictionary is expressed as: 

Φθxθ ..min
0

ts                     (1) 

where, NRx  is the original signal, LNR Φ  is the 

redundant dictionary, and LRθ  is the sparse coefficient 

vector. Each column in Φ  is called as an atom. In sparse 

representation, there are two issues needed to be solved: 1) 

construct the redundant dictionary Φ , and 2) solve the 

optimal function in equation (1) to obtain the sparse 

coefficient vector θ . In the following, we first introduce the 

construction of harmonic wavelet packet redundancy 

dictionary, and then show the standard sparse representation 

process using OMP algorithm.  

 

2.1 Construction of harmonic wavelet packet 

redundancy dictionary 

 

Harmonic wavelet has the following advantages: 1) exact box 

function form of the spectrum; 2) simple and clear function 

expression; 3) significant feature of orthogonality and 

symmetry; 4) simple algorithm implementation. The 

frequency-domain form of harmonic wavelet with frequency 
  is, 
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where, p  and q  are the scale parameters, which determine 

the bandwidth of harmonic wavelet. 

 

The time-domain form of harmonic wavelet is obtained by 

inverse Fourier transform on Equation (2), n  is the 

time-domain variable, 
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Given the shift step  pq ,   is the translation 

parameter, do translation transformation, the Equation (3) 

becomes, 

 
  






































pq
npqj

ee
nw

pq
njp

pq
njq

qp












2

22

,,                   (4) 

To do Fourier transform on Equation (4), the 

frequency-domain expression is, 
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This is the expression of the generalized harmonic wavelet 

with bandwidth   2pq , centered at  pq . Similar to 

other wavelet decomposition, the analysis frequency domain 

of the wavelet decomposition becomes small with the number 

of layers increasing. And the refining capacity in the low-band 

frequency domain is better than in the high-band frequency 

domain. For this defect, in order to improve the resolution in 

the high-band frequency domain, the following method is 

employed. 

 

Given the harmonic wavelet packet decomposition level s , 

the corresponding signal would be decomposed into s2  

frequency sub-bands. The highest frequency of the signal 

decomposition is hf , thus, the analysis bandwidth of the 

sub-band of harmonic wavelet packet is, 
s

hband ff 2                                (6) 

Because the bandwidth of harmonic wavelet is   2pq , the 

scale parameters p  and q  should satisfy, 

  bandfpq  22                           (7) 

Thus, the parameters of harmonic wavelet packet  ,,us  

could establish a close link to the parameters of harmonic 

wavelet  ,,qp . When the signal dimensional is N , the 

range of level s  is   1log,...,1,0 2  Ns . The parameter 

u  is the sub-band index, 12,...,1,0  su . The third 

parameter   is the wavelet coefficients index in the sub-band, 

1,...,1,0  N . Then the parameters p  and q  are 

determined as, 

bandufp                                    (8) 

  bandfuq 1                           (9) 

Through this way, at any decomposition level, same 

high-resolution analysis of the entire frequency domain could 

be achieved. Given  ,,us , a harmonic wavelet packet 

dictionary can be obtained. The number of atoms in a 

harmonic wavelet packet dictionary is  1NN .  

 

2.2 OMP algorithm for sparse representation 

 

As the 0l  norm is non-convex, solving signal sparse 

representation under a redundant dictionary is a NP-hard 

problem. There does not exist known polynomial time 

algorithm to solve this optimization problem, a sub-optimal 

approximation method is needed. The OMP is a greedy 

algorithm to obtain the sparse representation of signal. The 

implementation process of OMP is summarized as follows: 

1) Initialize the iterative number 1k , residual xr 0 , 

index collection of optimal atoms []0  . 

2) Traversal all the atoms in matrix Φ  to select the index of 

optimal matching atom, lk
l

k Φr ,maxarg 1 , wherein 

lΦ  is l -th column of Φ . 

3) Update index collection, kkk 1 . 

4) Update residual,   xΦΦΦΦxr T1T

kkkkk  


 , wherein 

k
Φ  represents the sub-matrix constructed by the atoms 

indexed by k . 

