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1. Introduction 
 

In the year 1942 Menger [21] introduced the notion of a 

probabilistic metric space (PM- space) which was, in fact, a 

generalization of metric space. The idea behind this  is to 

associate a distribution function with a pair of points, say 

(p,q), denoted by Fp,q(t) where t > 0 and interpret this 

function as the probability that distance between p and q is 

less than t, whereas in the metric space, the distance function 

is a single positive number. Sehgal [37]  initiated the study 

of fixed points in probabilistic metric spaces. The study of 

these spaces was expanded rapidly with the pioneering 

works of Schweizer and Sklar [7]. Jungck [13] introduced 

the notion of compatible mappings and utilized the same to 

improve commutativity conditions in common fixed point 

theorems. This concept has been frequently employed to 

prove existence theorems on common fixed points. 

However, the study of common fixed points of non-

compatible mappings was initiated by Pant [29]. Recently, 

Aamri and Moutawakil [1] and Liu et al. [34] respectively 

defined the property (E.A) and the common property (E.A) 

and proved interesting common fixed point theorems in  

metric spaces. Most recently, Kubiaczyk and Sharma [15] 

adopted the property (E.A) in PM  spaces and used it to 

prove results on common fixed points. Recently, Imdad et al. 

[26] adopted the common property (E.A) in PM spaces and 

proved some coincidence and common fixed point  results in 

Menger spaces. 

 

1) Preliminaries: Before going to our main result we 

require some more definitions and Lemma,  

 

Definition 1.1 [8]:  Let X be a non empty set and L denote 

the set of all distribution functions. A probabilistic metric 

space is an ordered pair (X,F) where F :X * X→L. we shall 

denote the distribution function by F (p, q) or F p ,q ; p, q ϵ 

X and F(p, q, x) will represent the value of  F (p, q) at x ϵ R. 

the function F p, q is assumed to satisfy the following 

conditions :  

1. F p, q (t) = 1, ∀ t > 0 if and if  p = q 

2. F p, q (0) = 0 for every p, q ϵ X  

3. F p, q (t) = F q, p (t) for every p, q ϵ X  

4. If F p, q (t) = 1 and F q, r (s) = 1 it follows that F q r (t +s) 

=1 ∀ p, q, r ϵ X and t ,s ≥ 0.  

In metric space (X ,d) , the metric d induces a mapping F : X 

* X→L such that F p, q (t) = H(t-d(p, q) ) for all p, q ϵ X and 

t ϵ R , where H is the distribution function defined as  

 
 

Definition 1.2 [8] :A mapping ∆: [0, 1] * [0,1] →[0,1] is 

called t- norm if the following conditions are satisfied  

(1) ∆ (a, 1) = a for all a ϵ [0, 1], ∆ (0,0) = 0,  

(2) ∆ (a ,b) = ∆ (b, a)  

(3) ∆ (c, d) ≤ ∆ (a, b) for c ≥ a, d ≥ b, and  

(4) ∆ (∆ (c, d),c) = ∆ (a,∆ (b, c)) for all a, b, c ϵ [0,1]  

 

Example 1[8] The following are the four basic t-norms: 

(i) The minimum t-norm: TM(a, b) = min{a,b}. 

(ii) The product t-norm: TP (a,b) = a.b 

(iii) The Lukasiewicz t-norm: TL(a, b) = max{a + b − 1, 0}. 

(iv) The weakest t-norm, the drastic product: 

 
 

In respect of above mentioned t-norms, we have the 

following ordering: 

TD < TL < TP < TM. 

 

Definition 1.3 [21]: A Menger probabilistic space is a triplet 

(X, F, ∆) where (X, F) is a PM-space and ∆ is a t- norm with 

the following condition  

F p, r (t +s) ≥ ∆ (F p, r (t), F p, r (s)) for all p, q, r ϵ X and t, s ≥ 

0.  

The above inequality is called Menger’s triangle inequality.  

 

Definition 1.4 [28] : A sequence {xn} in (X, F, ∆) is said to 

be a convergent to a point x ϵ X if for every ε > 0 and λ > 0, 

there exists an integer N=N (ε ,λ) such that 𝐹𝑥𝑛 , 𝑥 ,
(ε) →1- λ ∀ 

n ≥ N (ε ,λ).  

