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Abstract: The aim of this paper is to introduce GARCH-modelling and its application on Rwanda food inflation data spanning from 

January, 2004 to December, 2018(180-observations). On the basis of estimation results of various GARCH models and diagnostic check 

has shown that the AR-GARCH with Gaussian distributed innovations is most appropriate specification for modeling food inflation 

volatility in Rwanda. The study finds no evidence of asymmetry in the response of food inflation volatility to negative and positive 

shocks. Simulation on estimated AR-GARCH with Gaussian distributed innovations and a 6-years (72months) forecast from January 

2019 to December 2024 were also made. Hence, the AR-GARCH with Gaussian distribution of innovations could be a widely useful tool 

for modelling the food inflation volatility in Rwanda. 
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1. Introduction 
 

Time series analysis is an ordered sequence of values of a 

variable at equally spaced time intervals. It is used to 

understand the determining factors and structure behind the 

observed data, choose a model to forecast, thereby leading to 

better decision making (Chatfield, C. 2000). Inflation as 

described by Webster, D. (2000) is the persistent increase in 

the level of consumer prices or persistent decline in the 

purchasing power of money. Currently, inflation is the one 

of the major economic challenges in the most developing 

countries and it becomes focus of economic policy 

worldwide as described by (David, F.H (2001). The inflation 

dynamics can be studied using a stochastic modelling 

approach that captures the time dependent structure 

embedded in the time series inflation data.  

 

The autoregressive conditional heteroscedasticity (ARCH) 

models, with its extension to generalized autoregressive 

conditional heteroscedasticity (GARCH) models as 

introduced by Engle, R. (1982) and Bollerslev, T. (1986) 

respectively accommodate the dynamics of conditional 

heteroscedasticity  have been found to be useful for several 

time series modelling, the applications in economics and  

finance have been particularly successful. 

 

This study introduce GARCH-modelling and its application 

on Rwanda food inflation data to choose the most suitable 

model that explains behavior of food inflation in Rwanda. 

 

The rest of this paper is structured into three sections after 

the introduction; GARCH modeling is presented in section 

two while the third section presents application of GARCH 

modeling to Rwanda food inflation data. 

 

2. Garch Modelling  
 

2.1. Overview 

 

The stylized characteristics of financial time series data 

include: almost zero correlation, absolute/squared data 

exhibit high correlation and excess kurtosis/ heavy tailed 

distribution. Consider the general form of conditional 

variance model 

t t ty e  .…………………………….(1) 

t t te   ..………………………………(2) 

Firstly we see that value of dependent variable ty  consists 

of mean t  and innovation te . In practice t  can be 

chosen as conditional mean of ty  such that 

1 1( / ) ( )t t t ty g         where 1t  is arbitrary 

historical information affecting value of ty . In other words 

we model every t  by suitable linear regress model or 

using AR process. Often is sufficient use just fixed value t

=   or t =0. Innovation t

 consists of variance (volatility) root t  where 

2

1 1 1( ) var( / ) var( / )t t t t t t th h e y         

 and i.i.d. random variable from normal or t -distribution  

(0,1)t N   or ( )t t v  . 

 

Originally, variance (volatility) is developed based on 

Standard Normal (Gaussian) distribution .In other words 

/ (0,1)t t th N   . Hence, the conditional density of 

t  can be constructed as follows. 

 1 1 2 1, ,...,t t t     
  

 
'

, , ,      
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2
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1
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h
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h



 


  .…(3) 
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Then, the log-likelihood function corresponding to equation 

(3) is: 

1

2

( / ) ln ( / , )
T

t t

t

L f    



  ….………….(4) 

 where 
'

1, 2( ,..., )T     

and MLE estimator ̂  is obtained by maximizing Equation 

(4). Additionally, standard deviation of ̂  is acquired by 

taking square root of diagonal terms of the inversed fisher 

information (Bollerslev, 1986) 

 