5) Determine whether the maximum iteration number K  is 

satisfied, if not then 1 kk , repeat 2)~4), else stop 

iteration. 
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In other words, the maximum iteration number in OMP is the 

number of optimal atoms to represent the original signal. The 

original signal x  could be represented using the K  optimal 

atoms indexed by 
K . The sparse coefficient vector is, 

  xΦΦΦθ
T1Tˆ

KKK 


                          (10) 

where K
Φ  represents the sub-matrix consisting of column 

vectors in Φ  indexed by K .  

 

After getting the sparse representation form of the signal, we 

need to reconstruct the signal using the dictionary and the 

sparse coefficient vector. The reconstructed signal is 

expressed as, 

θΦx ˆˆ
K

                                 (11) 

 

3. Proposed algorithm using ICA for sparse 

representation 
 

Seen from the above process of OMP, the algorithm needs to 

traversal every atom in the redundant dictionary. If the 

dictionary has a higher redundancy, the computational 

complexity of OMP would be unbearable. In this paper, the 

evolutional algorithm ICA is explored to achieve the 

searching process of optimal atoms. The organizing 

construction of this section is as follows. First of all, the 

framework of the proposed algorithm is shown. And then, the 

three major aspects in the proposed algorithm, including the 

initial antibody production, the affinity function design and 

the main operators, are presented. Finally, the implementation 

process is summarized.  

 

3.1 Framework of proposed algorithm 

 

Instead of traversal every atom as OMP, ICA commits to 

imitate the natural immune system, with learning and memory 

function, which provides a new method for information 

processing. As a global optimization search algorithm, ICA 

takes into account the ability of global and local search, with 

taking the advantages of parallel search of genetic algorithm. 

Meanwhile, ICA introduces the affinity of mature, cloning and 

memory mechanisms, and utilizes the appropriate operators to 

ensure that the algorithm could quickly converge to the global 

optimal solution. Instead of the greedy pursuit method, ICA is 

applied to search the optimal atoms for image sparse 

representation.  

 

It should be declared that once the original signal is 

determined, the redundant dictionary could be constructed 

using the way introduced in section 2.1. The goal of the 

proposed algorithm is to seek the best optimal atoms to 

represent the original signal, thereby obtaining the 

reconstructed signal. The framework of the proposed 

algorithm is shown in Figure 1. In ICA, antibody is the 

candidate solution for the object optimal problem, and antigen 

represents the object optimal problem. Referred to our 

optimal problem, the antigen is the optimal problem expressed 

in equation (1) and one antibody represents a combination of 

the atoms selected from the redundant dictionary. Seen from 

the figure, the first thing in the proposed algorithm is to 

produce the initial antibody in the population. Then the 

affinity function, used for calculating the affinity between the 

antibody and antigen, needs to be designed. The core in the 

algorithm is designing the three operators, including cloning, 

cloning mutation and cloning selection, to search for the best 

antibody. Through continuous evolution process, the best 

antibody is generated and the sparse coefficient could be 

achieved.  

Initial antibody production 

Affinity function design

Reconstructed signal 

Orignal signal 

Redundant dictionary  

Best antibody

Sparse coefficient 

Cloning

Cloning mutation

Cloning selection

 
Figure 1: The framework of the proposed algorithm 

 

3.2 Specific details of proposed algorithm 

 

In this subsection, the specific details in the proposed 

algorithm are presented. We would give the initial antibody 

production process, and the designed affinity function. Then 

we would present how to obtain the best antibody through the 

three operators.  

 

3.2.1  Initial antibody production 

Assume the number of optimal atoms is K , then the antibody 

is expressed as a K1  row vector, such as 

 Kaaaaaaa ,...,, 21 , where kaa  is one number of set 

],1[ L , represents one atom in the dictionary. A population 

contains a number of antibodies, that is  QaaaA ;...;; 21 , 

where Q  is the population size. 

