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1. Introduction 
 

Quark and gluon contributions to the nucleon spin are 

described by polarized parton distribution functions 

(polarized PDF) and their first moments. It became clear that 

only a small fraction of nucleon spin is carried by quarks and 

antiquarks. Therefore, a large gluon polarization or effect of 

orbital angular momenta should be possible sources for 

explaining the origin of the nucleon spin. Polarized PDFs 

have been investigated by global analyses of data on 

polarized lepton - nucleon DIS and proton - proton collisions 

[1, 2, 3, 4, 5-12]. Polarized quark distributions are 

determined relatively well, however the polarized gluon 

distribution is not accurately determined. The gluon 

distribution contributes to the structure function g1 as a 

higher order effect in the expansion by the running coupling 

constant sα of QCD.  

 

The polarized gluon distribution functions have been 

obtained by solving DGLAP evolution equations in LO and 

NLO at the small-x limit. Here we have used a Taylor’s 

series expansion and then the method of characteristics to 

solve the evolution equations. We have also calculated t and 

x-evolutions of gluon distribution function and the results 

are compared with the graph obtained by B Ziaja with the 

help of numerical method [13]. Here the detailed 

phenomenological study is not possible due to shortage of 

experimental data of polarized gluon distribution function. 

 

2. Theory 
 

The DGLAP evolution equations in standard forms for 

polarized gluon distribution functions t)ΔG(x, , in LO and 

NLO [14, 15, 16, 17] are 
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where integrals  tx,J G
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2  are defined in 

Appendix G. 

 

Let us introduce the variable u = 1ω  and using Taylor’s 

expansion series we can rewrite  
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Using equations (3) and (4) and performing u-integrations 

we get equation (1) as 
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Equation (4) is a partial differential equation of two 

variables and two functions. To convert it to one function, 

we have to establish a relation between them. At high-Q
2
 

and small-x, we can assume that sea quarks and gluons have 

no clear-cut distinction.  Thus, we can assume that 

     tx,ΔGxRtx,gS

1
 , where R’(x) is a suitable 

function of x or may be a constant. Now equation (5) gives  
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To introduce the method of characteristics, let us consider 

two new variables S and τ instead of x and t, such that  

t
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Putting these in equation (5), we get  
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Equation (11) can be solved as  
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For t-evolution, polarized gluon distribution functions vary 

with t, remaining x constant. Hence equation (9) can be used 

to solve the equation (11).  Now we have to replace the co-

ordinate system (S, τ) to (x, t), considering when S = 0,  t = 

t0 and the input function as    0tx,GτG   . So the t-

evolution of polarized gluon distribution function in LO is 

given by 
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Using equation (10) and replacing the co-ordinate system (S, 

τ) to (x, t), with consideration when τ = 0, 0xx   the input 

function is    t,xGSG 0 , we get the   x-evolution 

of polarized gluon distribution function in LO as 

 
Considering the same procedure as in unpolarized cases, the 

t and x-evolution of polarized gluon distribution functions in 

NLO are given by 
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Here T0 is a numerical parameter, which is not arbitrary 

chosen but obtained by phenomenological analysis [18, 19].  

 

Here   t,xG 0  and  0tx,G are input functions. For 

phenomenological analysis we use equations (14) and (15) 

to study polarized gluon distribution functions in LO and 

equations (16) and (17) to study polarized gluon distribution 

functions in NLO. 

 

3. Results and Discussions   
 

Here we compare our result of x evolution of polarized 

gluon distribution function  tx,G  in LO and NLO with 

the graphs obtained by numerical method of B Ziaja [13]. 

Each graph of our result is the best fit graph of our works 

with the numerical method. Here values at x = 0.001 is taken 

as input to test the x-evolution equations of our results.  We 

compared our results for R’(x) = R’, ax
b
 and ce

 dx
, where 

R’, a, b, c and d are constants. In all figures, we have plotted 

computed values of polarized gluon distribution function 

 tx,G  
against the x values for a fixed Q

2
 qualitatively. 

Here we have plotted the graphs for Q
2
 =10 GeV

2
 in the 

range of 0.001 ≤ x ≤ 0.00001. In all graphs, solid lines 

represent our NLO results, dash lines represent our LO 

results of best fitted graphs and numerical methods are 

represented by the dotted lines. Since experimental data as 

well as parameterization results on t-evolution of polarized 

gluon distribution function is not found elsewhere, so we 

could not compare our t-evolution results here.  

 

In figure 1, we have plotted our results for LO and NLO 

considering R’(x) = R’, a constant. It is found that best fit 

results are for R’ = 0.8 in both LO and NLO.  

 

 
Figure 1: x-evolution of polarized gluon distribution functions in LO and NLO with R’(x) = R’, compared with the graph 

obtained by numerical method 
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In figure 2, we have plotted our results for R’(x) = ax
b
, a power function of x. It is found that best fit results are for a = 0.01 

and b = 0.002 in both LO and NLO.  

 

 
Figure 2: x-evolution of polarized gluon distribution functions in LO and NLO with R’(x) = ax

b
, compared with the graph 

obtained by numerical method 

 

In figure 3, we have plotted our results for R
/
(x) = ce

dx
, an exponential function of x. It is found that our best fit results are 

for c = 0.2 and d = 0.03 in both LO and NLO.  

 

 
Figure 3: x-evolution of polarized gluon distribution functions in LO and NLO with R

/
(x) = ce

  dx
, compared with the graph 

obtained by numerical method 

 

4. Conclusion  
 

Here we have solved DGLAP evolution equations for 

polarized gluon distribution function in LO and NLO using 

method of characteristics. Experimental data on t-evolution 

of polarized gluon distribution function is not found 

elsewhere. Thus, we could not compare our t-evolution 

results of polarized gluon distribution function. Our x-

evolution graphs for polarized gluon distribution functions in 

both LO and NLO are compared are in good consistency 

with the results obtained by solving unified evolution 

equation by numerical method especially at small-x and 

high-Q
2
 region. The mean percentage error of our LO and 

NLO results are 11.47% and 5.81% with data obtained from 

numerical method. Thus, the NLO shows significantly better 
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fitting to the data sets obtained by numerical method than 

that of in LO and hence the NLO corrections have 

significant effect and we cannot ignore the contribution of 

NLO terms in high-Q
2
 and small-x region. The polarized 

gluon contribution, which is largely responsible for scaling 

violations, appears to be positive, although quite poorly 

determined at this time. A major motivation for future high-

energy polarized scattering experiments is to obtain more 

information on the polarized gluon contributions to the 

nucleon spin. 
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