However, significant evidence suggests that the financial 

time series is rarely Gaussian but typically leptokurtic and 

heavy-tailed (see, for example, Bollerslev, 1987). Therefore, 

if the true distribution is not Gaussian, MLE standard 

deviation of ̂  estimated in the above procedure will be 

inconsistent. To solve this problem, the Quasi-Maximum 

Likelihood Estimation (QMLE) based on Gaussian is further 

derived. The algorithm of QMLE to estimate  ̂  is the same 

as described that by Equations (3) and (4). The only 

difference is the way to estimate a robust standard deviation 

of  ̂  (Bollerslev & Wooldridge, 1992). It is argued that the 

QMLE standard deviation is asymptotically consistent, even 

if the true distribution of t is not Gaussian. 

 

Alternatively, although QMLE can lead to consistent 

estimates, it is argued that QMLE of GARCH model is not 

efficient. Among the existing literature, Student‟s t-

distribution is widely used alternative in finance research 

(Chkili et al., 2012; Fan et al., 2008; Mabrouk & Saadi, 

2012; 2011). This distribution can capture leptokurtic and 

heavy-tail behaviours. When it applied to the 

variance (volatility) , the corresponding density functions of 

t is  described below. 

 
……………..(5) 

The MLE estimator ̂   can be obtained in the same way as 

that described on normal distribution. 

 

From fragmented notation above we can write general 

conditional variance model as is known in econometrics 

literature 

 

1 1( ) ( )t t t t t t t t t ty h g h             
 

……………...(6) 

 

Observe that innovations te  are not correlated but are 

dependent through t term (later we will briefly see 1t  

contains lagged 
2

t ). If g  is non-linear function then 

model is non-linear in mean, conversely if h  is non-linear 

then model is non-linear in variance which in turn means 

that th  is changing non-linearly with every t  through a 

function of 1t . Since now we should know what 

autoregressive conditional heteroskedasticity means. 

 

2.2. ARCH Model 

 

The ARCH model which was introduced by Rober Engle in 

1982. If we take (6) and specify condition (based on 

historical information  1t ) for  t we get ARCH(m) 

model  

t t ty e   where t t te    

2 2

0 1

1

m

t i t

i

e   



  …………………….……..(7) 

 

where  t are i.i.d. random variables with normal or t -

distribution, zero mean and unit variance. As mentioned 

earlier in practice we can drop t  term thus get  

 

,t ty e  where ,t t te    

2 2

0 1

1

m

t i t

i

e   



  or regress mean with exogenous 

explanatory variables as  

0 ,

1

,
k

t i t i t

i

y x e 


   where ,t t te    

2 2

0 1

1

m

t i t

i

e   



   or use any other suitable model. 

Recall that significant fluctuation in past innovations will 

notably affect current volatility (variance). Regarding 

positivity and stationarity of variance
2

t  , coefficients in (7) 

condition have to satisfy following constraints 

0 1

1

0, 0,..., 0, 1
m

m i

i

   


   
 

 

Properties of ARCH (m) Model 

 

The Mean: From equation 7the conditional expectation and 

variance of is: tx  ( ) 0ty  since the expectation of 

0t 

  

The Second Moment or Variance: 
2 2 2 2( ) ( ) ( )t t t ty        ,since

2 1  following a 

standard normal distribution of t  

2 2

0 1

1

( ) ( )
m

t i t

i

y   



    , given
2 2

1( ) ( )t ty   

under stationarity assumption, 

2 0

1

( )

1
t m
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i


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
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For ARCH(1), the variance is given by: 

2 0

1

( )
1

t





 


………………………(8) 

The Kurtosis: 

 

First, the forth moment of the time series is obtained, 

     4 2 2 4 2 2 4 2 2( ) ( ) ( ) ( ) 3 ( )t t t t t ty            

 

 2 2 2 2 2 2 2 4

0 1 0 0 1 1

1 1 1

( ) ( ) 2 ( ) ( )
pm m

t i t i t i t

i i i

y y y        

  

 
         

