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Abstract: I present the design and evaluation of two new processing elements for reconfigurable computing. I also present a circuit-

level implementation of the data paths in static and dynamic design styles to explore the various performance-power tradeoffs involved. 

When implemented in IBM 90-nm CMOS process, the 8-b data paths achieve operating frequencies ranging over 1 GHz both for static 

and dynamic implementations, with each data path supporting single- cycle computational capability. A novel single-precision floating 

point processing element (FPPE) using a 24-b variant of the proposed data paths is also presented. The full dynamic implementation of 

the FPPE shows that it operates at a frequency of 1 GHz with 6.5-mW average power consumption. Comparison with competing 

architectures shows that the FPPE provides two orders of magnitude higher throughput. Furthermore, to evaluate its feasibility as a 

soft- processing solution, we also map the floating point unit onto the Virtex 4 and 5 devices, and observe that the unit requires less than 

1% of the total logic slices, while utilising only around 4% of the DSP blocks available. When compared against popular field-

programmable-gate-array-based floating point units, our design on Virtex 5 showed significantly lower resource utilisation, while 

achieving comparable peak operating frequency. 3D integration of solid-state memories and logic, as demonstrated by the Hybrid 

Memory Cube (HMC), offers major opportunities for revisiting near-memory computation and gives new hope to mitigate the power and 

performance losses caused by the “memory wall”. Several publications in the past few years demonstrate this renewed interest. In this 

paper we present the first exploration steps towards design of the Smart Memory Cube (SMC), a new Processor-in- Memory (PIM) 

architecture that enhances the capabilities of the logic-base (LoB) die in HMC. An accurate simulation environment called SMCSim has 

been developed, along with a full featured software stack. The key contribution of this work is full system analysis of near memory 

computation including high-level software to low-level firmware and hardware layers, considering offloading and dynamic overheads 

caused by the operating system (OS), cache coherence, and memory management. A zero-copy pointer passing mechanism has been 

devised to allow low overhead data sharing between the host and the PIM. Benchmarking results demonstrate up to 2X performance 

improvement in comparison with the host System-on-Chip (SoC), and around 1.5X against a similar host-side accelerator. Moreover, by 

scaling down the voltage and frequency of PIM’s processor it is possible to reduce energy by around 70 % and 55 % in comparison with 

the host and the accelerator, respectively. 
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1. Introduction 
 

At a hardware level, the overall system performance of these 

architectures depends on: 1) the top-level array and 

interconnection scheme and 2) the individual processing 

cell. While factors such as organisation of the cells, 

interconnection network, and memory hierarchy (in case of 

shared memory architectures) are critical to system 

throughput, it should be noted that the individual processing 

cells are the main workhorses of the system and hence are 

perhaps equally critical to the total processing throughput. It 

is therefore important to develop extendable arithmetic 

processing units which allow modular system design in 

order to guarantee maximum throughput from a 

reconfigurable array-based architecture. Another important 

requirement of modern DSP and media processing 

applications is to provide floating-point capability. This 

ability, if achieved by reusing or extending integer data 

paths, allows faster development time, low-cost system 

implementation, as well as possible FPGA implementation 

of the data paths.  

 

In this paper, I present the architectures of two integer 

reconfigurable data paths. The proposed data paths can 

perform single-cycle addition, subtraction, multiplication, 

and accumulation operations. They can be used in multicore 

platforms to perform more complex arithmetic and logical 

operations. The data paths have a short and uniform critical 

path across the range of operations. Each of the data paths is 

extendable and can be parameterised to support higher 

precision arithmetic, and software-assisted variable-

precision reconfigurable systems. Eight-bit versions of the 

integer data paths were implemented using the IBM 90-nm 

process using static, domino, and data-driven dynamic logic 

(D3L). Simulation results show that the data paths can 

achieve operating frequencies in the range of 1 GHz. Using 

the findings from the architectural and circuit analysis on the 

integer data paths, a new single-precision floating point 

processing element (FPPE) using the 24-b extension of the 

data paths is also presented. The full dynamic 

implementation of the FPPE operates at a frequency of 1 

GHz with 6.5-mW average power consumption. 

