
International Journal of Science and Research (IJSR)
ISSN: 2319-7064

ResearchGate Impact Factor (2018): 0.28 | SJIF (2018): 7.426

Volume 9 Issue 2, February 2020

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

Evaluated Design of High-Performance Processing

Architectures

Utkarsh Rastogi

Department of Computer Engineering and Applications, GLA University, India

Abstract: I present the design and evaluation of two new processing elements for reconfigurable computing. I also present a circuit-

level implementation of the data paths in static and dynamic design styles to explore the various performance-power tradeoffs involved.

When implemented in IBM 90-nm CMOS process, the 8-b data paths achieve operating frequencies ranging over 1 GHz both for static

and dynamic implementations, with each data path supporting single- cycle computational capability. A novel single-precision floating

point processing element (FPPE) using a 24-b variant of the proposed data paths is also presented. The full dynamic implementation of

the FPPE shows that it operates at a frequency of 1 GHz with 6.5-mW average power consumption. Comparison with competing

architectures shows that the FPPE provides two orders of magnitude higher throughput. Furthermore, to evaluate its feasibility as a

soft- processing solution, we also map the floating point unit onto the Virtex 4 and 5 devices, and observe that the unit requires less than

1% of the total logic slices, while utilising only around 4% of the DSP blocks available. When compared against popular field-

programmable-gate-array-based floating point units, our design on Virtex 5 showed significantly lower resource utilisation, while

achieving comparable peak operating frequency. 3D integration of solid-state memories and logic, as demonstrated by the Hybrid

Memory Cube (HMC), offers major opportunities for revisiting near-memory computation and gives new hope to mitigate the power and

performance losses caused by the “memory wall”. Several publications in the past few years demonstrate this renewed interest. In this

paper we present the first exploration steps towards design of the Smart Memory Cube (SMC), a new Processor-in- Memory (PIM)

architecture that enhances the capabilities of the logic-base (LoB) die in HMC. An accurate simulation environment called SMCSim has

been developed, along with a full featured software stack. The key contribution of this work is full system analysis of near memory

computation including high-level software to low-level firmware and hardware layers, considering offloading and dynamic overheads

caused by the operating system (OS), cache coherence, and memory management. A zero-copy pointer passing mechanism has been

devised to allow low overhead data sharing between the host and the PIM. Benchmarking results demonstrate up to 2X performance

improvement in comparison with the host System-on-Chip (SoC), and around 1.5X against a similar host-side accelerator. Moreover, by

scaling down the voltage and frequency of PIM’s processor it is possible to reduce energy by around 70 % and 55 % in comparison with

the host and the accelerator, respectively.

Keywords: High Performance Computing, HiPC, Low End Computing, Super Computers, Personal Computers

1. Introduction

At a hardware level, the overall system performance of these

architectures depends on: 1) the top-level array and

interconnection scheme and 2) the individual processing

cell. While factors such as organisation of the cells,

interconnection network, and memory hierarchy (in case of

shared memory architectures) are critical to system

throughput, it should be noted that the individual processing

cells are the main workhorses of the system and hence are

perhaps equally critical to the total processing throughput. It

is therefore important to develop extendable arithmetic

processing units which allow modular system design in

order to guarantee maximum throughput from a

reconfigurable array-based architecture. Another important

requirement of modern DSP and media processing

applications is to provide floating-point capability. This

ability, if achieved by reusing or extending integer data

paths, allows faster development time, low-cost system

implementation, as well as possible FPGA implementation

of the data paths.