 

Definition 1.5 [28] : A sequence {xn} in (X, F, ∆) is said to 

be a Cauchy sequence if for every ε > 0 and λ >0 , there 

exists an integer N=N (ε ,λ) such that   𝐹𝑥𝑛  ,𝑥𝑚  ,
(ε) →1- λ ∀ n, 

m ≥ N (ε ,λ).  

 

Definition 1.6 [28] : A Menger Space (X, F, ∆) with the 

continuous t- norm is said to be complete if every Cauchy 

sequence in X converges to a point in X.  
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Definition 1.7 [24]:  Let (X, F, ∆) be a Menger PM Space. 

A pair (f, g) of self mapping on X is said to be weakly 

commuting if and only if  𝐹𝑓𝑔𝑥  , 𝑔𝑓𝑥 ,
(t) ≥ 𝐹𝑓𝑥  , 𝑔𝑥 ,

(t) for each  x 

ϵ X and t > 0. 

 

Definition 1.8 [31]: Let (X, F, ∆) be a Menger PM Space  . 

A pair (f, g) of self mapping on X is said to be compatible if 

and only if  𝐹𝑓𝑔𝑥 𝑛  , 𝑔𝑓𝑥 𝑛  ,
 (t) →1 for all t > 0 whenever {xn} in 

X such that fxn,gxn → z for some z ϵ X as n →  ∞.  

Clearly, a weakly commuting pair is compatible but every 

compatible pair need not be weakly commuting. 

 

Definition 1.10 [19]: Let (X, F, ∆) be a Menger PM Space  . 

A pair (f, g) of self mapping on X is said to be non–

compatible if and only if there exist at least one sequence 

{xn} in X such that 

lim𝑛→∞ 𝑓𝑥𝑛  = lim𝑛→∞ 𝑔𝑥𝑛  =  z,  for some z ϵ X, implies that 

lim𝑛→∞𝐹𝑓𝑔𝑥 𝑛  ,𝑔𝑓𝑥 𝑛  
(𝑡0) (for some t0 > 0)  is either  less than 1 

or non-existent. 

 

Definition 1.11 [15] : Let (X, F, ∆) be a Menger PM Space  

. A pair (f, g) of self mapping on X is said to satisfy the 

property (E.A) if there exist a sequence {xn} in X such that 

lim𝑛→∞ 𝑓𝑥𝑛  = lim𝑛→∞ 𝑔𝑥𝑛  =  z, for some z ϵ X. 

Clearly, a pair of compatible mappings as well as non- 

Comatible mappings satisfies the property (E.A). 

Inspired by Liu et al. [39], Imdad et al. [26] defined the 

following: 

 

Definition 1.12 [34]: Two pairs (f, g) and (p, q) of self 

mappings of a Menger PM space (X,F, ) are said to satisfy 

the common property (E.A) if there exist two sequences 

{xn}, {yn} in X and some t in X such that 
lim𝑛→∞ 𝑓𝑥𝑛  = lim𝑛→∞ 𝑔𝑥𝑛  =  lim𝑛→∞ 𝑝𝑥𝑛  = lim𝑛→∞ 𝑞𝑥𝑛  =  z 

 

Definition1.13. [24] Two finite families of self mappings 

{Ai} and {Bj} are said to be pairwise commuting if: 

(i) AiAj = AjAi,   i, j {1, 2...m}, 

(ii) BiBj = BjBi,   i, j {1, 2...n}, 

(iii) AiBj = BjAi,  i {1, 2...m}, j {1, 2...n}. 

 

2. Main Result 
 

The following lemma is useful for the proof of succeeding 

theorems. 

 

Lemma 2.1 [14]:   Let (X, F, Δ) be a Menger space. If there 

exists some k ∈  (0, 1) such that for all p, q, X and all x > 0, 

     ∅ 𝑢 𝑑𝑢
𝐹𝑝 ,𝑞 (𝑘𝑡)

0
  ≥   ∅ 𝑢 𝑑𝑢

𝐹𝑝 ,𝑞(𝑡)

0
                                                                                                 

-  -  -   (2.1.1) 

 Where   : [0, ∞) →  [0, ∞) is a non-negative summable 

Lebesque integrable function such that 

                ∅ 𝑢 𝑑𝑢 > 0
1


  for each    [0,1)  then p = q. 