 

To understand the feasibility of the proposed data paths for 

FPGA applications, we also performed synthesis 

experiments using Xilinx Virtex 4 and 5 FPGAs. These 

experiments helped to understand the tradeoffs associated 

with choosing optimum granularities and the impact of 

modularising large-width operations on system throughput. 

The FPPE was also synthesized to evaluate its potential as a 

soft floating point PE. Comparative analysis with competing 

architectures shows that the proposed FPPE achieves 

comparable performance at significantly lower resource 

utilisation. 

 

Multiprocessing System-on-chip 

Multiprocessor system-on-chip (MP-SoC) platforms are 

emerging as an important trend for SoC design. Power and 

wire design constraints are forcing the adoption of new 

design methodologies for system-on-chip (SoC), namely, 

those that incorporate modularity and explicit parallelism. 
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To enable these MP-SoC platforms, researchers have 

recently pursued scalable communication-centric 

interconnect fabrics, such as networks-on-chip (NoC), which 

possess many features that are particularly attractive for 

these. These communication-centric interconnect fabrics are 

characterised by different trade-offs with regard to latency, 

throughput, energy dissipation, and silicon area 

requirements. In this paper, we develop a consistent and 

meaningful evaluation methodology to compare the 

performance and characteristics of a variety of NoC 

architectures. We also explore design trade-offs that 

characterise the NoC approach and obtain comparative 

results for a number of common NoC topologies. To the best 

of our knowledge, this is the first effort in characterising 

different NoC architectures with respect to their 

performance and design trade-offs. To further illustrate our 

evaluation methodology, we map a typical multiprocessing 

platform to different NoC interconnect architectures and 

show how the system performance is affected by these 

design trade-offs. 

 

2. Processor Design 
 

Processor design is the design engineering task of creating a 

processor, a key component of computer hardware. It is a 

subfield of computer engineering (design, development and 

implementation) and electronics engineering (fabrication). 

The design process involves choosing an instruction set and 

a certain execution paradigm (e.g. VLIW or RISC) and 

results in a microarchitecture, which might be described in 

e.g. VHDL or Verilog. For microprocessor design, this 

description is then manufactured employing some of the 

various semiconductor device fabrication processes, 

resulting in a die which is bonded onto a chip carrier. This 

chip carrier is then soldered onto, or inserted into a socket 

on, a printed circuit board (PCB). The mode of operation of 

any processor is the execution of lists of instructions. 

Instructions typically include those to compute or 

manipulate data values using registers, change or retrieve 

values in read/write memory, perform relational tests 

between data values and to control program flow. 

 

Basics- 

CPU design is divided into design of the following 

components: 

 Data paths (such as ALUs and pipelines) 

 Control unit: logic which controls the data paths 

 Memory components such as register files, caches 

 Clock circuitry such as clock drivers, PLLs, clock 

distribution networks 

 Pad transceiver circuitry 

 Logic gate cell library which is used to implement the 

logic 

 

CPUs designed for high-performance markets might require 

custom (optimised or application specific (see below)) 

designs for each of these items to achieve frequency, power-

dissipation, and chip-area goals whereas CPUs designed for 

lower performance markets might lessen the implementation 

burden by acquiring some of these items by purchasing them 

as intellectual property. Control logic implementation 

techniques (logic synthesis using CAD tools) can be used to 

implement data paths, register files, and clocks. Common 

logic styles used in CPU design include unstructured random 

logic, finite-state machines, microprogramming (common 

from 1965 to 1985), and Programmable logic arrays 

(common in the 1980s, no longer common). 