In this paper, I present the architectures of two integer

reconfigurable data paths. The proposed data paths can

perform single-cycle addition, subtraction, multiplication,

and accumulation operations. They can be used in multicore

platforms to perform more complex arithmetic and logical

operations. The data paths have a short and uniform critical

path across the range of operations. Each of the data paths is

extendable and can be parameterised to support higher

precision arithmetic, and software-assisted variable-

precision reconfigurable systems. Eight-bit versions of the

integer data paths were implemented using the IBM 90-nm

process using static, domino, and data-driven dynamic logic

(D3L). Simulation results show that the data paths can

achieve operating frequencies in the range of 1 GHz. Using

the findings from the architectural and circuit analysis on the

integer data paths, a new single-precision floating point

processing element (FPPE) using the 24-b extension of the

data paths is also presented. The full dynamic

implementation of the FPPE operates at a frequency of 1

GHz with 6.5-mW average power consumption.

To understand the feasibility of the proposed data paths for

FPGA applications, we also performed synthesis

experiments using Xilinx Virtex 4 and 5 FPGAs. These

experiments helped to understand the tradeoffs associated

with choosing optimum granularities and the impact of

modularising large-width operations on system throughput.

The FPPE was also synthesized to evaluate its potential as a

soft floating point PE. Comparative analysis with competing

architectures shows that the proposed FPPE achieves

comparable performance at significantly lower resource

utilisation.

Multiprocessing System-on-chip

Multiprocessor system-on-chip (MP-SoC) platforms are

emerging as an important trend for SoC design. Power and

wire design constraints are forcing the adoption of new

design methodologies for system-on-chip (SoC), namely,

those that incorporate modularity and explicit parallelism.

Paper ID: SR20209233302 DOI: 10.21275/SR20209233302 1337

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

ResearchGate Impact Factor (2018): 0.28 | SJIF (2018): 7.426

Volume 9 Issue 2, February 2020

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

To enable these MP-SoC platforms, researchers have

recently pursued scalable communication-centric

interconnect fabrics, such as networks-on-chip (NoC), which

possess many features that are particularly attractive for

these. These communication-centric interconnect fabrics are

characterised by different trade-offs with regard to latency,

throughput, energy dissipation, and silicon area

requirements. In this paper, we develop a consistent and

meaningful evaluation methodology to compare the

performance and characteristics of a variety of NoC

architectures. We also explore design trade-offs that

characterise the NoC approach and obtain comparative

results for a number of common NoC topologies. To the best

of our knowledge, this is the first effort in characterising

different NoC architectures with respect to their

performance and design trade-offs. To further illustrate our

evaluation methodology, we map a typical multiprocessing

platform to different NoC interconnect architectures and

show how the system performance is affected by these

design trade-offs.

2. Processor Design

Processor design is the design engineering task of creating a

processor, a key component of computer hardware. It is a

subfield of computer engineering (design, development and

implementation) and electronics engineering (fabrication).

The design process involves choosing an instruction set and

a certain execution paradigm (e.g. VLIW or RISC) and

results in a microarchitecture, which might be described in

e.g. VHDL or Verilog. For microprocessor design, this

description is then manufactured employing some of the

various semiconductor device fabrication processes,

resulting in a die which is bonded onto a chip carrier. This

chip carrier is then soldered onto, or inserted into a socket

on, a printed circuit board (PCB). The mode of operation of

any processor is the execution of lists of instructions.

Instructions typically include those to compute or

manipulate data values using registers, change or retrieve

values in read/write memory, perform relational tests

between data values and to control program flow.

Basics-

CPU design is divided into design of the following

components:

 Data paths (such as ALUs and pipelines)

 Control unit: logic which controls the data paths

 Memory components such as register files, caches

 Clock circuitry such as clock drivers, PLLs, clock

distribution networks

 Pad transceiver circuitry

 Logic gate cell library which is used to implement the

logic

CPUs designed for high-performance markets might require

custom (optimised or application specific (see below))

designs for each of these items to achieve frequency, power-

dissipation, and chip-area goals whereas CPUs designed for

lower performance markets might lessen the implementation

burden by acquiring some of these items by purchasing them

as intellectual property. Control logic implementation

techniques (logic synthesis using CAD tools) can be used to

implement data paths, register files, and clocks. Common

logic styles used in CPU design include unstructured random

logic, finite-state machines, microprogramming (common

from 1965 to 1985), and Programmable logic arrays

(common in the 1980s, no longer common).