 

Proof.  From (2.1.1)   

 ∅ 𝑢 𝑑𝑢
𝐹𝑝 ,𝑞(𝑡)

0
  ≥   ∅ 𝑢 𝑑𝑢

𝐹𝑝 ,𝑞 (𝑘−1t)

0
 

one can inductively write (for m ∈  N) 

 ∅ 𝑢 𝑑𝑢
𝐹𝑝 ,𝑞(𝑡)

0
  ≥   ∅ 𝑢 𝑑𝑢

𝐹𝑝 ,𝑞 (𝑘−1t)

0
   ≥  -   -   -  ≥  

 ∅ 𝑢 𝑑𝑢
𝐹𝑝 ,𝑞(𝑘−𝑚 t)

0
 

≥   -  -   -  →    ∅ 𝑢 𝑑𝑢
1

0
   as m →  ∞. 

Therefore 

 ∅ 𝑢 𝑑𝑢
𝐹𝑝 ,𝑞(𝑡)

0
  -  ∅ 𝑢 𝑑𝑢

1

0
 ≥ 0 

And hence, 

 ∅ 𝑢 𝑑𝑢
𝐹𝑝 ,𝑞(𝑡)

0
    ∅ 𝑢 𝑑𝑢

𝐹𝑝 ,𝑞(𝑡)

0
  −   ∅ 𝑢 𝑑𝑢

1

0
  ≥  0 

Or,  

 ∅ 𝑢 𝑑𝑢
1

𝐹𝑝 ,𝑞(𝑡)
  ≤ 0. 

which amounts to say that Fp,q(t) ≥ 1 for all t ≥ 0. Thus, we 

get  p = q. 

 

Remark  : By setting φ(t) = 1 (for each t ≥ 0) in (2.1.1) of 

Lemma 2.1, we have 

  ∅ 𝑢 𝑑𝑢
𝐹𝑝 ,𝑞(𝑘𝑡 )

0
  =  𝐹𝑝 ,𝑞 𝑘𝑡  ≥  𝐹𝑝 ,𝑞 𝑡 =   ∅ 𝑢 𝑑𝑢

𝐹𝑝 ,𝑞 (𝑡)

0
, 

which shows that Lemma 1 is a generalization of the Lemma 

2 (contained in [34]). 

 

In what follows, Δ is a continuous t-norm (in the product 

topology). 

 

Lemma 2.2: Let (X.F, ∆) be a complete Menger Space and 

let f, g, p and q be self mapping of X satisfying the 

conditions:  

(i) Pairs {p, f} and {q, g} satisfies the property E.A. 

(ii) B(𝑦𝑛 ) converges for every sequence {𝑦𝑛} in X 

whenever T(𝑦𝑛 ) converges, 

(iii) for any x,y X and for all t > 0, 

 ∅ 𝑢 𝑑𝑢
𝐹𝑝𝑥 ,𝑞𝑦 (𝑘𝑡)

0
  ≥  ∅ 𝑢 𝑑𝑢

𝑚(𝑥 ,𝑦) 

0
    -  -  -  (2.2.1) 

Where   : [0, ∞) →  [0, ∞) is a non-negative summable 

Lebesque integral function such that 

 ∅ 𝑢 𝑑𝑢 > 0
1

𝑐
  for each u  [0,1), where 0 < k < 1 and 

 