 
  

 

Substituting equation, we have: 

4 2 2 2 4

0 0 1 1

1 1

( ) 3 2 ( ) ( )
m m

t i t i t

i i

y y y    

 

 
      

 
   

Under stationarity, 

2 2 0

1

( ) ( )

1
t t m

i

i

y







   


 and 

4 4

1( ) ( )t ty y     

2

0
4 1

2

1 1

(1 )

( ) 3

(1 )(1 3 )

m

i

i
t m m

i i

i i

y

 

 



 



 

 



 
…………………………………………………….……(9) 

The Kurtosis is given by: 

 

4

2
2

( )
( )

( )

t

t

y
K y

y





 

Substituting equations (8) and (9), we get: 

1 1

2

1

(1 )(1 )

( ) 3

1 3

m m

i i

i i

m

i

i

K y

 



 



 





 
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 ,therefore, the kurtosis 

is 
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When 1i  , we get ARCH(1), then the Kurtosis of 

ARCH(1) is; 

 
2

1

2

1

1
3

1 3
K










………………………………………………………………

………………….(10) 

 

Which is strictly greater than 3 unless 1 0 
 
.The kurtosis 

for a normally distributed random variable  is 3. Thus, the 

kurtosis of ty is greater than the kurtosis of a normal 

distribution, and the distribution of ty has a heavier tail than 

the normal distribution, when 1 1  . 

Fitting Procedure for ARCH model  

 

There are two steps in model fitting: 

 

Step1: Plotting the inflation series and analyzing the 

autocorrelation function (ACF) and the partial 

autocorrelation function (PACF). We check for correlation 

in the inflation series by performing the autocorrelation 

function to compute and display the sample ACF of the 

returns and by plotting the partial correlation functions. The 

ACF definition (Auto correlation function) 

A time series tX has mean function  t tX    

The auto correlation function (ACF) is 

,

( )
( ) ( )

(0)
t h

x h
x h corr X X

x





   

PACF Definition (Partial Autocorrelation Function) of the k-

th order is defined as: 

 
Step2: Performing preliminary tests, such as ARCH effect 

test or the Q-test.  

 

We can quantify the preceding qualitative checks for 

correlation using formal hypothesis checks, like Ljung-Box-

Pierce Q-test and Engle‟s ARCH test. By performing a 

Ljung-Box-Pierce Q-test, we can verify, at least 

approximately, the presence of any significant correlation in 

the inflation when tested for up to 20 lags of the ACF at the 

0.05 level of significance. 

 

Weakness of ARCH model  

Despite ARCH model able to capture the characteristics of 

financial time series data, it has some weaknesses that may 

make GARCH model better. These weaknesses include; 

ARCH treats positive and negative inflation in the same way 

(by past square inflation), it is very restrictive in parameters, 

it does not provide any new insight for understanding 

financial time series, it often over-predicts the volatility, 

because it respond slowly to large shocks and volatility from 

it persists for relatively short amount of times unless m is 

large. 

 

2.3. GARCH Model 

 

GARCH model was introduced by Robert Engle‟s(1982) 

and Tim Bollerslev in 1986. Both GARCH and ARCH 

models allow for leptokurtic distribution of innovations te

 and volatility clustering (conditional heteroskedasticity) in 

time series but neither of them adjusts for leverage effect. So 

what is the advantage of GARCH over ARCH? ARCH 

model often requires high order  m  thus many parameters 

have to be estimated which in turn brings need for higher 

computing power. Moreover the bigger order m  is, the 

higher probability of breaking aforementioned constraints 

there is. GARCH is “upgraded” ARCH in that way it allows 
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current volatility to be dependent on 

its lagged values directly. GARCH( m , n ) is defined as  

,t t ty e  where ,t t te    

2 2 2

0

1 1

m m

t i t i i t j

i i

e    

 

    ………………(11) 

