
International Journal of Science and Research (IJSR)
ISSN: 2319-7064

ResearchGate Impact Factor (2018): 0.28 | SJIF (2018): 7.426

Volume 9 Issue 2, February 2020

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

Strengthening Kubernetes: Strategies and Tools for

Enhanced DevSecOps Integration

Savitha Raghunathan

Email: saveetha13[at]gmail.com

Abstract: In the rapidly evolving landscape of cloud native technologies, securing applications deployed in Kubernetes environments

has become crucial. This whitepaper explores security integration into DevOps, commonly called DevSecOps, focusing on Kubernetes. It

outlines methodologies, tools, and practices that foster a security - first culture across multiple cloud vendors. Organizations can mitigate

risks, enhance security, and maintain agility in software development and deployment by leveraging automated security testing and

compliance checks by integrating security at every stage of the Continuous Integration/Continuous Deployment (CI/CD) pipeline.

Keywords: DevSecOps, Kubernetes, Security, Supply Chain security, DevOps, CI/CD

1. Introduction

The universal adoption of Kubernetes as a container

orchestration platform highlights its flexibility, scalability,

and vibrant ecosystem, making it a cornerstone for

organizations navigating the complex landscape of modern

application deployment [4]. However, Kubernetes' dynamic

and intricate nature brings significant security challenges [5],

especially within DevOps environments where the fast

development pace and deployment risks overpower crucial

security measures. Rapid innovation and potential security

oversight necessitate a profound integration of security into

the development lifecycle, transforming traditional DevOps

into a more robust DevSecOps framework. This whitepaper

addresses these challenges by emphasizing a security - first

approach [6] within Kubernetes environments. It explores

essential practices and tools that seamlessly integrate security

into the DevOps pipeline, from initial planning and threat

modeling to continuous compliance monitoring and incident

response. The paper outlines a comprehensive pathway for

organizations to strengthen their security posture and enhance

operational agility and resilience in a cloud native world by

navigating the unique security considerations that arise from

orchestrating containers across diverse cloud infrastructures.

Figure 1: Kubernetes Challenges - Security tops at 46% [5]

2. Defining DevSecOps

DevSecOps [7] represents the philosophy and practices of

integrating security into the DevOps process. It involves a

collaborative approach among development, operations, and

security teams [6] to make sure that security measures are not

an afterthought but are embedded throughout the application

lifecycle. The goal is to build a culture where security is

everyone's responsibility, thereby identifying and mitigating

vulnerabilities faster and more efficiently.

Paper ID: SR24401235010 DOI: https://dx.doi.org/10.21275/SR24401235010 1913

www.ijsr.net
http://creativecommons.org/licenses/by/4.0/

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

ResearchGate Impact Factor (2018): 0.28 | SJIF (2018): 7.426

Volume 9 Issue 2, February 2020

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

Figure 2: DevSecOps lifecycle [1]

2.1 DevSecOps Challenges

The Snyk 2020 DevSecOps Insights study highlights the progress and persistent hurdles in integrating development, operations,

and security into a cohesive workflow. The study talks about the challenges of cultural adaptation and tooling integration.

Figure 3: DevSecOps Study by Snyk, page 16 [2]

The cultural shift is ongoing, with security gradually being

recognized not as a barrier but as an integral aspect of

software delivery. However, 33% [8] of the respondents still

view security as a bottleneck, underscoring the need for a

mindset change. This is particularly crucial in Kubernetes,

where the pace of innovation demands security to be both

agile and embedded. There is a 31% [8] increase in shared

responsibility for security across roles, encouraging a move

towards collective accountability.

Tooling challenges persist, especially in scaling to meet the

needs of evolving DevOps practices. As shown in Figure 3,

despite the availability of automated security testing tools, a

surprising 37% [8] of respondents still need to implement

such measures during continuous integration (CI), identifying

a gap in leveraging automation to enhance security without

slowing down development. Moreover, the study underscores

the pivotal role of developers in securing open source

components and container images, with a majority advocating

for developer - led security initiatives.

To effectively integrate DevSecOps within Kubernetes

frameworks, organizations must encourage a culture of shared

responsibility, scale security tooling alongside DevOps

growth, and empower developers with the responsibility and

tools for security [2]. Addressing these challenges will pave

the way for a security - first approach [6] that complements

Kubernetes's dynamic and scalable nature, ensuring that rapid

development cycles and security are not mutually exclusive.