m(x,y)  = 

min{𝐹𝑓𝑥 ,𝑔𝑦  𝑡 ,𝐹𝑓𝑥 ,𝑝𝑥  𝑡 ,𝐹𝑔𝑦 ,𝑞𝑦  𝑡 ,𝐹𝑓𝑥 ,𝑞𝑦  𝑡 ,𝐹𝑔𝑦 ,𝑝𝑥  𝑡 ,  

 𝐹𝑓𝑥 ,𝑔𝑦  𝑡 .  𝐹𝑔𝑦 ,𝑞𝑦  𝑡  

 𝐹𝑓𝑥 ,𝑞𝑦  𝑡 
,
 𝐹𝑓𝑥 ,𝑔𝑦  𝑡 .  𝐹𝑓𝑥 ,,𝑝𝑥  𝑡  

 𝐹𝑔𝑦 ,𝑝𝑥  𝑡 
,  

 𝐹𝑞𝑦 ,𝑔𝑦  𝑡 +  𝐹𝑓𝑥 ,,𝑞𝑦  𝑡  

2
,
 𝐹𝑓𝑥 ,,𝑔𝑦  𝑡 +  𝐹𝑝𝑥 ,𝑔𝑦  𝑡  

2
 

(iv)       p(X) ⊂ g(X) ( or q(X) ⊂ f(X)). 

Then the pair (p,f) and (q,g) share the common property 

(E.A.). 

 

Proof : Suppose that the pair (p,f) enjoys the property 

(E.A.),then there exist a sequence {xn}in X such  

that 

lim𝑛→∞ 𝑝𝑥𝑛  =  lim𝑛→∞ 𝑓𝑥𝑛  =  u, for some u  X. 

Since p(X) ⊂ g(X), for each xn there exists yn  X.  

Such that 𝑝𝑥𝑛  = 𝑔𝑦𝑛 , and hence 

lim𝑛→∞ 𝑔𝑦𝑛  =  lim𝑛→∞ 𝑝𝑥𝑛  =  u 

Thus in all, we have 𝑝𝑥𝑛  → 𝑢,  𝑓𝑥𝑛  → 𝑢 and 𝑔𝑦𝑛  → 𝑢. 

Now we assert that  𝑞𝑦𝑛  → 𝑢. 

 

To accomplish this, using (2.2.1) with  x = xn and y = yn, we 

get    

 ∅ 𝑢 𝑑𝑢
𝐹𝑝𝑥 𝑛 ,𝑞𝑦 𝑛 (𝑘𝑡 )

0
  ≥      ∅ 𝑢 𝑑𝑢

𝑚 𝑥𝑛 ,𝑦𝑛   

0
  

Where,    𝑚 𝑥𝑛 , 𝑦𝑛 = 
min{𝐹𝑓𝑥𝑛 ,𝑔𝑦𝑛

 𝑡 ,
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𝐹𝑓𝑥𝑛 ,𝑝𝑥𝑛
 𝑡 ,  𝐹𝑔𝑦𝑛 ,𝑞𝑦𝑛

 𝑡 ,  𝐹𝑓𝑥𝑛 ,𝑞𝑦𝑛
 𝑡 ,  𝐹𝑔𝑦𝑛 ,,𝑝𝑥𝑛

 𝑡 ,
 𝐹𝑓𝑥𝑛 ,𝑞𝑦𝑛

 𝑡 . 𝐹𝑔𝑦𝑛 ,𝑞𝑦𝑛  𝑡  

 𝐹𝑓𝑥𝑛 ,𝑞𝑦𝑛
 𝑡 

 ,                 

                                                                                               

  
 𝐹𝑓𝑥𝑛 ,𝑔𝑦𝑛

 𝑡 . 𝐹𝑓𝑥𝑛 ,𝑝𝑥𝑛
 𝑡  

 𝐹𝑔𝑦𝑛 ,𝑝𝑥𝑛  𝑡 
,

 𝐹𝑞𝑦𝑛 ,𝑔𝑦𝑛  𝑡 + 𝐹𝑓𝑥𝑛 ,𝑞𝑦𝑛
 𝑡  

2
, 

 𝐹𝑓𝑥𝑛 ,𝑔𝑦𝑛
 𝑡 +  𝐹𝑝𝑥𝑛 ,𝑔𝑦𝑛

 𝑡  

2
} 

Let,    lim𝑛→∞ 𝑞(𝑦𝑛) = v 

Also, let   t  > 0 be such that Fu,v(.) is continuous in t and kt. 