Where t are i.i.d. random variables with normal or t -

distribution, zero mean and unit variance. Parameters 

constraints are very similar as for ARCH model, 

0

1 1

0, 0, 0, 1
m n

i j i j

i j

    
 

      

In practice even GARCH (1,1) with three parameters can 

describe complex volatility structures and it‟s sufficient for 

most applications. We can forecast future volatility 
2ˆ
t  

of GARCH(1,1) model using 
2 2 2 2

1 1
ˆ ( ) ( )t t



           

Where, 
2 0

1 21




 


 
 

is unconditional variance of innovations te . Observe that 

for 1 1 1    as      we get 
2 2ˆ
t    . So 

prediction of volatility goes with time asymptotically to the 

unconditional variance. 

 

Properties of GARCH (m,n) 

 

The mean:  

From equation (3), the conditional expectation and variance 

of tx is: ( ) 0ty  since the expectation of 0t   

 

The Second Moment or Variance: 
2 2 2 2( ) ( ) ( )t t t ty         

2 2 2

0

1 1

( ) ( ) ( )
m m

t i t i j t j

i j

y     

 

        

Given
2 2 2

1( ) ( ) ( )t t t jy       under stationarity 

assumption, 

2 0

1 1

( )

1 ( )
t m n

i i

i i




 
 

 

  
 

For GARCH (1, 1) 

2 0

1 1

( )
1 ( )

t




 
 

 
 …………(12) 

 

The Kurtosis: 

First the forth moment of the time series is obtained; 

     4 2 2 4 2 2 4 2 2( ) ( ) ( ) ( ) 3 ( )t t t t t ty            

but  2 2 2 2 2

0

1 1

( ) ( )
m n

t i t i j t j

i j

y     

 

 
     

 
 

 

 
=When 1i j  , we get GARCH (1, 1) 

 
Assuming the process is stationary, 

   2 2 2 2

1( ) ( )t t     Hence 

 

 4 2 2( ) 3 ( )t ty     

2 2

0 0 1 1

2 2

1 1 1 1 1 1

2 ( )
3

(1 )(1 3 2 )
K

   

     

 


    
……….(13) 

The Kurtosis is given by; 

 

4

2
2

( )

( )

t

t

y
K

y





 

Substituting equation (12) and equation (13), we get; 

 
1 1

2 2

1 1 1 1

1 ( )
3

1 3 2 )
K

 

   

 


  
…………..……(14) 

Which is strictly greater than 3 unless 1 0   

 

2.4. GJR-GARCH Model 

 

There are some aspects of the model which can be 

improved so that it can better capture the characteristics and 

dynamics of a particular time series in leverage effects, 

volatility clustering and leptokurtosis are commonly 

observed in financial time series. The model which adjusts 

even for asymmetric responses of volatility to innovation 

fluctuations. GJR-GARCH was developed by Glosten, 

Jagannathan, Runkle in 1993. Sometimes referred as T-

GARCH or TARCH if just ARCH with GJR modification 

is used. GJR-GARCH(p,q,r) is defined as follows 

,t t ty e  where t t te    

………….(15) 

where k  are leverage coefficients and tI  is indicator 

function. Observe that for 0k   negative innovations te

 give additional value to volatility 
2

t  thus we achieve 

adjustment for asymmetric impact on volatility as discussed 

at the beginning of the article. For 0k   we get GARCH 
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(m = p, n = q) model and for 0k   we get exotic result 

where upward swings in return or price have stronger impact 

on volatility than the downward moves. Need to mention 

that in most implementations of GJR-GARCH we will find 

GJR-GARCH (p,q) where leverage order 0  is automatically 

considered equal to order p . Parameters constraints are 

again very similar as for GARCH, we have 

  
 

Prediction for GJR-GARCH can be estimated as  

2 21 1
0 1

ˆ ( 1)
2

t t

 
    


    …………….(16) 

 

2.5. Model selection criteria 

 

Selection criteria assess whether a fitted model offers an 

optimal balance between the goodness-of-fit and parsimony. 