Implementation logic

Device types used to implement the logic include:

 Transistor-transistor logic Small Scale Integration logic

chips - no longer used for CPUs

 Programmable Array Logic and Programmable logic

devices - no longer used for CPUs

 Emitter-coupled logic (ECL) gate arrays - no longer

common

 CMOS gate arrays - no longer used for CPUs

 CMOS mass-produced ICs - the vast majority of CPUs

by volume

 CMOS ASICs - only for a minority of special

applications due to expense

 Field-programmable gate arrays (FPGA) - common for

soft microprocessors, and more or less required for

reconfigurable computing

A CPU design project generally has these major tasks:

 Programmer-visible instruction set architecture, which

can be implemented by a variety of microarchitectures

 Architectural study and performance modelling in ANSI

C/C++ or SystemC

 High-level synthesis (HLS) or register transfer level

(RTL, e.g. logic) implementation

 RTL verification

 Circuit design of speed critical components (caches,

registers, ALUs)

 Logic synthesis or logic-gate-level design

 Timing analysis to confirm that all logic and circuits will

run at the specified operating frequency

 Physical design including floor planning, place and route

of logic gates

 Checking that RTL, gate-level, transistor-level and

physical-level representations are equivalent

 Checks for signal integrity, chip manufacturability

Re-designing a CPU core to a smaller die-area helps to

shrink everything (a "photomask shrink"), resulting in the

same number of transistors on a smaller die. It improves

performance (smaller transistors switch faster), reduces

power (smaller wires have less parasitic capacitance) and

reduces cost (more CPUs fit on the same wafer of silicon).

Releasing a CPU on the same size die, but with a smaller

CPU core, keeps the cost about the same but allows higher

levels of integration within one very-large-scale integration

chip (additional cache, multiple CPUs or other components),

improving performance and reducing overall system cost.

As with most complex electronic designs, the logic

verification effort (proving that the design does not have

bugs) now dominates the project schedule of a CPU.

Key CPU architectural innovations include index register,

cache, virtual memory, instruction pipelining, superscalar,

Paper ID: SR20209233302 DOI: 10.21275/SR20209233302 1338

https://en.wikipedia.org/wiki/Computer_hardware
https://en.wikipedia.org/wiki/Chip_carrier
https://en.wikipedia.org/wiki/Printed_circuit_board
https://en.wikipedia.org/wiki/Application-specific_integrated_circuit
https://en.wikipedia.org/wiki/High-level_synthesis
https://en.wikipedia.org/wiki/Register_transfer_level

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

ResearchGate Impact Factor (2018): 0.28 | SJIF (2018): 7.426

Volume 9 Issue 2, February 2020

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

CISC, RISC, virtual machine, emulators, microprogram, and

stack.

Performance analysis and benchmarking

Benchmarking is a way of testing CPU speed. Examples

include SPECint and SPECfp, developed by Standard

Performance Evaluation Corporation, and ConsumerMark

developed by the Embedded Microprocessor Benchmark

Consortium EEMBC.

Some of the commonly used metrics include:

 Instructions per second - Most consumers pick a

computer architecture (normally Intel IA32 architecture)

to be able to run a large base of pre-existing pre-

compiled software. Being relatively uninformed on

computer benchmarks, some of them pick a particular

CPU based on operating frequency (see Megahertz

Myth).

 FLOPS - The number of floating point operations per

second is often important in selecting computers for

scientific computations.

 Performance per watt - System designers building

parallel computers, such as Google, pick CPUs based on

their speed per watt of power, because the cost of

powering the CPU outweighs the cost of the CPU itself.

 Some system designers building parallel computers pick

CPUs based on the speed per dollar.

 System designers building real-time computing systems

want to guarantee worst-case response. That is easier to

do when the CPU has low interrupt latency and when it

has deterministic response. (DSP)

 Computer programmers who program directly in

assembly language want a CPU to support a full featured

instruction set.