Then, on making n →  ∞ in the above inequality, we get 

 ∅ 𝑢 𝑑𝑢
𝐹𝑢 ,𝑣(𝑘𝑡 )

0
  ≥ 

 ∅ 𝑢 𝑑𝑢

min {𝐹𝑢 ,𝑢  𝑡 ,𝐹𝑓𝑢 ,𝑢  𝑡 , 𝐹𝑢 ,𝑣 𝑡 , 𝐹𝑢 ,𝑣 𝑡 , 𝐹𝑢 ,𝑢  𝑡 ,   
 𝐹𝑢 ,,𝑢  𝑡 . 𝐹𝑢 ,,𝑣 𝑡  

 𝐹𝑢 ,,𝑣 𝑡 
 ,   

 𝐹𝑢 ,𝑢  𝑡 . 𝐹𝑢 ,𝑢  𝑡  

 𝐹𝑢 ,𝑢  𝑡 
,   

 𝐹𝑢 ,𝑣 𝑡 + 𝐹𝑢 ,𝑣   𝑡  
2

,   
 𝐹𝑢 ,𝑢  𝑡 + 𝐹𝑢 ,𝑢  𝑡  

2
 

0

 

Or,        ∅ 𝑢 𝑑𝑢
𝐹𝑢 ,𝑣(𝑘𝑡 )

0
  ≥  ∅ 𝑢 𝑑𝑢

𝐹𝑢 ,𝑣(𝑡)

0
 

This, implies that v = u ( in view of  Lemma 2.1) which 

shows that the pair (p,f) and (q,g) share the common 

property (E.A).  

 

Theorem 2.3: Let f, g, p and q be self mappings of a 

Menger space (X, F, ∆) which satisfy the inequality (2.2.1) 

together with the conditions : 

(i) the pairs (p, f) and (q, g) share the common property 

(E.A), 

(ii) f(X) and g(X) are closed subsets of X. 

 

Then the pairs (p, f) and (q, g) have a point of coincidence 

each. Moreover, f, g, p and q have a unique common fixed 

point provided both the pairs (p, f) and (q, g) are weakly 

compatible. 

 

Proof. Since the pairs (p, f) and (q, g) share the common 

property (E.A), there exist two sequences {xn}  

and {yn} in X such that 

lim𝑛→∞ 𝑝𝑥𝑛  =  lim𝑛→∞ 𝑓𝑥𝑛  =  lim𝑛→∞ 𝑔𝑦𝑛  =  lim𝑛→∞ 𝑞𝑦𝑛  =  

u, for some u  X. 

         

Since f(X) is a closed subset of X, hence  lim𝑛→∞ 𝑓𝑥𝑛  = u  

f(X). 

Therefore, there exists a point z  X such that  fz = u.  

Now, we assert that pz = fz.  

 

To prove this, on using (2.2.1) with x = z, y = yn, we get 

   ∅ 𝑢 𝑑𝑢
𝐹𝑝𝑧 , 𝑞𝑦 𝑛 (𝑘𝑡 )

0
  ≥ 

 ∅ 𝑢 𝑑𝑢
min {𝐹𝑓𝑧 ,𝑞𝑦 𝑛

 𝑡 ,𝐹𝑓𝑧 ,𝑝𝑧  𝑡 , 𝐹𝑔𝑦𝑛 , 𝑞𝑦 𝑛  𝑡 , 𝐹𝑓𝑧 , 𝑞𝑦 𝑛
 𝑡 , 𝐹𝑔𝑦𝑛 ,𝑝𝑧  𝑡 ,

 𝐹𝑓𝑧 ,𝑞𝑦𝑛
 𝑡 . 𝐹𝑔𝑦𝑛 ,𝑞𝑦 𝑛  𝑡  

 𝐹𝑓𝑧 ,𝑞𝑦 𝑛
 𝑡 

 ,
 𝐹𝑓𝑧 ,𝑔𝑦𝑛

 𝑡 . 𝐹𝑓𝑧 ,,𝑝𝑧  𝑡  

 𝐹𝑔𝑦𝑛 ,𝑝𝑧  𝑡 
,    

 𝐹  𝑞𝑦 𝑛 ,𝑔𝑦𝑛  𝑡 + 𝐹𝑓𝑧 ,,𝑞𝑦 𝑛
 𝑡  

2
,
𝐹𝑓𝑧 ,𝑔𝑦𝑛

 𝑡 + 𝐹𝑝𝑧 ,,𝑔𝑦𝑛  𝑡  

2

0
        

On taking n → ∞,  reduces to 

 ∅ 𝑢 𝑑𝑢
𝐹𝑝𝑧 ,𝑢 (𝑘𝑡)