 

Implementation logic 

 

Device types used to implement the logic include: 

 Transistor-transistor logic Small Scale Integration logic 

chips - no longer used for CPUs 

 Programmable Array Logic and Programmable logic 

devices - no longer used for CPUs 

 Emitter-coupled logic (ECL) gate arrays - no longer 

common 

 CMOS gate arrays - no longer used for CPUs 

 CMOS mass-produced ICs - the vast majority of CPUs 

by volume 

 CMOS ASICs - only for a minority of special 

applications due to expense 

 Field-programmable gate arrays (FPGA) - common for 

soft microprocessors, and more or less required for 

reconfigurable computing 

 

A CPU design project generally has these major tasks: 

 Programmer-visible instruction set architecture, which 

can be implemented by a variety of microarchitectures 

 Architectural study and performance modelling in ANSI 

C/C++ or SystemC 

 High-level synthesis (HLS) or register transfer level 

(RTL, e.g. logic) implementation 

 RTL verification 

 Circuit design of speed critical components (caches, 

registers, ALUs) 

 Logic synthesis or logic-gate-level design 

 Timing analysis to confirm that all logic and circuits will 

run at the specified operating frequency 

 Physical design including floor planning, place and route 

of logic gates 

 Checking that RTL, gate-level, transistor-level and 

physical-level representations are equivalent 

 Checks for signal integrity, chip manufacturability 

 

Re-designing a CPU core to a smaller die-area helps to 

shrink everything (a "photomask shrink"), resulting in the 

same number of transistors on a smaller die. It improves 

performance (smaller transistors switch faster), reduces 

power (smaller wires have less parasitic capacitance) and 

reduces cost (more CPUs fit on the same wafer of silicon). 

Releasing a CPU on the same size die, but with a smaller 

CPU core, keeps the cost about the same but allows higher 

levels of integration within one very-large-scale integration 

chip (additional cache, multiple CPUs or other components), 

improving performance and reducing overall system cost. 

 

As with most complex electronic designs, the logic 

verification effort (proving that the design does not have 

bugs) now dominates the project schedule of a CPU. 

 

Key CPU architectural innovations include index register, 

cache, virtual memory, instruction pipelining, superscalar, 
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CISC, RISC, virtual machine, emulators, microprogram, and 

stack. 

 

Performance analysis and benchmarking 

Benchmarking is a way of testing CPU speed. Examples 

include SPECint and SPECfp, developed by Standard 

Performance Evaluation Corporation, and ConsumerMark 

developed by the Embedded Microprocessor Benchmark 

Consortium EEMBC. 

Some of the commonly used metrics include: 

 Instructions per second - Most consumers pick a 

computer architecture (normally Intel IA32 architecture) 

to be able to run a large base of pre-existing pre-

compiled software. Being relatively uninformed on 

computer benchmarks, some of them pick a particular 

CPU based on operating frequency (see Megahertz 

Myth). 

 FLOPS - The number of floating point operations per 

second is often important in selecting computers for 

scientific computations. 

 Performance per watt - System designers building 

parallel computers, such as Google, pick CPUs based on 

their speed per watt of power, because the cost of 

powering the CPU outweighs the cost of the CPU itself. 

 Some system designers building parallel computers pick 

CPUs based on the speed per dollar. 

 System designers building real-time computing systems 

want to guarantee worst-case response. That is easier to 

do when the CPU has low interrupt latency and when it 

has deterministic response. (DSP) 

 Computer programmers who program directly in 

assembly language want a CPU to support a full featured 

instruction set. 

 Low power - For systems with limited power sources 

(e.g. solar, batteries, human power). 

 Small size or low weight - for portable embedded 

systems, systems for spacecraft. 

 Environmental impact - Minimising environmental 

impact of computers during manufacturing and recycling 

as well during use. Reducing waste, reducing hazardous 

materials. (search Green computing). 

 

There may be tradeoffs in optimising some of these metrics. 

In particular, many design techniques that make a CPU run 

faster make the "performance per watt", "performance per 

dollar", and "deterministic response" much worse, and vice 

versa. 

 

Architecture Evaluation Activities 

 

Architecture Evaluation activities consisted of three stages. 