3. Creating a DevSecOps Pipeline in

Kubernetes

Implementing a DevSecOps pipeline in the Kubernetes

environment, as shown in Figure 5., involves several key

steps:

3.1 Planning and Design

Incorporate security considerations during the planning

phase. Use threat modeling [9] to identify potential security

issues based on the architecture and technologies used.

Paper ID: SR24401235010 DOI: https://dx.doi.org/10.21275/SR24401235010 1914

www.ijsr.net
http://creativecommons.org/licenses/by/4.0/

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

ResearchGate Impact Factor (2018): 0.28 | SJIF (2018): 7.426

Volume 9 Issue 2, February 2020

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

Figure 4: Kubernetes threat model [3]

3.2 Code Analysis

Integrate static application security testing (SAST) [10] and

software composition analysis (SCA) tools into the CI/CD

pipeline to automatically detect vulnerabilities and license

compliance issues in codebases and dependencies.

3.3. Pre - commit Hooks

Utilize pre - commit hooks [11] to scan for secrets or sensitive

data accidentally pushed to source code repositories.

3.4. Container Image Scanning

Implement container image scanning [12] to detect

vulnerabilities within the container images before they are

deployed to Kubernetes.

Figure 5: DecSecOps pipeline in a Kubernetes environment

3.5 Configuration Management

Use infrastructure as code (IaC) to enforce security

configurations and compliance standards across the

Kubernetes environment. Tools like Terraform and Ansible

can help automate and manage configurations securely.

3.6. Dynamic Analysis

Integrate dynamic application security testing (DAST) [11] to

test running applications for vulnerabilities.

3.7. Post – Deployment

Monitor the Kubernetes environment for anomalies and

threats. Implement real - time runtime security tools to detect

and respond to security incidents.

4. DevSecOps Tools and Methodologies

4.1 Kubernetes Security Best Practices

CIS Kubernetes Benchmark offers a detailed checklist

designed to secure the Kubernetes clusters. These

benchmarks cover various aspects, from configuring the

kubelet to securing API server communications, and provide

a solid foundation for a secure Kubernetes environment.

Tools like Neuvector [13] and kube - bench [14] can assist

with checking the best practices.

Audit Logging [23]: Ensure audit logging is enabled and

configured to capture and retain detailed information about all

API accesses and changes, helping in post - mortem analysis

and anomaly detection.

Paper ID: SR24401235010 DOI: https://dx.doi.org/10.21275/SR24401235010 1915

www.ijsr.net
http://creativecommons.org/licenses/by/4.0/

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

ResearchGate Impact Factor (2018): 0.28 | SJIF (2018): 7.426

Volume 9 Issue 2, February 2020

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

4.2 Open Source Tools

4.2.1 Static Analysis

• SonarQube [15]: Integrates with CI/CD pipelines to

perform automatic code analysis, identifying bugs,

vulnerabilities, and code smells across multiple

languages.

• Brakeman [16]: A Ruby on Rails - specific tool that

scans application code for common security

vulnerabilities and misconfigurations.

4.2.2 Dependency Scanning

• Dependency - Check [17]: Analyzes project

dependencies against the National Vulnerability

Database (NVD) to find vulnerabilities.

• Snyk [18]: This tool scans dependencies, provides fix

recommendations, and can continuously monitor projects

for new vulnerabilities.

4.2.3 Container Scanning

• Clair [15]: An open source project designed to scan

container images for security vulnerabilities. Clair

integrates with common container registries and CI/CD

pipelines.

• Trivy [19]: Known for its simplicity and comprehensive

database, Trivy scans containers and filesystems for

vulnerabilities and misconfigurations.

4.2.4 Infrastructure as Code Scanning:

• TerraScan [20]: Scans Terraform, Kubernetes, Helm,

and other IaC for misconfigurations based on established

security policies.

• Checkov [21]: With a focus on cloud infrastructure

(including Kubernetes), Checkov performs static

analysis of IaC to detect misconfigurations.

4.2.5 Dynamic Analysis

• OWASP ZAP (Zed Attack Proxy) [22]: A web

application security scanner that can automatically find

security vulnerabilities in web applications during

development and testing.

• Secrets Management:

• HashiCorp Vault [11] [15]: Securely stores and tightly

controls access to tokens, passwords, certificates, API

keys, and other secrets in modern computing. Vault

handles leasing, key revocation, key rolling, and

auditing.