0
  ≥ 

                            ∅ 𝑢 𝑑𝑢
𝑚𝑖𝑛  𝐹𝑢 ,𝑢  𝑡 ,𝐹𝑢 ,,𝑝𝑧  𝑡 , 𝐹𝑢 ,𝑢  𝑡 , 𝐹𝑢 ,,𝑢  𝑡 , 𝐹𝑢 ,,𝑝𝑧  𝑡 ,

 𝐹𝑢 ,,𝑢  𝑡 . 𝐹𝑢 ,𝑢  𝑡  

 𝐹𝑢 ,𝑢  𝑡 
 ,

 𝐹𝑢 ,𝑢  𝑡 . 𝐹𝑢 ,,𝑝𝑧  𝑡  

 𝐹𝑢 ,,𝑝𝑧  𝑡 
,    

 𝐹𝑢 ,𝑢  𝑡 + 𝐹𝑢 ,,𝑢  𝑡  

2
,
 𝐹𝑢 ,,𝑢  𝑡 + 𝐹𝑝𝑧 ,𝑢  𝑡  

2
 

0
   

       ∅ 𝑢 𝑑𝑢
𝐹𝑝𝑧 ,𝑢 (𝑘𝑡)

0
  ≥   ∅ 𝑢 𝑑𝑢

𝐹𝑝𝑧 ,𝑢 (𝑡)

0
  

 

Now on appealing Lemma 2.1, we get  pz = u and hence pz 

= fz. Therefore, z is a coincidence point of the pair (p, f). 

 

Since g(X) is a closed subset of X, therefore limn→∞ gyn  =  

u  g(X)  and hence we can find a point 

w X such that gw = u 

Now we show that qw = gw.  

 

To accomplish this, on using (2.2.1) with x = xn, y = w, we 

have 

 ∅ 𝑢 𝑑𝑢
𝐹𝑝𝑥 𝑛 ,𝑞𝑤 (𝑘𝑡 )

0
  ≥      ∅ 𝑢 𝑑𝑢

𝑚 𝑥𝑛 ,𝑤  

0
  

Where,    𝑚 𝑥𝑛 ,𝑤 = 
min{𝐹𝑓𝑥𝑛 ,𝑞𝑤  𝑡 ,

𝐹𝑓𝑥𝑛 ,𝑝𝑥𝑛
 𝑡 ,  𝐹𝑔𝑤 ,𝑞𝑤  𝑡 ,  𝐹𝑓𝑥𝑛 ,𝑞𝑤  𝑡 ,  𝐹𝑔𝑤 ,𝑝𝑥𝑛

 𝑡 ,
 𝐹𝑓𝑥𝑛 ,𝑞𝑤  𝑡 . 𝐹𝑔𝑤 ,𝑞𝑤  𝑡  

 𝐹𝑓𝑥𝑛 ,𝑞𝑤  𝑡 
 ,                 

                                                                                               
 𝐹𝑓𝑥𝑛 ,𝑔𝑤  𝑡 . 𝐹𝑓𝑥𝑛 ,𝑝𝑥𝑛

 𝑡  

 𝐹𝑔𝑤 ,𝑝𝑥𝑛  𝑡 
,

 𝐹𝑞𝑤 ,𝑔𝑤  𝑡 + 𝐹𝑓𝑥𝑛 ,𝑞𝑤  𝑡  

2
,

 𝐹𝑓𝑥𝑛 ,𝑔𝑤  𝑡 + 𝐹𝑝𝑥𝑛 ,𝑔𝑤  𝑡  

2
} 

Which on making n → ∞, reduces to 

 ∅ 𝑢 𝑑𝑢
𝐹𝑢 ,𝑞𝑤 (𝑘𝑡)