 Low power - For systems with limited power sources

(e.g. solar, batteries, human power).

 Small size or low weight - for portable embedded

systems, systems for spacecraft.

 Environmental impact - Minimising environmental

impact of computers during manufacturing and recycling

as well during use. Reducing waste, reducing hazardous

materials. (search Green computing).

There may be tradeoffs in optimising some of these metrics.

In particular, many design techniques that make a CPU run

faster make the "performance per watt", "performance per

dollar", and "deterministic response" much worse, and vice

versa.

Architecture Evaluation Activities

Architecture Evaluation activities consisted of three stages.

(i) Before the evaluation session, the groups prepared a short

architecture evaluation questionnaire on quality attributes

considered in the architecture design, key architecture design

decisions, strengths and weaknesses of the design decisions,

sensitivity and trade-off points, and risks and non-risks in

the architecture [26]. (ii) During the evaluation sessions, the

group whose architecture was evaluated presented the

architecture while the group who was evaluating the

architecture asked questions based upon their initial

preparation as well as from integration perspective of their

own architecture. During the architecture presentation,

design artefacts were analysed for evaluation of the IoT

subsystem architectures as well some new artefacts specific

to architecture evaluation such as architecture utility trees

[21] were generated to present architecture design decision

corresponding to quality attributes. During the architecture

evaluation sessions, sensitivity points, trade off points,

architecture risks and architecture non risks were discussed.

(iii) After the individual architecture evaluation sessions, a

joint session was conducted in which each group briefly

presented their IoT subsystem architecture, quality attributed

those were considered in the architecture and feedback it

received during the individual architecture evaluation

session. Each group member also prepared a written report

on the evaluation of the architecture that the group member

had evaluated in the architecture evaluation session. The

report was shared with teaching staff, who was responsible

for design and analysis of the WoT architecture. The

following shows commonly reported missing quality

requirements, risky design decisions, sensitivity and trade-

off points, and common improvements suggested in the IoT

subsystem architectures during the evaluation sessions.

3. Methods

Performance evaluation is at the foundation of computer

architecture research and development. Contemporary

microprocessors are so complex that architects cannot

design systems based on intuition and simple models only.

Adequate performance evaluation methods are absolutely

crucial to steer the research and development process in the

right direction. However, rigorous performance evaluation is

non-trivial as there are multiple aspects to performance

evaluation, such as picking workloads, selecting an

appropriate modelling or simulation approach, running the

model and interpreting the results using meaningful metrics.

Each of these aspects is equally important and a

performance evaluation method that lacks rigour in any of

these crucial aspects may lead to inaccurate performance

data and may drive research and development in a wrong

direction. The goal of this book is to present an overview of

Paper ID: SR20209233302 DOI: 10.21275/SR20209233302 1339

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

ResearchGate Impact Factor (2018): 0.28 | SJIF (2018): 7.426

Volume 9 Issue 2, February 2020

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

the current state-of-the-art in computer architecture

performance evaluation, with a special emphasis on methods

for exploring processor architectures. The book focuses on

fundamental concepts and ideas for obtaining accurate

performance data. The book covers various topics in

performance evaluation, ranging from performance metrics,

to workload selection, to various modelling approaches

including mechanistic and empirical modelling. And

because simulation is by far the most prevalent modelling

technique, more than half the book's content is devoted to

simulation. The book provides an overview of the simulation

techniques in the computer designer's toolbox, followed by

various simulation acceleration techniques including

sampled simulation, statistical simulation, parallel

simulation and hardware-accelerated simulation.

4. Analysing Architectures

Our tour of the ABC has gotten us to the stage where an

architect has designed and documented an architecture. This

leads us to discuss how to evaluate or to analyse the

architecture to make sure it is the one that will do the job.

That is the focus of which we begin by answering some

basic questions about architectural evaluations-why, when,

cost, benefits, techniques, planned or unplanned,

preconditions, and results.