(i) Before the evaluation session, the groups prepared a short 

architecture evaluation questionnaire on quality attributes 

considered in the architecture design, key architecture design 

decisions, strengths and weaknesses of the design decisions, 

sensitivity and trade-off points, and risks and non-risks in 

the architecture [26]. (ii) During the evaluation sessions, the 

group whose architecture was evaluated presented the 

architecture while the group who was evaluating the 

architecture asked questions based upon their initial 

preparation as well as from integration perspective of their 

own architecture. During the architecture presentation, 

design artefacts were analysed for evaluation of the IoT 

subsystem architectures as well some new artefacts specific 

to architecture evaluation such as architecture utility trees 

[21] were generated to present architecture design decision 

corresponding to quality attributes. During the architecture 

evaluation sessions, sensitivity points, trade off points, 

architecture risks and architecture non risks were discussed. 

(iii) After the individual architecture evaluation sessions, a 

joint session was conducted in which each group briefly 

presented their IoT subsystem architecture, quality attributed 

those were considered in the architecture and feedback it 

received during the individual architecture evaluation 

session. Each group member also prepared a written report 

on the evaluation of the architecture that the group member 

had evaluated in the architecture evaluation session. The 

report was shared with teaching staff, who was responsible 

for design and analysis of the WoT architecture. The 

following shows commonly reported missing quality 

requirements, risky design decisions, sensitivity and trade-

off points, and common improvements suggested in the IoT 

subsystem architectures during the evaluation sessions. 

 
 

3. Methods 
 

Performance evaluation is at the foundation of computer 

architecture research and development. Contemporary 

microprocessors are so complex that architects cannot 

design systems based on intuition and simple models only. 

Adequate performance evaluation methods are absolutely 

crucial to steer the research and development process in the 

right direction. However, rigorous performance evaluation is 

non-trivial as there are multiple aspects to performance 

evaluation, such as picking workloads, selecting an 

appropriate modelling or simulation approach, running the 

model and interpreting the results using meaningful metrics. 

Each of these aspects is equally important and a 

performance evaluation method that lacks rigour in any of 

these crucial aspects may lead to inaccurate performance 

data and may drive research and development in a wrong 

direction. The goal of this book is to present an overview of 
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the current state-of-the-art in computer architecture 

performance evaluation, with a special emphasis on methods 

for exploring processor architectures. The book focuses on 

fundamental concepts and ideas for obtaining accurate 

performance data. The book covers various topics in 

performance evaluation, ranging from performance metrics, 

to workload selection, to various modelling approaches 

including mechanistic and empirical modelling. And 

because simulation is by far the most prevalent modelling 

technique, more than half the book's content is devoted to 

simulation. The book provides an overview of the simulation 

techniques in the computer designer's toolbox, followed by 

various simulation acceleration techniques including 

sampled simulation, statistical simulation, parallel 

simulation and hardware-accelerated simulation. 

 

4. Analysing Architectures 
 

Our tour of the ABC has gotten us to the stage where an 

architect has designed and documented an architecture. This 

leads us to discuss how to evaluate or to analyse the 

architecture to make sure it is the one that will do the job. 

That is the focus of which we begin by answering some 

basic questions about architectural evaluations-why, when, 

cost, benefits, techniques, planned or unplanned, 

preconditions, and results. 

 

Why 

One of the most important truths about the architecture of a 

system is that knowing it will tell you important properties 

of the system itself-even if the system does not yet exist. 

Architects make design decisions because of the 

downstream effects they will have on the system(s) they are 

building, and these effects are known and predictable. If 

they were not, the process of crafting an architecture would 

be no better than throwing dice: We would pick an 

architecture at random, build a system from it, see if the 

system had the desired properties, and go back to the 

drawing board if not. While architecture is not yet a 

cookbook science, we know we can do much better than 

random guessing. 

 

Architects by and large know the effects their design 

decisions will have. As we saw in architectural tactics and 

patterns in particular bring known properties to the systems 

in which they are used. Hence, design choices-that is to say, 

architectures-are analysable. Given an architecture, we can 

deduce things about the system, even if it has not been built 

yet. 