The most common model selection criteria such as the 

Akaike Information Criterion (AIC), the Bayesian 

Information Criterion (BIC), the Schwarz information 

criterion (SIC), Hannan Quinn Criterion (HQ) and 

Loglikelihood (LL)were used as bases for selection criteria.  

 2log(max ) 2AIC likelihood k   where, 

2 1k p q    if the model contains an intercept or a 

constant term and k p q   

 2log( ) 2( )BIC L m    

 2log( ) 2 log(log )HQ L m n    

Where m and n are number of observations (sample size) 

and parameter in the model respectively and log l is the log

likelihood. The desirable model is one that minimizes the 

AIC, the BIC, the HQ, SIC and LL. 

 

2.6. Forecast of Conditional Variance in GARCH model 

 
The formula used to calculate the multi-step ahead forecasts 

of the conditional variance for the GARCH(1,1)model is 

obtained as illustrated. For such a model, the variance 

equation is 
2 2 2

0 1 1 1 1t t ty        ……….(17) 

 

Denote the forecast origin by n and the forecast horizon by

h  let nF be the information set available at time n .For

1h  ,the 1-step ahead forecast of the conditional variance 

is simply 

 
………….(18) 

 

For 2h  by using the assumption that tZ ‟ s are i.i.d. 

(0,1)N , we have  

 

  =
2

0 1 1 1( )* ( \ )n tF       ………………….(19) 

 

By the same argument, it is easily seen that for j h , the j
-step ahead forecast of the conditional variance of the 

GARCH(1,1) model  is 

 

   =
2

0 1 1 1( )* ( \ )n j tF        ………….(20) 

Therefore, the forecasts of the conditional variances of an 

GARCH (1,1) model can be computed recursively. 

 

3. Application Grach Modeling to Application 

to Food Inflation Volatility in Rwanda 
 

3.1 Introduction 

 

Modelling food inflation volatility is crucial for the policy 

makers, it provides path of policy formulation particularly 

for central bank to achieve the price stability. The price 

instability can generally jeopardize the entire 

macroeconomic stability (Bonato, 1998).  

 

It is vital for central bank to understand the future path of 

inflation to anchor expectations and ensure policy 

credibility; the key aspects of an effective monetary policy 

transmission mechanism (King, 2005). 

 

We apply GARCH models on food inflation volatility to 

choose the most suitable model that explains behavior of 

food inflation in Rwanda using dataset spanning from 

January, 2004 to December, 2018.  

 

3.2 Brief empirical review 

 

Ngailo and Massawe (2014) used monthly inflation data 

observations from Tanzania and considered the GARCH 

approach in modelling inflation rates for eleven years from 

2000 to 2011. After performing all the diagnostic checks on 

Jarque bera test on kurtosis and the stationarity using 

Augmented ducker fuller test. They found out that the 

inflation returns volatility works better with the class of 

GARCH (1, 1). 

 

Awogbemi and Oluwaseyi (2011) results showed that 

ARCH and GARCH models are better models because they 

give lower values of AIC and BIC as compared to the 

conventional Box and Jenkins ARMA models for inflation 

in Nigeria. The researchers also observed that since 

volatility seems to persist in all the commodity items, people 

who expect a rise in the rate of inflation (the „bullish 

crowd‟) will be highly favored in the market of the said 

commodity items.  

 

Jiang (2011) believed that it was worthy to investigate the 

inflation and inflation uncertainty relationship in China as it 

is commonly believed that one possible channel that 

inflation imposes significant economic costs is through its 

effect on inflation uncertainty. He addressed the relationship 

of inflation and its uncertainty in China‟s urban and rural 

areas separately given the huge urban-rural gaps In 
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conclusion he said that TGARCH (1,1) was the best in 

studying the inflation rate volatility in China. 