0
  ≥ 

 ∅ 𝑢 𝑑𝑢

min {𝐹𝑢 ,𝑢  𝑡 ,   𝐹𝑢 ,,𝑢  𝑡 , 𝐹𝑢 ,,𝑞𝑤  𝑡 , 𝐹𝑢 ,,𝑞𝑤  𝑡 , 𝐹𝑢 ,𝑢  𝑡 ,   
 𝐹𝑢 ,𝑢  𝑡 . 𝐹𝑢 ,𝑞𝑤  𝑡  

 𝐹𝑢 ,𝑞𝑤  𝑡 
 ,

 𝐹𝑢 ,𝑢  𝑡 . 𝐹𝑢 ,𝑢  𝑡  

 𝐹𝑔𝑤 ,𝑢  𝑡 
,    

 𝐹𝑢 ,𝑔𝑤  𝑡 + 𝐹𝑢 ,𝑢  𝑡  

2
,
 𝐹𝑢 ,𝑔𝑤  𝑡 + 𝐹𝑢 ,𝑔𝑤  𝑡  

2
 

0

 

 

                ∅ 𝑢 𝑑𝑢
𝐹𝑢 ,𝑞𝑤 (𝑘𝑡)

0
  ≥   ∅ 𝑢 𝑑𝑢

𝐹𝑢 ,𝑞𝑤 (𝑡)

0
  

on employing Lemma 2.1, we get   qw = u and  gw =  qw 

 

Therefore, w is a coincidence point of the pair (q, g). 

 

Since the pair (p, f) is weakly compatible and  pz = fz, 

therefore pu = pfz = fpz = fu. 

 

Again, on using (2.2.1) with x = u, y = w, we have 

 ∅ 𝑢 𝑑𝑢
𝐹𝑝𝑢 ,𝑞𝑤 (𝑘𝑡)

0
  ≥  ∅ 𝑢 𝑑𝑢

𝑚 𝑢 ,𝑤  

0
 

Where,    𝑚 𝑢,𝑤 =  
min{𝐹𝑓𝑢 ,𝑞𝑤  𝑡 , 𝐹𝑓𝑢 ,𝑝𝑢  𝑡 ,  𝐹𝑔𝑤 ,𝑞𝑤  𝑡 ,  𝐹𝑓𝑢 ,𝑞𝑤  𝑡 ,𝐹𝑔𝑤 ,𝑝𝑢  𝑡 ,
 𝐹𝑓𝑢 ,𝑔𝑤  𝑡 . 𝐹𝑔𝑤 ,𝑞𝑤  𝑡  

 𝐹𝑓𝑢 ,𝑞𝑤  𝑡 
 ,                 

                                                                                               

  
 𝐹𝑓𝑢 ,𝑔𝑤  𝑡 . 𝐹𝑓𝑢 ,𝑝𝑢  𝑡  

 𝐹𝑔𝑤 ,𝑝𝑢  𝑡 
,

 𝐹𝑞𝑤 ,𝑔𝑤  𝑡 + 𝐹𝑓𝑢 ,𝑞𝑤  𝑡  

2
,

 𝐹𝑓𝑢 ,𝑔𝑤  𝑡 + 𝐹𝑝𝑢 ,𝑔𝑤  𝑡  

2
} 

Or,  

             ∅ 𝑢 𝑑𝑢
𝐹𝑝𝑢 ,𝑢 (𝑘𝑡 )

0
  ≥ 
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       ∅ 𝑢 𝑑𝑢
min {𝐹𝑓𝑢 ,𝑢  𝑡 ,   𝐹𝑝𝑢 ,𝑝𝑢  𝑡 , 𝐹𝑢 ,,𝑢  𝑡 , 𝐹𝑝𝑢 ,𝑢  𝑡 , 𝐹𝑢 ,𝑝𝑢  𝑡 ,   

 𝐹𝑝𝑢 ,𝑢  𝑡 . 𝐹𝑢 ,,𝑢  𝑡  

 𝐹𝑝𝑢 ,𝑢  𝑡 
 ,   

 𝐹𝑝𝑢 ,𝑢  𝑡 . 𝐹𝑝𝑢 ,,𝑝𝑢  𝑡  

 𝐹𝑢 ,,𝑝𝑢  𝑡 
,    

 𝐹𝑢 ,𝑢  𝑡 + 𝐹𝑝𝑢 ,,𝑢  𝑡  

2
,
 𝐹𝑝𝑢 ,𝑢  𝑡 + 𝐹𝑝𝑢 ,𝑢  𝑡  

2
 

0

 

Or

,  

                   ∅ 𝑢 𝑑𝑢
𝐹𝑝𝑢 ,𝑢 (𝑘𝑡 )

0
  ≥   ∅ 𝑢 𝑑𝑢

𝐹𝑝𝑢 ,𝑢 (𝑡)

0
   

 

On employing Lemma 2.1, we have pu = fu = u, which 

shows that u is a common fixed point of the pair (p, f). 