 

Why evaluate an architecture? Because so much is riding on 

it, and because you can. An effective technique to assess a 

candidate architecture-before it becomes the project's 

accepted blueprint-is of great economic value. With the 

advent of repeatable, structured methods (such as the 

ATAM), architecture evaluation has come to provide 

relatively a low-cost risk mitigation capability. Making sure 

the architecture is the right one simply makes good sense. 

An architecture evaluation should be a standard part of every 

architecture-based development methodology. 

 

 

 

When 

It is almost always cost-effective to evaluate software 

quality as early as possible in the life cycle. If problems are 

found early, they are easier to correct-a change to a 

requirement, specification, or design is all that is necessary. 

Software quality cannot be appended late in a project, but 

must be inherent from the beginning, built in by design. It is 

in the project's best interest for prospective candidate 

designs to be evaluated (and rejected, if necessary) during 

the design phase, before long-term institutionalisation. 

 

However, architecture evaluation can be carried out at many 

points during a system's life cycle. If the architecture is still 

embryonic, you can evaluate those decisions that have 

already been made or are being considered. You can choose 

among architectural alternatives. If the architecture is 

finished, or nearly so, you can validate it before the project 

commits too lengthy and expensive development. It also 

makes sense to evaluate the architecture of a legacy system 

that is undergoing modification, porting, integration with 

other systems, or other significant upgrades. Finally, 

architecture evaluation makes an excellent discovery 

vehicle: Development projects often need to understand how 

an inherited system meets (or whether it meets) its quality 

attribute requirements. 

 

Furthermore, when acquiring a large software system that 

will have a long lifetime, it is important that the acquiring 

organisation develop an understanding of the underlying 

architecture of the candidate. This makes an assessment of 

their suitability possible with respect to qualities of 

importance. 

 

Evaluation can also be used to choose between two 

competing architectures by evaluating both and seeing 

which one fares better against the criteria for "goodness." 

 

Cost 

The cost of an evaluation is the staff time required of the 

participants. AT&T, having performed approximately 300 

full-scale architecture reviews on projects requiring a 

minimum of 700 staff-days, reported that, based on 

estimates from individual project managers, the average cost 

was 70 staff-days. ATAM-based reviews require 

approximately 36 staff-days.If your organisation adopts a 

standing unit for carrying out evaluations, then costs for 

supporting it must be included, as well as time to train the 

members. 
[1]

 These figures are for the evaluation team. The 

ATAM also requires participation from project stakeholders 

and decision makers, which adds to the total. 

 

Benefits 

 

We enumerate six benefits that flow from holding 

architectural inspections. 

1) Financial. At AT&T, each project manager reports 

perceived savings from an architecture evaluation. On 

average, over an eight-year period, projects receiving a 

full architecture evaluation have reported a 10% 

reduction in project costs. Given the cost estimate of 70 

staff-days, this illustrates that on projects of 700 staff-

days or longer the review pays for itself. Other 

organisations have not publicised such strongly 
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quantified data, but several consultants have reported that 

more than 80% of their work was repeat business. Their 

customers recognised sufficient value to be willing to 

pay for additional evaluations. There are many anecdotes 

about estimated cost savings for customers' evaluations. 

A large company avoided a multi-million-dollar purchase 

when the architecture of the global information system 

they were procuring was found to be incapable of 

providing the desired system attributes. Early 

architectural analysis of an electronic funds transfer 

system showed a $50 billion transfer capability per night, 

which was only half of the desired capacity. An 

evaluation of a retail merchandise system revealed early 

that there would be peak order performance problems 

that no amount of hardware could fix, and a major 

business failure was prevented. And so on. There are also 

anecdotes of architecture evaluations that did not occur 

but should have. In one, a rewrite of a customer 

accounting system was estimated to take two years but 

after seven years the system had been reimplemented 

three times. Performance goals were never met despite 

the fact that the latest version used sixty times the CPU 

power of the original prototype version. In another case, 

involving a large engineering relational database system, 

performance problems were largely attributable to design 

decisions that made integration testing impossible. The 

project was canceled after $20 million had been spent. 