4.3 Methodologies for a Security - First Approach

a) Shift Left [6]: Organizations can detect and mitigate

vulnerabilities sooner by integrating security processes

early in the software development lifecycle (SDLC). This

approach emphasizes the importance of developer

education and integrating security tools within the

developer's workflow to facilitate early detection.

b) Immutable Infrastructure: This methodology

advocates for treating infrastructure entities as

replaceable components that should never be modified

after deployment. If a change is needed, a new version of

the infrastructure component is deployed, which reduces

the risk of configuration drift and simplifies rollback

processes, enhancing security posture.

c) Least Privilege Access

• Implementing Role - Based Access Control (RBAC)

[1] in Kubernetes to ensure that users and services

have only the permissions they need to perform their

tasks. This minimizes the attack surface by limiting

access to sensitive operations and resources.

• Using network policies [23] to restrict pod - to - pod

communications within a Kubernetes cluster helps

ensure that services only communicate with the

resources they are supposed to.

5. DevSecOps Strategies in Kubernetes

Since its inception, the Kubernetes ecosystem has seen

significant security and DevOps integration advancements.

Recognizing these developments, organizations have adapted

and refined their DevSecOps strategies to leverage new

functionalities and ensure a more secure deployment process.

5.1 Security in CI/CD Pipeline

The CI/CD pipeline is crucial for automating and streamlining

the build, test, and deployment processes. Enhancing security

within this pipeline involves more than just integrating static

and dynamic analysis tools; it requires a comprehensive

approach that includes:

● Container Behavioral Analysis: Going beyond

vulnerability scanning, behavioral analysis tools monitor

and analyze the runtime behavior of containers to detect

anomalies and potential threats. Tools like Falco have

gained traction for their ability to provide context -

specific alerts, improving the detection of security

incidents [24].

● Supply Chain Security: The security of the software

supply chain has become a critical concern. Tools like in -

toto [26] and Notary [25] have been developed to provide

integrity and signing capabilities for software artifacts,

ensuring that the code and containers deployed through the

CI/CD pipeline are verified and trusted.

● Enhanced Secret Management: Solutions like external

secrets operators have emerged, allowing Kubernetes to

securely interface with external secret management

systems (e. g., AWS Secrets Manager, Azure Key Vault

[6]), reducing the risk of exposing sensitive data through

misconfiguration.

5.2 Advanced Kubernetes Security Features and Practices

Kubernetes itself has introduced or improved several features

that support a security - first approach in cloud native

environments:

● Network Policies [23]: Network policies, supported by

Cilium and Calico, enable more granular control over

pod - to - pod communication, effectively segmenting

and securing traffic within the cluster.

● Pod Security Policies (PSP) [23]: PSP will be

deprecated in favor of more flexible and user - friendly

alternatives. This led to exploring new security contexts

and admission controllers designed to enforce security

best practices without the complexity associated with

PSPs.

Paper ID: SR24401235010 DOI: https://dx.doi.org/10.21275/SR24401235010 1916

www.ijsr.net
http://creativecommons.org/licenses/by/4.0/

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

ResearchGate Impact Factor (2018): 0.28 | SJIF (2018): 7.426

Volume 9 Issue 2, February 2020

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

6. Conclusion

Integrating security into DevOps practices within Kubernetes

environments requires a combined effort across tools,

methodologies, and culture. Organizations can achieve a

resilient and secure infrastructure that supports rapid

development and deployment cycles by adopting a security -

first approach and leveraging the right mix of open source

tools. As DevSecOps continues to evolve, staying informed

and adaptable to new security challenges will be crucial for

organizations operating in multi - cloud environments.

References

[1] “DoD Enterprise DevSecOps Reference Design, ”

Department of Defense, Aug.12, 2019. https: //dodcio.

defense.

gov/Portals/0/Documents/DoD%20Enterprise%20Dev

SecOps%20Reference%20Design%20v1.0_Public%20

Release. pdf

[2] L. Tal, “DevSecOps Insights, ” Snyk. Available: https:

//res. cloudinary.

com/snyk/image/upload/v1646600639/wordpress -

sync/dso_2020. pdf

[3] Cloud Native Computing Foundation, “CNCF Financial

User Group - Readme, ” GitHub. https: //github.

com/cncf/financial - user -

group/blob/main/projects/k8s - threat -

model/README. md

[4] C. Paganini, “Primer: How Kubernetes Came to Be,

What It Is, and Why You Should Care, ” The New Stack,

Jul.22, 2019. https: //thenewstack. io/primer - how -

kubernetes - came - to - be - what - it - is - and - why -

you - should - care/

[5] L. E Hecht, “The Top Challenges Kubernetes Users

Face with Deployment, ” The New Stack, Mar.22, 2018.