Why

One of the most important truths about the architecture of a

system is that knowing it will tell you important properties

of the system itself-even if the system does not yet exist.

Architects make design decisions because of the

downstream effects they will have on the system(s) they are

building, and these effects are known and predictable. If

they were not, the process of crafting an architecture would

be no better than throwing dice: We would pick an

architecture at random, build a system from it, see if the

system had the desired properties, and go back to the

drawing board if not. While architecture is not yet a

cookbook science, we know we can do much better than

random guessing.

Architects by and large know the effects their design

decisions will have. As we saw in architectural tactics and

patterns in particular bring known properties to the systems

in which they are used. Hence, design choices-that is to say,

architectures-are analysable. Given an architecture, we can

deduce things about the system, even if it has not been built

yet.

Why evaluate an architecture? Because so much is riding on

it, and because you can. An effective technique to assess a

candidate architecture-before it becomes the project's

accepted blueprint-is of great economic value. With the

advent of repeatable, structured methods (such as the

ATAM), architecture evaluation has come to provide

relatively a low-cost risk mitigation capability. Making sure

the architecture is the right one simply makes good sense.

An architecture evaluation should be a standard part of every

architecture-based development methodology.

When

It is almost always cost-effective to evaluate software

quality as early as possible in the life cycle. If problems are

found early, they are easier to correct-a change to a

requirement, specification, or design is all that is necessary.

Software quality cannot be appended late in a project, but

must be inherent from the beginning, built in by design. It is

in the project's best interest for prospective candidate

designs to be evaluated (and rejected, if necessary) during

the design phase, before long-term institutionalisation.

However, architecture evaluation can be carried out at many

points during a system's life cycle. If the architecture is still

embryonic, you can evaluate those decisions that have

already been made or are being considered. You can choose

among architectural alternatives. If the architecture is

finished, or nearly so, you can validate it before the project

commits too lengthy and expensive development. It also

makes sense to evaluate the architecture of a legacy system

that is undergoing modification, porting, integration with

other systems, or other significant upgrades. Finally,

architecture evaluation makes an excellent discovery

vehicle: Development projects often need to understand how

an inherited system meets (or whether it meets) its quality

attribute requirements.

Furthermore, when acquiring a large software system that

will have a long lifetime, it is important that the acquiring

organisation develop an understanding of the underlying

architecture of the candidate. This makes an assessment of

their suitability possible with respect to qualities of

importance.

Evaluation can also be used to choose between two

competing architectures by evaluating both and seeing

which one fares better against the criteria for "goodness."

Cost

The cost of an evaluation is the staff time required of the

participants. AT&T, having performed approximately 300

full-scale architecture reviews on projects requiring a

minimum of 700 staff-days, reported that, based on

estimates from individual project managers, the average cost

was 70 staff-days. ATAM-based reviews require

approximately 36 staff-days.If your organisation adopts a

standing unit for carrying out evaluations, then costs for

supporting it must be included, as well as time to train the

members.
[1]

 These figures are for the evaluation team. The

ATAM also requires participation from project stakeholders

and decision makers, which adds to the total.

Benefits

We enumerate six benefits that flow from holding

architectural inspections.

1) Financial. At AT&T, each project manager reports

perceived savings from an architecture evaluation. On

average, over an eight-year period, projects receiving a

full architecture evaluation have reported a 10%

reduction in project costs. Given the cost estimate of 70

staff-days, this illustrates that on projects of 700 staff-

days or longer the review pays for itself. Other

organisations have not publicised such strongly

Paper ID: SR20209233302 DOI: 10.21275/SR20209233302 1340

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

ResearchGate Impact Factor (2018): 0.28 | SJIF (2018): 7.426

Volume 9 Issue 2, February 2020

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

quantified data, but several consultants have reported that

more than 80% of their work was repeat business. Their

customers recognised sufficient value to be willing to

pay for additional evaluations. There are many anecdotes

about estimated cost savings for customers' evaluations.