 

3.2.2  Affinity function design 

In ICA, affinity function indicates the objective function value 

of candidate solution, and is used to evaluate the pros and cons 

of the antibodies, finally to guide the cloning operator. The 

antibody is more excellent with higher affinity. In order to find 

the optimal atoms to describe one image under redundant 

dictionary, the affinity function is designed as follows, 

  2

2
1 aaaaffinity θΦx                 (12) 

where, aΦ  and aθ  are the corresponding atoms and 

coefficients selected by antibody a . 
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3.2.3  Three operators design 

 

(1) Cloning operator 

Cloning operator done on the population A , 

        QaaaA  ;...;; 21             (13) 

where,  ia  is the clone of ia . The clone number is defined 

as, 

 

  


Q

q q

i
i

aaffinity

aaffinity
CC

1

                (14) 

where, C  is the clone consistent.  

 

After cloning operator, the population turns to, 

 QAAAAA  ;...;;; 21                          (15) 

where,  121 ;...;; 
iiCiii aaaA , iiq aa  , 1,...,2,1  iCq . 

 

(2) Cloning mutation operator 

In order to retain the original information of the antibody, the 

mutation operator is only applied to clone antibodies  ia . 

Specify mutation probability 
mP , for each component of the 

antibody, generates a random number pm  between 0 and 1. 

If 
mPpm  , then the corresponding component would be 

re-selected as one number from set ],1[ L , otherwise the 

component would not change. 

 

(3) Cloning selection operator 

If there exists the outstanding mutation antibody 

  1,...,2,1max  iiq Cqaaffinityb  which satisfies, 

    Aabaffinityaaffinity ii               (16) 

then antibody b  is chosen to replace the parent antibody ia  

to update the population. 

 

After the three operators, the initial population would be 

evolved to the next generation population which has higher 

affinity. The best antibody besta  is obtained by implementing 

the above process in an iterative fashion. Then the sparse 

coefficient would be expressed as, 

  xΦΦΦθ
T1Tˆ

bestbestbest aaa


                (17) 

where 
bestaΦ  is the corresponding atoms selected by the best 

antibody besta . 

 

3.3 Implementation process of the proposed algorithm 

 

Based on the value of the affinity function, continuously 

updating the scale of the population by cloning through an 

iterative way, the proposed algorithm tries to find the optimal 

atoms to describe the image. Then the sparse coefficients 

could be calculated and finally the original image would be 

represented sparsely. The block diagram of the proposed 

algorithm is depicted in Figure 2, and the implementation 

process is summarized as follows.  

1) Initialization: set evolution generation 1m , set the initial 

antibody population  QaaaA ;...;; 21

1  . 

2) Affinity computing: Compute the affinity of each antibody 

in mA  using equation (12). 

3) Cloning operating: Calculate clone number of each 

antibody according to equation (14), achieve the clone 

population using equation (15). 

4) Cloning mutation operating: Generates a random number 
pm  to determine whether the component of antibody 

would change. 

5) Cloning selection operating: Update the population 

according to equation (16), obtain the population 1mA . 

6) Stopping criterion: Determine whether the maximum 

evolution generation M  is satisfied, if not then 

1mm , repeat (2)~(5), else stop iteration. 

7) Best antibody: Compute the affinity of each antibody in 

MA , choose the best antibody besta  with the highest 

affinity. 

8) Sparse coefficient computing: Compute the sparse 

coefficient using equation (17). 

The reconstructed signal could be expressed as, 

θΦx ˆˆ
besta                                  (18) 

 
Figure 2: Block diagram of proposed algorithm 

 

4. Experimental Results and Analysis 
 

In order to evaluate the performance of the proposed 

algorithm, some experimental results and analysis on four 

classic images are carried out in this section. At the beginning, 

the parameter for OMP algorithm is determined. Next, the 

parameters for proposed algorithm ICA are determined. And 
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then, the comparison between the proposed algorithm ICA 

and standard OMP algorithm is shown, using peak 

signal-to-noise ratio (PSNR), structural similarity (SSIM) [19] 

and runtime to assess the performance. The hardware and 

software environments for these experiments are: AMD 

quad-core CPU, 3.80GHz, 16G memory and Matlab2012b.  

