Relation Between the Last Terms and Common Ratios of Two Different Geometric Progressions [S₁ and S₂] [For Finite Number of Terms]

Chirag Gupta

Abstract: The new relation $X_n/Y_n = r_1/r_2$ is for finite number of terms (n). X_n and Y_n are the last terms of two geometric progressions, S_1 and S_2 . r_1 and r_2 are the common ratios of S_1 and S_2 .

Keywords: G.P, Common ratio (r), Last term $(X_n \text{ or } Y_n)$ and etc.

1. Theorem

If there are two different GP's [first one (S_1) having even numbers of terms] having same first term (a) and term occurring at $(n-1)^{th}$ place then, the ratio of last term of $S_1(x_n)$ to the last term of $S_2(y_n)$ is always equal to the ratio of common ratio of $S_1(r_1)$ to the common ratio of $S_2(r_2)$.

Mathematical Form: - $X_n/Y_n = r_1/r_2$.

Note:-

- 1) (S_1) should consists of even number of terms
- 2) Number of terms in (S_1) may be 4,6,8,10,12,....and so on
- 3) First term of both S1 and S2 should be equal and term occurring at (n-1) th place of both S1 and S2 should be equal.
- 4) S1 and S2 should form some pattern, such as
 - a) Third term of S_1 is equal to the second term of S_2 .
 - b) Fifth term of S_1 is equal to third term of S_2 .
 - c) Seventh term of S_1 is equal to the fourth term of S_2 . And so on.
- (It depends on the number of terms (n) of the GP.)
- 5) S1 and S2 must be in the form of

a)
$$S_1 = a,ar,ar^2,ar^3$$

 $S_2 = a,ar^2,ar^4$
b) $S_1 = a,ar,ar^2,ar^3,ar^4,ar^5,ar^6,ar^7$
 $S_2 = a,ar^2,ar^4,ar^6,ar^8$
c) $S_1 = a,ar,ar^2,ar^3,ar^4,ar^5$

 $s_1 = a_1ar_1ar_1^2, ar_1^3, ar_1^4, ar_1^3$ $s_2 = a_1ar_1^2, ar_1^4, ar_1^6$

Clearly, the first term and term occurring at $(n-1)^{th}$ place of both S_1 and S_2 in case (a), (b), (c) are same. Number of terms (n) in S_1 is even

If all above conditions (note) are satisfied then we can apply the following relation $\mathbf{V}_{ij} \mathbf{W}_{ij} = \mathbf{U}_{ij}$

$$X_n/Y_n = r_1/r_2$$
.

Here, X_n and Y_n are the last terms of S_1 and S_2 . r_1 and r_2 are the common ratios of S_1 and S_2 .

In Mathematical Form

 $S_1=a, ar, ar^2, ar^3, S_2=a, ar^2, ar^4. X_n=ar^3, y_n=ar^4$

$$r_1 = ar/a = r$$

 $r_2 = ar^2/a = r^2$

Therefore, from (1) and (2) $X_n/Y_n = r_1/r_2$

Some important examples:

1) $S_1 = 1/3$, 1/6, 1/12, 1/24 $S_{2=} 1/3$, 1/12, 1/48 $X_n = 1/24$, $Y_n = 1/48$ $X_n/Y_n = 48/24 = 2$ $r_1 = 1/2$, $r_2 = 1/4$ $r_1/r_2 = 2$ Hence, $X_n/Y_n = r_1/r_2$

2)
$$S_1 = 2$$
, 1/4, 1/32, 1/256
 $S_2 = 2$, 1/32, 1/2048
 $X_n = 1/256$, $Y_n = 1/2048$
 $X_n/Y_n = 8$
 $r_1 = 1/8$, $r_2 = 1/64$
 $r_1/r_2 = 8$
Hence, $X_n/Y_n = r_1/r_2$

3) $S_1=256$, 128, 64, 32, 16, 8, 4, 2 $S_2=256$, 64, 16, 4, 1 $X_n=2$, $Y_n=1$ $X_n/Y_n=2$ $r_1=1/2$, $r_2=1/4$ $r_1/r_2=2$ Hence, $X_n/Y_n=r_1/r_2$

4) $S_1=3$, 6, 12, 24, 48, 96, 192, 384 $S_2=3$, 12, 48, 192, 768 $X_n=384$, $Y_n=768$ $X_n/Y_n=1/2$ $r_1=2$, $r_2=4$ $r_1/r_2=1/2$ Hence, $X_n/Y_n=r_1/r_2$

5) $S_1 = 1/9$, -1/27, 1/81, -1/243 $S_2 = 1/9$, 1/81, 1/729 $X_n = -1/243$, $Y_n = 1/729$ $X_n/Y_n = -3$ $r_1 = -1/3$, $r_2 = 1/9$ $r_1/r_2 = -3$

Volume 9 Issue 3, March 2020

<u>www.ijsr.net</u>

Licensed Under Creative Commons Attribution CC BY

 $x_n/y_n = ar^3/ar^4 = 1/r$ ------(1)

 $r_1/r_2 = r/r^2 = 1/r$ ------ (2)

Hence, $X_n/Y_n = r_1/r_2$

Proof:-

According to my Previousarticle

HCF X LCM / Common ratio (r)= first term (a) X [term occuring at the place (n-1)].

The above relation is for odd number of terms. But it is correct for even number of terms also.

HCF of a G.P is always its first term. ThereforeHCF = a and LCM of a G.P is always its last term.

Therefore, LCM= x_n or y_n $a_1 X x_n / r_1 = a X[$ term occuring at (n-1) place]-----(1) [for even number of terms] (S₁)

 $\begin{array}{l} a_2 \; X \; y_n \, / r_2 = a \; [term \; occuring \; at \; (n-1) \; place] \; ------(2) \\ (S_2) \\ from \; (1) \; and \; (2) \; , \; we \; get \\ a_1 \; X \; x_n / \; r_1 = a_2 \; X \; y_n / \; r_2 \\ since \; , \; a_1 = a_2 \\ therefore, \; x_n \, / \; y_n = r_1 / \; r_2 \\ Hence \; , \; the \; relation \; is \; proved \; . \end{array}$

2. Benefits

It should encourage student to think and discover more about this topic. It is a new relation which creates some new questions related to this topic.

3. Acknowledgement

It's my individual work. This relation is made by me only. I thank to my parents and teachers of SICES Degree College for support and motivation. My father's constant motivation has been responsible for completion of my work.

References

[1] 11th Standard CBSE Mathematics Textbook.

DOI: 10.21275/SR20306211535