A large company avoided a multi-million-dollar purchase

when the architecture of the global information system

they were procuring was found to be incapable of

providing the desired system attributes. Early

architectural analysis of an electronic funds transfer

system showed a $50 billion transfer capability per night,

which was only half of the desired capacity. An

evaluation of a retail merchandise system revealed early

that there would be peak order performance problems

that no amount of hardware could fix, and a major

business failure was prevented. And so on. There are also

anecdotes of architecture evaluations that did not occur

but should have. In one, a rewrite of a customer

accounting system was estimated to take two years but

after seven years the system had been reimplemented

three times. Performance goals were never met despite

the fact that the latest version used sixty times the CPU

power of the original prototype version. In another case,

involving a large engineering relational database system,

performance problems were largely attributable to design

decisions that made integration testing impossible. The

project was canceled after $20 million had been spent.

2) Forced preparation for the review. Indicating to the

reviews the focus of the architecture evaluation and

requiring a representation of the architecture before the

evaluation is done means that reviews must document the

system's architecture. Many systems do not have an

architecture that is understandable to all developers. The

existing description is either too brief or (more

commonly) too long, perhaps thousands of pages.

Furthermore, there are often misunderstandings among

developers about some of the assumptions for their

elements. The process of preparing for the evaluation

will reveal many of these problems.

3) Captured rationale. Architecture evaluation focuses on a

few specific areas with specific questions to be answered.

Answering these questions usually involves explaining

the design choices and their rationales. A documented

design rationale is important later in the life cycle so that

the implications of modifications can be assessed.

Capturing a rationale after the fact is one of the more

difficult tasks in software development. Capturing it as

presented in the architecture evaluation makes invaluable

information available for later use.

4) Early detection of problems with the existing

architecture. The earlier in the life cycle that problems

are detected, the cheaper it is to fix them. The problems

that can be found by an architectural evaluation include

unreasonable (or expensive) requirements, performance

problems, and problems associated with potential

downstream modifications. An architecture evaluation

that exercises system modification scenarios can, for

example, reveal portability and extensibility problems. In

this way an architecture evaluation provides early insight

into product capabilities and limitations.

5) Validation of requirements. Discussion and examination

of how well an architecture meets requirements opens up

the requirements for discussion. What results is a much

clearer understanding of the requirements and, usually,

their prioritisation. Requirements creation, when isolated

from early design, usually results in conflicting system

properties. High performance, security, fault tolerance,

and low cost are all easy to demand but difficult to

achieve, and often impossible to achieve simultaneously.

Architecture evaluations uncover the conflicts and

tradeoffs, and provide a forum for their negotiated

resolution.

6) Improved architectures. Organisations that practice

architecture evaluation as a standard part of their

development process report an improvement in the

quality of the architectures that are evaluated. As

development organisations learn to anticipate the

questions that will be asked, the issues that will be raised,

and the documentation that will be required for

evaluations, they naturally pre-position themselves to

maximise their performance on the evaluation.

Architecture evaluations result in better architectures not

only after the fact but before the fact as well. Over time,

an organisations develops a culture that promotes good

architectural design.

In sum, architecture evaluations tend to increase quality,

control cost, and decrease budget risk. Architecture is the

framework for all technical decisions and as such has a

tremendous impact on product cost and quality. An

architecture evaluation does not guarantee high quality or

low cost, but it can point out areas of risk. Other factors,

such as testing or quality of documentation and coding,

contribute to the eventual cost and quality of the system.

Techniques

The ATAM and CBAM methods discussed in the next two

chapters are examples of questioning techniques. Both use

scenarios as the vehicle for asking probing questions about

how the architecture under review responds to various

situations. Other questioning techniques include checklists

or questionnaires. These are effective when an evaluation

unit encounters the same kind of system again and again,

and the same kind of probing is appropriate each time. All

questioning techniques essentially rely on thought

experiments to find out how well the architecture is suited to

its task.