 

 

4. Results and Discussions  
 

An important characteristic of Rwanda‟s food inflation data 

is volatility which has been measured in term of food CPI in 

log difference as shown in the following: 

 

 

 

 
Figure 1: Volatility in food inflation series 

Source: Author‟s computation 

 

The mean reverting (food inflation tend to remain around a 

certain value) property can also be seen clearly where the 

food inflation revolve around zero.  

Let‟s examine character of food inflation mean, ACF, PACF 

and Ljung-Box test help us in this decision. Note that tr

 series is stationary with mean t very close to zero. Using 

everywhere just tr  instead of innovations te  but correct is 

to use innovations/residuals.  

 
Figure 2: Inflation innovation series 

Source: Author‟s computation 

 

The ACF and PACF show us that food inflation is 

autocorrelated .We can also reject Ljung-Box test hypothesis 

with  1.5233e-09p value   thus there is at least one 

non-zero correlation coefficient in { (1), (2), (3)}  

.Next we check for conditional heteroskedasticity of food 

inflation by examining autocorrelation of squared 

innovations 
2

te . 
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Figure 3: Squared innovation series 

Source: Author‟s computation 

 

The squared innovation series exhibits autocorrelation which 

tells us that variance of food inflation is significantly 

autocorrelated thus food inflation is conditionally 

heteroskedastic. 

 

ARCH test rejects 0H with p value  =0.0058 in favor of 

the 1H  hypothesis ,so food inflation innovations te

 are autocorrelated and conditionally heteroskedastic. Let 

slight modify ,t t t t t tr e e      where t  is 

conditional mean and te  is conditional innovation.  

 

To describe  tr  by AR-GARCH models by setting up 

the ARIMA model objects. This model corresponds to 

 1 2t t t t tr c r r        ….…….(21) 

2 2 2

0 1 1t i t i te       ………….…...(22) 

Assuming  that t  is (0,1)t N   or  ( )t t v   and i.i.d. 

We compare quality of both models using information 

criterions. 

 

ARIMA(2,0,0) Model (Gaussian Distribution) 

 Value Standard Error T Statistic P Value 

Constant 0.60975 0.15799 3.8594 0.00011366 

AR{2} -0.12045 0.077317 -1.5579 0.11925 

GARCH(1,1) Conditional Variance  

Model (Gaussian Distribution) 

 Value Standard Error T Statistic P Value 

Constant 0.11388 0.14513 0.78466 0.43265 

GARCH{1} 0.92106 0.063158 14.584 3.5762e-48 

ARCH{1} 0.044942 0.033943 1.3241 0.18548 

Source: Author‟s estimation 

 

Hence we can rewrite (21) and (22) as 

20.60975 0.12045      t t t ttr er     

2 2 2

1 10.11388   0.044942  0.92106 t t te    
 

We have just one unknown volatility or conditional variance 

of inflation 
2

t which we can recursively infer. We found 

out that 1 0   in (21) thus has no explanatory power for 

food inflation as dependent variable. Moreover it seems that 

innovations autocorrelation is not strong enough to give 

statistical significance to 2  in (21). T-test t-statistic 

for  2  doesn‟t fall into the critical region so we can‟t reject 

hypothesis about zero explanatory power of this coefficient. 

For innovations from t -distribution we get: 

 
ARIMA(2,0,0) Model (t Distribution) 

 Value Standard Error T Statistic P Value 

Constant 0.62394 0.15522 4.0197 5.8268e-05 

AR{2} -0.11344 0.081409 -1.3935 0.16348 

DoF 33.857 99.049 0.34182 0.73248 

GARCH(1,1) Conditional Variance Model (t Distribution) 

 Value Standard Error T Statistic P Value 

Constant 0.10715 0.15353 0.69791 0.48523 

GARCH{1} 0.92729 0.067611 13.715 8.2582e-43 

ARCH{1} 0.040631 0.035706 1.1379 0.25515 

DoF 33.857 99.049 0.34182 0.73248 

Source: Author‟s estimation 

 

Hence we can rewrite (5) and (6) as  

20.62394  0.11344      t t t ttr er      

2 2 2

1 10.10715  0.040631  0.92729  t t te      

 

So which model choose now? Model Let‟s examine it 

quantitatively by AIC, BIC. Before we can compare our 

models we need to infer log-likelihood objective functions 

for each of the model. We can also extract final conditional 

variances volatilities. 