2) Forced preparation for the review. Indicating to the 

reviews the focus of the architecture evaluation and 

requiring a representation of the architecture before the 

evaluation is done means that reviews must document the 

system's architecture. Many systems do not have an 

architecture that is understandable to all developers. The 

existing description is either too brief or (more 

commonly) too long, perhaps thousands of pages. 

Furthermore, there are often misunderstandings among 

developers about some of the assumptions for their 

elements. The process of preparing for the evaluation 

will reveal many of these problems. 

3) Captured rationale. Architecture evaluation focuses on a 

few specific areas with specific questions to be answered. 

Answering these questions usually involves explaining 

the design choices and their rationales. A documented 

design rationale is important later in the life cycle so that 

the implications of modifications can be assessed. 

Capturing a rationale after the fact is one of the more 

difficult tasks in software development. Capturing it as 

presented in the architecture evaluation makes invaluable 

information available for later use. 

4) Early detection of problems with the existing 

architecture. The earlier in the life cycle that problems 

are detected, the cheaper it is to fix them. The problems 

that can be found by an architectural evaluation include 

unreasonable (or expensive) requirements, performance 

problems, and problems associated with potential 

downstream modifications. An architecture evaluation 

that exercises system modification scenarios can, for 

example, reveal portability and extensibility problems. In 

this way an architecture evaluation provides early insight 

into product capabilities and limitations. 

5) Validation of requirements. Discussion and examination 

of how well an architecture meets requirements opens up 

the requirements for discussion. What results is a much 

clearer understanding of the requirements and, usually, 

their prioritisation. Requirements creation, when isolated 

from early design, usually results in conflicting system 

properties. High performance, security, fault tolerance, 

and low cost are all easy to demand but difficult to 

achieve, and often impossible to achieve simultaneously. 

Architecture evaluations uncover the conflicts and 

tradeoffs, and provide a forum for their negotiated 

resolution. 

6) Improved architectures. Organisations that practice 

architecture evaluation as a standard part of their 

development process report an improvement in the 

quality of the architectures that are evaluated. As 

development organisations learn to anticipate the 

questions that will be asked, the issues that will be raised, 

and the documentation that will be required for 

evaluations, they naturally pre-position themselves to 

maximise their performance on the evaluation. 

Architecture evaluations result in better architectures not 

only after the fact but before the fact as well. Over time, 

an organisations develops a culture that promotes good 

architectural design. 

 

In sum, architecture evaluations tend to increase quality, 

control cost, and decrease budget risk. Architecture is the 

framework for all technical decisions and as such has a 

tremendous impact on product cost and quality. An 

architecture evaluation does not guarantee high quality or 

low cost, but it can point out areas of risk. Other factors, 

such as testing or quality of documentation and coding, 

contribute to the eventual cost and quality of the system. 

 

Techniques 

The ATAM and CBAM methods discussed in the next two 

chapters are examples of questioning techniques. Both use 

scenarios as the vehicle for asking probing questions about 

how the architecture under review responds to various 

situations. Other questioning techniques include checklists 

or questionnaires. These are effective when an evaluation 

unit encounters the same kind of system again and again, 

and the same kind of probing is appropriate each time. All 

questioning techniques essentially rely on thought 

experiments to find out how well the architecture is suited to 

its task. 

 

Complementing questioning techniques are measuring 

techniques, which rely on quantitative measures of some 

sort. One example of this technique is architectural metrics. 

Measuring an architecture's coupling, the cohesiveness of its 

modules, or the depth of its inheritance hierarchy suggests 

something about the modifiability of the resulting system. 

Likewise, building simulations or prototypes and then 

measuring them for qualities of interest (here, runtime 

qualities such as performance or availability) are measuring 

techniques. 