Complementing questioning techniques are measuring

techniques, which rely on quantitative measures of some

sort. One example of this technique is architectural metrics.

Measuring an architecture's coupling, the cohesiveness of its

modules, or the depth of its inheritance hierarchy suggests

something about the modifiability of the resulting system.

Likewise, building simulations or prototypes and then

measuring them for qualities of interest (here, runtime

qualities such as performance or availability) are measuring

techniques.

While the answers that measuring techniques give are in

some sense more concrete than those questioning techniques

provide, they have the drawback that they can be applied

only in the presence of a working artefact. That is,

measuring techniques have to have something that exists that

can be measured. Questioning techniques, on the other hand,

Paper ID: SR20209233302 DOI: 10.21275/SR20209233302 1341

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

ResearchGate Impact Factor (2018): 0.28 | SJIF (2018): 7.426

Volume 9 Issue 2, February 2020

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

work just fine on hypothetical architectures, and can be

applied much earlier in the life cycle.

Planned or Unplanned

Evaluations can be planned or unplanned. A planned

evaluation is considered a normal part of the project's

development cycle. It is scheduled well in advance, built

into the project's work plans and budget, and follow-up is

expected. An unplanned evaluation is unexpected and

usually the result of a project in serious trouble and taking

extreme measures to try to salvage previous effort.

The planned evaluation is ideally considered an asset to the

project, at worst a distraction from it. It can be perceived not

as a challenge to the technical authority of the project's

members but as a validation of the project's initial direction.

Planned evaluations are pro-active and team-building.

An unplanned evaluation is more of an ordeal for project

members, consuming extra project resources and time in the

schedule from a project already struggling with both. It is

initiated only when management perceives that a project has

a substantial possibility of failure and needs to make a mid-

course correction. Unplanned evaluations are reactive, and

tend to be tension filled. An evaluation's team leader must

take care not to let the activities devolve into finger pointing.

Needless to say, planned evaluations are preferable.

5. Preconditions

A successful evaluation will have the following properties:

1) Clearly articulated goals and requirements for the

architecture. An architecture is only suitable, or not, in

the presence of specific quality attributes. One that

delivers breathtaking performance may be totally wrong

for an application that needs modifiability. Analysing an

architecture without knowing the exact criteria for

"goodness" is like beginning a trip without a destination

in mind. Sometimes (but in our experience, almost

never), the criteria are established in a requirements

specification. More likely, they are elicited as a

precursor to or as part of the actual evaluation. Goals

define the purpose of the evaluation and should be made

an explicit portion of the evaluation contract, discussed

subsequently.

2) Controlled scope. In order to focus the evaluation, a

small number of explicit goals should be enumerated.

The number should be kept to a minimum-around three

to five-an inability to define a small number of high-

priority goals is an indication that the expectations for

the evaluation (and perhaps the system) may be

unrealistic.

3) Cost-effectiveness. Evaluation sponsors should make

sure that the benefits of the evaluation are likely to

exceed the cost. The types of evaluation we describe are

suitable for medium and large-scale projects but may

not be cost-effective for small projects.

4) Key personnel availability. It is imperative to secure the

time of the architect or at least someone who can speak

authoritatively about the system's architecture and

design. This person (or these people) primarily should

be able to communicate the facts of the architecture

quickly and clearly as well as the motivation behind the

architectural decisions. For very large systems, the

designers for each major component need to be

involved to ensure that the architect's notion of the

system design is in fact reflected and manifested in its

more detailed levels. These designers will also be able

to speak to the behavioural and quality attributes of the

components. For the ATAM, the architecture's

stakeholders need to be identified and represented at the

evaluation. It is essential to identify the customer(s) for

the evaluation report and to elicit their values and

expectations.

5) Competent evaluation team. Ideally, software

architecture evaluation teams are separate entities

within a corporation, and must be perceived as

impartial, objective, and respected. The team must be

seen as being composed of people appropriate to carry

out the evaluation, so that the project personnel will not

regard the evaluation as a waste of time and so that its

conclusions will carry weight. It must include people

fluent in architecture and architectural issues and be led

by someone with solid experience in designing and

evaluating projects at the architectural level.