https: //thenewstack. io/top - challenges - kubernetes -

users - face - deployment/

[6] S. Buchanan, “DevSecOps in Kubernetes, ” Microsoft

Open Source Blog, Jul.22, 2019. https: //cloudblogs.

microsoft. com/opensource/2019/07/22/devsecops - in -

kubernetes/

[7] S. Lietz, “What is DevSecOps?, ” DevSecOps, Jun.01,

2015. https: //www.devsecops.

org/blog/2015/2/15/what - is - devsecops

[8] L. Tal, “DevSecOps Insights 2020, ” Snyk, Jan.28, 2020.

https: //snyk. io/blog/devsecops - insights - 2020/

[9] D. Pandit, “Threat Modeling: The Why, How, When

and Which Tools, ” DevOps. com, Jul.25, 2018. https:

//devops. com/threat - modeling - the - why - how -

when - and - which - tools/

[10] M. C. Fanning, “A Microsoft DevSecOps Static

Application Security Testing (SAST) Exercise, ” Azure

DevOps Blog, Aug.21, 2018. https: //devblogs.

microsoft. com/devops/microsoft - devsecops - static -

application - security - testing - sast - exercise/

[11] Claranet Cyber Security, “Achieving DevSecOps with

Open - Source Tools, ” Claranet, Apr.23, 2019. https:

//www.claranet. com/us/blog/2019 - 04 - 23 - achieving

- devsecops - open - source - tools

[12] N. Kaul and J. S. Oviedo, “Guard against Security

Vulnerabilities in Your Software Supply Chain with

Container Registry Vulnerability Scanning, ” Google

Cloud Blog, Sep.20, 2018. https: //cloud. google.

com/blog/products/containers - kubernetes/guard -

against - security - vulnerabilities - with - container -

registry - vulnerability - scanning

[13] “Neuvector - Kubernetes cis Benchmark, ” GitHub.

https: //github. com/neuvector/kubernetes - cis -

benchmark

[14] “Aquasecurity - Kube Bench, ” GitHub. https: //github.

com/aquasecurity/kube - bench

[15] D. Oh, “Four Tools That Support Your DevSecOps

Process, ” Tigera, Dec.20, 2018. https: //www.tigera.

io/blog/four - tools - that - support - your - devsecops -

process/

[16] A. Tiefenthaler, “Using Brakeman to Secure Your Rails

App, ” Medium, Dec.21, 2018. https: //medium.

com/[at]andreas. tiefenthaler/using - brakeman - to -

secure - your - rails - app - b59f1eecc807

[17] J. Long, “Dependency Check, ” GitHub. https: //github.

com/jeremylong/DependencyCheck

[18] Snyk, “Snyk Homepage, ” Snyk. https: //snyk. io/

[19] L. Rice, “Trivy Vulnerability Scanner Joins the Aqua

Open - source Family, ” Aqua Security, Aug.19, 2019.

https: //www.aquasec. com/blog/trivy - vulnerability -

scanner - joins - aqua - family/

[20] “Tenable - Terrascan, ” GitHub. https: //github.

com/tenable/terrascan

[21] “Bridgecrewio - Checkov, ” GitHub. https: //github.

com/bridgecrewio/checkov

[22] “Zaproxy, ” GitHub. https: //github.

com/zaproxy/zaproxy

[23] C. Gilbert, “9 Kubernetes Security Best Practices

Everyone Must Follow, ” Cloud Native Computing

Foundation, Jan.14, 2019. https: //www.cncf.

io/blog/2019/01/14/9 - kubernetes - security - best -

practices - everyone - must - follow/

[24] Sysdig, “Sysdig’s Falco Joins the Cloud Native

Computing Foundation as a CNCF Sandbox Project, ”

Sysdig, Oct.10, 2018. https: //sysdig. com/press -

releases/sysdig - falco - joins - cncf/

[25] D. Lawrence, “What Is Notary and Why Is It Important

to CNCF?, ” Docker, Oct.24, 2017. https:

//www.docker. com/blog/notary - important - cncf/

[26] In - toto, “In - toto Homepage, ” In - toto. https: //in -

toto. io/

Paper ID: SR24401235010 DOI: https://dx.doi.org/10.21275/SR24401235010 1917

www.ijsr.net
http://creativecommons.org/licenses/by/4.0/
https://snyk.io/blog/devsecops-
https://github.com/neuvector/kubernetes-