 

The four images shown in Figure 3 are Cameraman, Barbara, 

Lena and Peppers with spatial size 256×256. Seen from the 

implementation processes of OMP and the proposed 

algorithm, the computational complexity has positive 

correlation with the dictionary dimension L . If the global 

image is processing as the original signal, the dimension 

N would be 65536. Then the dictionary dimension L  would 

reach four billion, leading the computing time unable to 

estimate. Therefore, in the following experiments, the images 

are divided into blocks to process. The block size is set as 8 

without losing generality. In other words, the dimension of 

signal processed in the algorithms is 64 and the dictionary 

contains 4032 atoms. 

 

 
Figure 3: Four test images. (a) Cameraman, (b) Barbara, (c) 

Lena and (d) Peppers. 

 

Two metrics are adopted to evaluate the reconstruction 

accuracy of the proposed algorithm, PSNR and SSIM between 

the reconstructed image and the original image. The PSNR 

measured in dB is defined as, 

 
 
 xx

x
xx

ˆ,MSE

max
log20ˆ,PSNR 10              (19) 

where x  and x̂  are the original and reconstructed image, 

 xmax  is the peak value of x ,  xx ˆ,MSE  is the mean 

squared error,  

  2

2
ˆ

1
ˆ,MSE xxxx 

N
                       (20) 

The SSIM between x  and x̂  is defined as, 

 
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







xx         (21) 

where 1  and 
2  are the mean values of x  and x̂ , 1  and 

2  are the standard deviation values of x  and x̂ , 
12  

represents the correlation coefficient between x  and x̂ , 1C  

and 
2C  are constants related to the dynamic range of the pixel 

values. The details for these parameters can refer to [20]. 

 

4.1 Parameter selection for OMP 

 

There is no doubt that the parameter selection would have 

significant effect on performance. In the implementation 

process of OMP, the maximum iteration number K , i.e., the 

number of optimal atoms, should be determined firstly. In this 

part, experiments on four images using OMP with different 

K  are presented. The atom number is varied from 1 to 100 at 

the interval of 1. The reconstructed images are represented by 

the optimal K  atoms. The PSNR and SSIM of Cameraman 

and Lena are shown in Figure 4 and Figure 5, respectively.  

 

It is not surprising that, with the increase of the atom number, 

the reconstructed PSNR is increasing as well. The weird thing 

is that when the atom number reaches about 35, the PSNR has 

a sharp jump. The reason for this phenomenon is not known, 

but it is certain that these atoms are very important for the 

representation of the image. Meanwhile, we noticed that the 

PSNR is not keeping improve with the atom number. When 

the atom number increases to 40, PSNR would tend to be 

smooth. That is to say, the sparsity level of images under this 

harmonic wavelet packet dictionary is 40. The SSIM is also 

increasing with the atom number K , and it tends to be stable 

after K  reaches 40. The results of other two images are 

similar with these two images. Therefore, in the following 

experiments, the atom number in OMP is selected as 40. 

 
(a) PSNR 
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(b) SSIM 

Figure 4: The PSNR and SSIM of Cameraman with different 

maximum iteration number. 

 
(a) PSNR 

 
(b) SSIM 

Figure 5: The PSNR and SSIM of Lena with different 

maximum iteration number 

 

4.2 Parameter selection for proposed algorithm 

 

In the implementation process of proposed algorithm, the 

maximum evolution generation M , the population size Q  

and the optimal atom number K  would have significant 

effect on the performance of ICA. In this part, experiments on 

four images using ICA with different parameters are presented. 

The maximum evolution generation M  and the population 

size Q  are varied from 1 to 10 at the interval of 1. The 

optimal atom number K  is varied from 8 to 64 at the interval 

of 8. In addition, the clone consistent C  and mutation 

probability 
mP  are set as 15C  and 2.0m P . The 

reconstructed images are represented by the optimal K  

atoms. Since ICA algorithm is randomness, the simulation 

would run 10 times under the same parameter to obtain the 

average value. The average PSNR and time of Barbara with 

different parameters are shown in Figure 6. 

