
International Journal of Science and Research (IJSR)
ISSN: 2319-7064

ResearchGate Impact Factor (2018): 0.28 | SJIF (2018): 7.426

Volume 9 Issue 2, February 2020

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

Leveraging Open-Source Reuse: Implications for

Software Maintenance

Raghavendra Sridhar

Independent Researcher

Email: princeraj01[at]gmail.com

Abstract: The increasing popularity of Open Source Software (OSS) has positioned its use in maintenance activities as a significant area

of interest. However, dedicated research into reuse-based maintenance strategies specifically for OSS remains limited. To address this, our

work began by identifying key attributes and metrics of OSS maintenance processes through a comprehensive literature study. Building

on these findings, we have proposed a framework model designed to facilitate the reuse of OSS applications in software maintenance,

addressing the current lack of well-specified guidelines for such practices. Our framework aims to streamline the process, effectively

bridging the gap between receiving a change request and implementing a reuse-based maintenance solution leveraging OSS.

Keywords: Open source software (OSS), software maintenance, maintenance process models, reuse-based maintenance, OSS customization,

component reuse, software evolution, modularity analysis, change management, software quality

1. Introduction

Since its emergence in 1998, Open Source Software (OSS)

has grown in popularity and is now widely used across

companies, communities, homes, and governments. OSS is

developed through a collaborative model, allowing numerous

developers and users to contribute to its creation and

distribution via trusted online repositories. Under OSS license

agreements, users are granted the freedom to run, copy,

modify, and distribute the software, including making

improvements to local copies [1]. Today, OSS plays a critical

role in nearly every area of computing technology—serving

as the foundation for mobile applications and devices, next-

generation databases, cloud computing platforms, software-

as-a-service (SaaS), and the broader internet infrastructure

[2], [3]. As copyrighted software approved by the Open

Source Initiative (OSI), OSS licenses permit integration with

other software components and redistribution by developers

[4], [5]. Both source code and compiled binaries are

accessible and commonly applied across various software

domains, including popular tools like Firefox, MySQL,

Linux, Audacity, and even MS Internet Explorer. Although

some open-source projects may lack comprehensive

documentation, they typically follow domain-specific

standards. The most widely adopted OSS license, the General

Public License (GPL), is used in approximately 70% of open-

source projects by developers and end users alike [6].

From the standpoint of software development and

maintenance, Open Source Software (OSS) diverges

significantly from traditional, structured software engineering

methodologies. In conventional models, development is

typically carried out by designated teams with clearly defined

roles and responsibilities. In contrast, OSS development is

characterized by a decentralized and collaborative approach,

where contributions can be made by any volunteer developer

or user. These contributors engage in post-release source code

modification, defect identification, analysis, and

dissemination of updates, often without centralized oversight

[7].

The OSS development life cycle generally comprises four

distinct phases [1], [8], [9]:

• Cathedral Phase: Initial development is conducted in a

closed environment by a core developer or project leader,

without external contributions.

• Transition Phase: This intermediate stage marks the shift

from closed to open development. Once the architecture is

sufficiently modular and stable, a prototype is released to

facilitate broader collaboration.

• Bazaar Phase: The project is made publicly accessible,

enabling a wider community to participate in bug

reporting, source code modification, and enhancement

activities.

• Maturity Phase: At this stage, the software reaches a high

level of stability and adoption, characterized by a lower

defect rate and reduced frequency of changes.

While the OSS paradigm has demonstrated benefits such as

reduced development costs and improved software quality

[10], it lacks a universally accepted life cycle model for

guiding both development and maintenance activities.

Instead, the process is largely influenced by the competencies,

experiences, and objectives of individual contributors. The

absence of a formal organizational structure may introduce

variability in the quality and consistency of the maintenance

process. Furthermore, OSS practices are often insufficiently

documented, with ill-defined boundaries between

development and maintenance phases [11]. As OSS continues

to gain traction in various domains, effective strategies for its

maintenance and evolution have become increasingly critical.

This paper takes a close look at what makes maintenance in

Open Source Software (OSS) unique, especially from a

technical perspective, and explores the key features that

define how OSS maintenance works. Based on this analysis,

we introduce a practical framework designed to help teams

make the most of OSS when reusing components for

maintenance tasks. We also put our framework to the test,

evaluating how reliable, user-friendly, and efficient it is in

real-world scenarios.