AIC = 743.4660   745.2433 

BIC = 759.4030   764.3676 

 

So both  Bayesian Information Criterion (BIC) and Akaike 

Information Criterion (AIC) indicate that AR-GARCH with 

Gaussian distributed innovations should be chosen. 

 

Now we specify and estimate AR-GJR-GARCH adjusting 

for asymmetric volatility responses and compare it with 

better performing AR-GARCH with Gaussian distribution 

innovations using AIC and BIC. We will define just version 

with Gaussian distributed innovations. 
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ARIMA(2,0,0) Model (Gaussian Distribution) 

 Value Standard Error T Statistic P Value 

Constant 0.62742 0.15083 4.1599 3.1841e-05 

AR{2} -0.11287 0.081779 -1.3802 0.16753 

GARCH(1,1) Conditional Variance  

Model (Gaussian Distribution) 

 Value Standard Error T Statistic P Value 

Constant 0.16162 0.17446 0.92644 0.35422 

GARCH{1} 0.90567 0.072424 12.505 7.0076e-36 

ARCH{1} 0.095191 0.063572 1.4974 0.13429 

Leverage{1} -0.095191 0.072066 -1.3209 0.18654 

Source: Author‟s estimation 

 

Therefore original AR-GARCH slightly outperforms AR-

GJR-GARCH. Actually it is obvious from the output of AR-

GJR-GARCH estimate because leverage coefficient is 

statistically insignificant. Our resulting conditional mean 

and variance model is AR-GARCH with Gaussian 

distributed innovations te  in the following form: 

20.60975 0.12045      t t t ttr er     

2 2 2

1 10.11388   0.044942  0.92106 t t te      

 

3.4 Simulation in  GARCH Model and Conditional 

Variances 

 

Let‟s plot food CPI along with AR-GARCH with Gaussian 

distributed innovations and AR-GARCH with t-distributed 

innovations. 

 
Figure 4: Comparison of generated volatilities 

Source: Author‟s computation 

 

Simulate conditional variance or response paths from a fully 

specified AR-GARCH model object. That is, simulate from 

an estimated AR-GARCH model in which specify all 

parameter values. Plot the average and the 97.5% and 2.5% 

percentiles of the simulated paths.  

 

 
Figure 4: Compare the simulation statistics to the original data 

Source: Author‟s computation 
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3.5 Forecast of Conditional Variance in GARCH model 

 

Forecast the conditional variance of the food inflation series 

6 years into the future using the estimated AR-GARCH 

model. Specify the entire food inflation series as presample 

observations. The software infers presample conditional 

variances using the presample observations and the model.  

 

 

 
Figure 5: Plot the forecasted conditional variances of the food inflation. 

Source: Author‟s computation 

 

5. Conclusions 
 

This paper introduce GARCH-modelling and its application 

on Rwanda food inflation data spanning from January, 2004 

to December, 2018. On the basis of estimation results of 

various GARCH Models and diagnostic check has shown 

that the AR-GARCH with Gaussian distributed innovations 

is most appropriate specification for modeling food inflation 

volatility in Rwanda.  

 

The study finds no evidence of asymmetry in the response of 

food inflation volatility to negative and positive shocks. We 

further checked the robustness of results in simulation by 

fitting the food inflation into the estimated AR-GARCH 

with Gaussian distributed innovations; its density of the 

fitted Gaussian distribution is the closest to the smoothed 

estimates of the data and we demonstrate that AR-GARCH 

with Gaussian with 6-years (72months) forecast from 

January 2019 to December 2024.  

 

Hence, the AR-GARCH with Gaussian distribution of 

innovations could be a widely useful tool for modelling the 

food inflation volatility in Rwanda. 
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