6) Managed expectations. Critical to the evaluation's

success is a clear, mutual understanding of the

expectations of the organization sponsoring it. The

evaluation should be clear about what its goals are, what

it will produce, what areas it will (and will not)

investigate, how much time and resources it will take

from the project, and to whom the results will be

delivered.

6. Acknowledgement

I would like to say Thanks to Centra, Universidade Téchnia

de Lisboa, Sergio Almeida, Lisbon Gravity Group, Professor

Vitor Cardoso for letting me access the relevant data and

information for my research. I further want to thank my

mentor Dr. Manoj Choubey who had introduced me to High

Performance computing and also helped me on

parallel/concurrent computing that really helped to clarify

the subject.

References

[1] https://www.sciencedirect.com/science/article/pii/S138

9128602004541

[2] https://ieeexplore.ieee.org/abstract/document/1453503

[3] https://www.sciencedirect.com/topics/computer-

science/architecture-evaluation

[4] http://www.ece.ubc.ca/~matei/EECE417/BASS/part03.

html

[5] ”EEMBC ConsumerMark". Archived from the original

on March 27, 2005.

[6] Stephen Shankland (December 9, 2005). "Power could

cost more than servers, Google warns”.

[7] Kerr, Justin. "AMD Loses Market Share as Mobile

CPU Sales Outsell Desktop for the First Time."

Maximum PC. Published 2010-10-26.

[8] "New system manages hundreds of transactions per

second" article by Robert Horst and Sandra Metz, of

Tandem Computers Inc., "Electronics" magazine, 1984

April 19: "While most high-performance CPUs require

four to five years to develop, The NonStopTXP

Paper ID: SR20209233302 DOI: 10.21275/SR20209233302 1342

http://www.ece.ubc.ca/~matei/EECE417/BASS/part03.html
http://www.ece.ubc.ca/~matei/EECE417/BASS/part03.html

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

ResearchGate Impact Factor (2018): 0.28 | SJIF (2018): 7.426

Volume 9 Issue 2, February 2020

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

processor took just 2+1/2 years -- six months to

develop a complete written specification, one year to

construct a working prototype, and another year to

reach volume production.”

[9] S. Mittal, "A survey of techniques for improving

energy efficiency in embedded computing systems",

IJCAET, 6(4), 440–459, 2014.

[10] Curtis A. Nelson. 8051 overview. Archived from the

original pdf on 2011-10-09. Retrieved 2011-07-10

[11] Square millimetres per 8051, 0.013 in 45nm line-

widths;

[12] To figure dollars per square millimetres, see [1], and

note that an SOC component has no pin or packaging

costs.

[13] "ARM Cores Climb Into 3G Territory" by Mark

Hachman, 2002.

[14] "The Two Percent Solution" by Jim Turley 2002.

[15] "ARM's way" 1998

[16] "Why the Propeller Works" by Chip Gracey

[17] "Interview with William Mensch"

[18] C.H. Séquin; D.A. Patterson. "Design and

Implementation of RISC I" (PDF).

[19] "the VHS". Archived from the original on 2010-02-27.

[20] Jan Gray. "Teaching Computer Design with FPGAs".

[21] Norman P. Jouppi; Jeffrey Y. F. Tang (1989). "A 20-

MIPS Sustained 32-bit CMOS Microprocessor with

High Ratio of Sustained to Peak Performance". p. i.

CiteSeerX 10.1.1.85.988

[22] "MultiTitan: Four Architecture Papers" (PDF). 1988.

pp. 4–5.

Paper ID: SR20209233302 DOI: 10.21275/SR20209233302 1343

http://www.overclockers.com/forums/showthread.php?t=550542
https://en.wikipedia.org/w/index.php?title=Chip_Gracey&action=edit&redlink=1