Paper ID: MS2002134347 DOI: https://dx.doi.org/10.21275/MS2002134347 1969

www.ijsr.net
http://creativecommons.org/licenses/by/4.0/

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

ResearchGate Impact Factor (2018): 0.28 | SJIF (2018): 7.426

Volume 9 Issue 2, February 2020

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

Here’s how the paper is organized: In Section 2, we start by

reviewing what other researchers have discovered about

reusing OSS for software maintenance. Section 3 dives into

some of the main methods people use for reuse-based

maintenance, giving you a clear overview of the different

approaches out there. In Section IV, we lay out our own

framework, walking through how it works step by step.

Finally, Section 5 wraps things up with a summary of what

we found and some thoughts on where this research could go

next.

2. A Survey of Open Source Software Research

Software maintenance is generally understood as any

modification made to a system after it has been delivered to

users. The open and collaborative nature of Open Source

Software (OSS) development can offer distinct advantages for

managing and maintaining software, often contributing to

higher project success rates. However, for maintainers aiming

to reuse OSS components effectively, it is important to

consider the underlying development model of the OSS in

question. For instance, the bazaar model, with its informal

management style and limited documentation, may pose

challenges that can lower the likelihood of project success,

whereas the cathedral model adopts a more structured, top

down approach [14], typically supported by comprehensive

policies and better documentation, which tends to enhance

both the quality and reliability of OSS. The openness of OSS

projects means they are constantly evolving, with frequent

changes and contributions from a diverse community of

developers. As a result, the long term success of OSS

initiatives often hinges on the ability to break the software

into well defined, modular components and to provide clear,

thorough documentation of specifications, factors that are

especially critical when considering OSS for reuse in

maintenance processes, as they directly impact how easily and

effectively the software can be adapted and maintained over

time.

For many organizations, ensuring access to reliable source

code is a primary objective. Given that open-source software

(OSS) is freely available and typically subject to minimal

licensing restrictions, organizations often prefer to use OSS

without making direct modifications to the source code.

However, unplanned or ad hoc modifications can result in

significant challenges—such as the proliferation of

unmanageable OSS versions or the simultaneous use of

incompatible versions within the same organization. To

address these issues, OSS projects must implement robust

configuration management practices to control versioning and

manage software changes effectively, supporting long-term

software evolution [16].

Koponen and Hotti conducted an analysis of two prominent

OSS projects—Mozilla Web Browser and Apache HTTP

Server—to identify core OSS maintenance activities. They

categorized these activities into two pre-delivery and thirteen

post-delivery tasks, drawing parallels to the ISO/IEC standard

software maintenance process [17].

In OSS maintenance, practitioners primarily rely on two

forms of documentation: the source code with embedded

comments and the documentation related to the logical data

model and requirements specification. Access to the source

code, along with the executable, enables maintainers to

modify the software when needed for bug fixes,

enhancements, or component reuse. Studies have shown that

such documentation is considered even more critical than

software architecture in facilitating system comprehension.

Among maintainers, these artifacts are regarded as essential

tools for effective software understanding and maintenance

[9], [18].

Several researchers have examined and compared the

maintenance processes outlined in the ISO standard with

those observed in Open Source Software (OSS) projects. In

these studies, tools such as Defect Management Systems

(DMS), which are used to log and track defect reports, and

Version Management Systems (VMS), which enable

developers to revert to previous versions when recent changes

are problematic, played a central role. The findings indicate

that OSS maintenance practices often differ from traditional

approaches by lacking formal retirement and migration

stages. Additionally, it was noted that, in OSS environments,

the acceptance of modifications typically occurs after the

changes have already been implemented, rather than

beforehand.

3. Exploring Approaches to Software

Maintenance Through Component Reuse

3.1. Approaches to Maintenance Through Reuse

Contemporary software updates frequently involve

modifying specific components of existing systems while

incorporating previously developed software elements and

potentially introducing new components. These reusable

elements are typically sourced from repositories containing

commercial off-the-shelf (COTS) components or Open

Source Software (OSS) resources.

The existing software systems can be reused through three

primary models:

• Rapid Resolution Model: When facing time constraints,

this approach prioritizes quickly identifying the issue,

implementing code modifications to address defects as

expeditiously as possible, and subsequently updating

documentation.

• Progressive Enhancement Model: This model is

appropriate when requirements lack complete clarity. It

follows a process where documentation is first modified,

followed by corresponding code-level changes. This

approach inherently supports component reuse.