 

While the answers that measuring techniques give are in 

some sense more concrete than those questioning techniques 

provide, they have the drawback that they can be applied 

only in the presence of a working artefact. That is, 

measuring techniques have to have something that exists that 

can be measured. Questioning techniques, on the other hand, 
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work just fine on hypothetical architectures, and can be 

applied much earlier in the life cycle. 

 

Planned or Unplanned 

Evaluations can be planned or unplanned. A planned 

evaluation is considered a normal part of the project's 

development cycle. It is scheduled well in advance, built 

into the project's work plans and budget, and follow-up is 

expected. An unplanned evaluation is unexpected and 

usually the result of a project in serious trouble and taking 

extreme measures to try to salvage previous effort. 

 

The planned evaluation is ideally considered an asset to the 

project, at worst a distraction from it. It can be perceived not 

as a challenge to the technical authority of the project's 

members but as a validation of the project's initial direction. 

Planned evaluations are pro-active and team-building. 

 

An unplanned evaluation is more of an ordeal for project 

members, consuming extra project resources and time in the 

schedule from a project already struggling with both. It is 

initiated only when management perceives that a project has 

a substantial possibility of failure and needs to make a mid-

course correction. Unplanned evaluations are reactive, and 

tend to be tension filled. An evaluation's team leader must 

take care not to let the activities devolve into finger pointing. 

Needless to say, planned evaluations are preferable. 

 

5. Preconditions 
 

A successful evaluation will have the following properties: 

1) Clearly articulated goals and requirements for the 

architecture. An architecture is only suitable, or not, in 

the presence of specific quality attributes. One that 

delivers breathtaking performance may be totally wrong 

for an application that needs modifiability. Analysing an 

architecture without knowing the exact criteria for 

"goodness" is like beginning a trip without a destination 

in mind. Sometimes (but in our experience, almost 

never), the criteria are established in a requirements 

specification. More likely, they are elicited as a 

precursor to or as part of the actual evaluation. Goals 

define the purpose of the evaluation and should be made 

an explicit portion of the evaluation contract, discussed 

subsequently. 

2) Controlled scope. In order to focus the evaluation, a 

small number of explicit goals should be enumerated. 

The number should be kept to a minimum-around three 

to five-an inability to define a small number of high-

priority goals is an indication that the expectations for 

the evaluation (and perhaps the system) may be 

unrealistic. 

3) Cost-effectiveness. Evaluation sponsors should make 

sure that the benefits of the evaluation are likely to 

exceed the cost. The types of evaluation we describe are 

suitable for medium and large-scale projects but may 

not be cost-effective for small projects. 

4) Key personnel availability. It is imperative to secure the 

time of the architect or at least someone who can speak 

authoritatively about the system's architecture and 

design. This person (or these people) primarily should 

be able to communicate the facts of the architecture 

quickly and clearly as well as the motivation behind the 

architectural decisions. For very large systems, the 

designers for each major component need to be 

involved to ensure that the architect's notion of the 

system design is in fact reflected and manifested in its 

more detailed levels. These designers will also be able 

to speak to the behavioural and quality attributes of the 

components. For the ATAM, the architecture's 

stakeholders need to be identified and represented at the 

evaluation. It is essential to identify the customer(s) for 

the evaluation report and to elicit their values and 

expectations. 

5) Competent evaluation team. Ideally, software 

architecture evaluation teams are separate entities 

within a corporation, and must be perceived as 

impartial, objective, and respected. The team must be 

seen as being composed of people appropriate to carry 

out the evaluation, so that the project personnel will not 

regard the evaluation as a waste of time and so that its 

conclusions will carry weight. It must include people 

fluent in architecture and architectural issues and be led 

by someone with solid experience in designing and 

evaluating projects at the architectural level. 

6) Managed expectations. Critical to the evaluation's 

success is a clear, mutual understanding of the 

expectations of the organization sponsoring it. The 

evaluation should be clear about what its goals are, what 

it will produce, what areas it will (and will not) 

investigate, how much time and resources it will take 

from the project, and to whom the results will be 

delivered. 
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