 

When the optimal atom number K  is fixed at 40, the PSNR 

and time change with the maximum evolution generation M  

and the population size Q  is shown in Figure 6(a). Seen from 

the figure, the variation of PSNR is not significant with the 

increase of population size or the evolutionary generation. It is 

not confirmed that which parameter has the more important 

effect on the reconstruction performance. From the point of 

time consuming, shown in Figure 6(b), compared with 

population size, evolutionary generation has greater influence 

on computational complexity. Therefore, for the choice of 

evolutionary generation, it is necessary to consider both the 

reconstruction accuracy and the computational complexity. 

 

When the population size Q  is fixed at 10, the PSNR and 

time change with the maximum evolution generation M  and 

the optimal atom number K  is shown in Figure 6(c). With the 

increase of maximum evolution generation or optimal atom 

number, the reconstructed PSNR would gradually improve. 

Compared with the evolution generation, increasing optimal 

atom number is more conducive to the improving in 

reconstruction accuracy. Particularly, when the atom number 

reaches 40, the influence of evolution generation on PSNR is 

very weak. From the view of computing time (Figure 6(d)), 

compared with optimal atom number, the evolution 

generation would increase the computational complexity 

more. Therefore, when the atom number is selected large 

enough, the evolution generation can be selected relatively 

small. This selection could meet the requirements of the 

reconstruction accuracy, while reducing the computational 

complexity of the algorithm.  

 

When the maximum evolution generation M  is fixed at 1, 

the PSNR and time change with the population size and the 

optimal atom number K  is shown in Figure 6(e) and Figure 

6(f). Seen from the figure, with the increase of population size, 

the variation of PSNR is very small, which clearly shows that 

the population size has little effect on the reconstruction 

accuracy. When the atom number reaches 40, the 

reconstruction performance tends to be stable. Seen the time 

variation shown in Figure 6(f), the computation time has little 

change with the increase of population size. This is sufficed to 

say that compared with atom number, the effect of population 

size on computation time could be ignored.  

 
(a) atom number is fixed at 40, the PSNR changes with the 

evolution generation and the population size. 
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(b) atom number is fixed at 40, the computation time changes 

with the evolution generation and the population size. 

 
(c) population size is fixed at 10, the PSNR changes with the 

evolution generation and the atom number. 

 
(d) population size is fixed at 10, the computation time 

changes with the evolution generation and the atom number. 

 
(e) evolution generation is fixed at 1, the PSNR changes with 

the population size and the atom number. 

 
(f) evolution generation is fixed at 1, the computation time 

changes with the population size and the atom number. 

Figure 6: The effects of parameters on reconstructed PSNR 

and computation time 

 

In summary, from the view of reconstruction quality, seen 

from the comparison among Figure 6(a), (c) and (e), the atom 

number has the greatest influence on PSNR. Under the same 

atom number, PSNR has little change with the increase of 

population size, while it has weaker increase with evolution 

generation. From the view of computational complexity, seen 

from the comparison among Figure 6(b), (d) and (f), evolution 

generation has the most effect on computation time. Under the 

same atom number, the computation time is linearly 

increasing with the increase of evolution generation. 

Therefore, the atom number in proposed algorithm should be 

selected large enough, while the other two parameters should 

be selected relatively small. The results of other three images 

are similar with the shown results. Considering the 

reconstruction accuracy and the computational complexity, in 

the following experiments, the population size is selected as 
10Q , the maximum evolution generation is set as 1M  

and the optimal atom number is set as 40K . 