 

Also the pair (q, g) is weakly compatible and qw = gw, 

hence 

qu = qgw = gqw = gu. 

 

Next, we show that u is a common fixed point of the pair (q, 

g). In order to accomplish this, using (2.2.1) with x = z,  y = 

u, we get 

 

 ∅ 𝑢 𝑑𝑢
𝐹𝑝𝑧 ,𝑞𝑢 (𝑘𝑡 )

0
  ≥ 

 ∅ 𝑢 𝑑𝑢
min {𝐹𝑓𝑧 ,𝑔𝑢  𝑡 ,   𝐹𝑓𝑧 ,𝑝𝑧  𝑡 , 𝐹𝑔𝑢 ,𝑞𝑢  𝑡 , 𝐹𝑓𝑧 ,𝑞𝑢  𝑡 , 𝐹𝑔𝑢 ,𝑝𝑧  𝑡 ,   

 𝐹𝑓𝑧 ,𝑔𝑢  𝑡 . 𝐹𝑔𝑢 ,𝑞𝑢  𝑡  

 𝐹𝑓𝑧 ,𝑞𝑢  𝑡 
 ,   

 𝐹𝑓𝑧 ,𝑔𝑢  𝑡 . 𝐹𝑓𝑧 ,,𝑝𝑧  𝑡  

 𝐹𝑔𝑢 ,𝑝𝑧  𝑡 
,    

 𝐹𝑞𝑢 ,𝑔𝑢  𝑡 + 𝐹𝑓𝑧 ,,𝑞𝑧  𝑡  

2
,
 𝐹𝑓𝑧 ,,𝑔𝑢  𝑡 + 𝐹𝑝𝑧 ,𝑞𝑢  𝑡  

2
 

0

 

Or, 

       ∅ 𝑢 𝑑𝑢
𝐹𝑢 ,𝑞𝑢 (𝑘𝑡 )

0
 ≥  

 ∅ 𝑢 𝑑𝑢
min {𝐹𝑢 ,𝑔𝑢  𝑡 ,   𝐹𝑢 ,,𝑢  𝑡 , 𝐹𝑞𝑢 ,𝑞𝑢  𝑡 , 𝐹𝑢 ,,𝑞𝑢  𝑡 , 𝐹𝑞𝑢 ,𝑢  𝑡 ,   

 𝐹𝑢 ,𝑞𝑢  𝑡 . 𝐹𝑞𝑢 ,𝑞𝑢  𝑡  

 𝐹𝑢 ,𝑞𝑢  𝑡 
 ,   

 𝐹𝑢 ,𝑞𝑢  𝑡 . 𝐹𝑢 ,,𝑢  𝑡  

 𝐹𝑞𝑢 ,𝑢  𝑡 
,    

 𝐹𝑞𝑢 ,𝑞𝑢  𝑡 + 𝐹𝑢 ,,𝑢  𝑡  

2
,
 𝐹𝑢 ,,𝑞𝑢  𝑡 + 𝐹𝑢 ,𝑔𝑢  𝑡  

2
 

0

 

 

Or, 

       ∅ 𝑢 𝑑𝑢
𝐹𝑢 ,𝑞𝑢 (𝑘𝑡 )

0
  ≥   ∅ 𝑢 𝑑𝑢

𝐹𝑢 ,𝑞𝑢 (𝑡)

0
   

 

Using Lemma 2.1, we have qu = u which shows that u is a 

common fixed point of the pair (q, g). Hence u is a common 

fixed point of both the pairs (p, f) and (q, g). Uniqueness of 

common fixed point is an easy consequence of the inequality 

(2.2.1). This completes the proof.  
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