 

4.3 Comparison between OMP and proposed algorithm 

 

In this subsection, the comparison between standard OMP 

algorithm and the proposed ICA algorithm is presented. The 

four images are sparse represented using the optimal atoms 

searched by OMP and ICA, respectively. The reconstructed 

PSNR, SSIM and computation time are used to evaluate the 

performance of the algorithm. The optimal atom number in 

OMP is 40K . The parameters in ICA are 10Q , 1M  

and 40K . Because of the randomness of proposed ICA 

algorithm, the simulation of proposed ICA algorithm would 

run 10 times to reduce the randomness. In Table 1, the average 

PSNR and its standard variation are given. Meanwhile, the 

average SSIM and its standard variation are also given.  

 

Above all, seen from the table, the PSNR of OMP and ICA are 

comparable, which fully states that by searching optimal 

atoms using the biological evolution manner, the proposed 

ICA could achieve the same reconstruction accuracy as that of 

OMP. Similarly, the SSIM of two algorithms could both reach 

0.9, which demonstrates that the optimal atoms searched by 

the two algorithms could describe the structure of the images 

very well. Though the proposed algorithm has randomness, 

the results demonstrate that the fluctuation of PSNR and 

SSIM are not very significantly.  

 

Next, the computation efficiency of these two algorithms is 

analyzed. The computation time in Table 1 is the time 

consuming on the searching atoms. Since the OMP algorithm 

needs to traversal all the atoms in the redundant dictionary, the 

complexity is large. Yet, the proposed algorithm utilizes a 

completely different searching method. It utilizes one 

antibody to stand for all the optimal atoms, and the best 

antibody is obtained through evolution. Compared with OMP, 

the proposed algorithm could save half the time, and the 

Acceleration ratio reaches about 2. This fully demonstrates 

that the proposed algorithm could improve the computation 

efficiency while ensuring the reconstruction accuracy. 

 

Table 1: The comparison between OMP and proposed 

algorithm 

Algorithm PSNR/dB SSIM Time/s 
Acceleration 

ratio 

Cameraman 

OMP 28.7175 0.9342 813.5887 1 
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ICA 28.6168±0.1982 0.9298±0.0052 412.0589 1.9744 

Barbara 

OMP 27.6625 0.9078 812.3266 1 

ICA 27.3148±0.2545 0.9006±0.0047 426.3560 1.9053 

Lena 

OMP 29.7002 0.9393 832.2483 1 

ICA 29.5471±0.1714 0.9347±0.0037 421.9676 1.9723 

Peppers 

OMP 28.1052 0.9227 852.8380 1 

ICA 28.1025±0.1069 0.9172±0.0050 410.0266 2.0800 

 

The comparison between the reconstructed image and the 

original image are shown in Figure 7 and Figure 8. Limited to 

the length of the paper, the results of Lena and Peppers are 

given here. Utilizing OMP for sparse representation, the 

reconstructed PSNR could reach 29.7002dB and 29.5790dB, 

while the reconstructed PSNR of the proposed algorithm 

could reach 28.1052dB and 28.1294dB. The two algorithms 

can effectively sparse represent the original images. From the 

view of subjective visual effect, the two groups of 

reconstructed images can be a good description of the original 

images. 

 

 
Figure 7: The reconstructed images and original image of 

Lena. (a) Original image, (b) reconstructed image using OMP, 

and (c) reconstructed image using proposed algorithm. 

 
Figure 8: The reconstructed images and original image of 

Peppers. (a) Original image, (b) reconstructed image using 

OMP, and (c) reconstructed image using proposed algorithm. 

 

5. Conclusion 
 

In order to obtain sparse representation of image, harmonic 

wavelet packet dictionary with time-frequency characteristics 

is constructed in this paper. Aimed at the disadvantage for the 

high computational complexity of OMP algorithm, the 

immune clone algorithm for sparse representation of image 

with lower computational complexity is proposed. 

Experimental results on four standard test images illustrate 

that harmonic wavelet packet dictionary could provide sparse 

representation for the original images. More importantly, the 

results also demonstrate that compared with OMP algorithm, 

the proposed ICA algorithm could reduce the computational 

complexity while ensure reconstruction accuracy. In the future, 

how to further improve the computation efficiency is the 

research focus. 
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