• Comprehensive Reuse Model: This strategy requires

thorough understanding of all system components. It

involves constructing a new system by integrating elements

from the original system with components available in

established repositories.

Paper ID: MS2002134347 DOI: https://dx.doi.org/10.21275/MS2002134347 1970

www.ijsr.net
http://creativecommons.org/licenses/by/4.0/

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

ResearchGate Impact Factor (2018): 0.28 | SJIF (2018): 7.426

Volume 9 Issue 2, February 2020

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

Figure 1: Reuse-based model

Fig 1 illustrates the key phases of component-based software

engineering, where development relies on integrating

reusable components that have been previously created by

other developers.

3.2 Advantages of Maintenance Through Component

Reuse

Implementing a reuse-based approach to software

maintenance offers several significant benefits:

• Enhanced System Reliability: Utilizing previously tested

and validated components increases overall system

dependability.

• Minimized Process Risk: Incorporating established

components reduces uncertainties associated with

development and maintenance activities.

• Productivity Enhancement: Development teams can

accomplish more in less time by leveraging existing

solutions rather than building from scratch.

• Improved Standards Compliance: Reused code often

better adheres to industry standards due to its repeated

application and refinement.

• Shortened Development Cycles: Projects reach

completion faster when utilizing pre-existing, proven

components.

• Superior Architectural Qualities: Reusable components

typically exhibit desirable structural characteristics,

including well-defined modularity, reduced

interdependencies (low coupling), strong internal

cohesion, and consistent programming conventions.

4. A Proposed General Framework

4.1 Key Factors Influencing OSS Reuse in Maintenance

To develop an effective framework for Open Source Software

(OSS) reuse in maintenance activities, we must first identify

the critical factors that influence decision making in this

domain. These factors span organizational, technical, and

human dimensions that collectively shape the success of OSS

integration. At the organizational level, the structure of

development and maintenance teams, which includes clearly

defined roles, responsibilities, and decision making authority,

significantly impacts maintenance effectiveness. This is

particularly important given that OSS processes are often

poorly documented compared to traditional software

development approaches. Technical considerations include

the functional size of the OSS, which directly affects

complexity as larger systems tend to exhibit non linear growth

in algorithmic complexity. Similarly, data manipulation

complexity, which is influenced by internal data structures,

external logical files, and input output requirements, plays a

crucial role in determining reuse suitability.

The distributed nature of OSS functionality, including the

number of semantic processing steps and transformations,

introduces additional complexity that must be carefully

evaluated. Application domain specificity and OSS type (such

as real time software) further constrain reuse decisions, as do

architectural considerations and component engineering

practices. Human factors cannot be overlooked, as the skills

and experience of software maintainers directly impact their

ability to effectively integrate and maintain OSS components.

The expected software lifetime also influences reuse

decisions, particularly when considering long term support

implications. Additionally, diverse programming

methodologies and languages used across OSS projects can

present integration challenges that must be addressed.

Documentation quality serves as a critical enabler of visibility

and communication throughout the software lifecycle, though

its comprehensiveness varies considerably across different

OSS projects and process models. Practical considerations

such as ease of installation and interoperability with existing

systems directly affect implementation feasibility. The

distributed development process characteristic of OSS,

including community dynamics and authority structures (who

does what and why), introduces unique governance

considerations. To support objective selection among multiple

OSS alternatives, quality assessment methods must be

established and consistently applied. Finally, confidentiality

requirements of the OSS application must be evaluated,

particularly when integrating open source components into

systems with sensitive data or functionality.

4.2 A General Framework for Utilizing OSS in Reuse-

Based Maintenance

Paper ID: MS2002134347 DOI: https://dx.doi.org/10.21275/MS2002134347 1971

www.ijsr.net
http://creativecommons.org/licenses/by/4.0/

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

ResearchGate Impact Factor (2018): 0.28 | SJIF (2018): 7.426

Volume 9 Issue 2, February 2020

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

Figure 2: A general framework of OSS development model

The proposed framework outlines key guidelines for

integrating Open Source Software (OSS) components into

software maintenance activities within an organization,

employing a reuse-based model. This process, illustrated in

Fig. 2, begins with establishing modification requests, where

specific change requirements from end-users are determined

to fully understand the problem and identify the necessary

functions and services. This is followed by modification

impact analysis and risk assessment, which involves

identifying software parts potentially affected by the proposed

changes and tracking the ripple effects of these modifications.

Subsequently, studying the target solution requires defining

the desired functionality and structure of the OSS component,

a step that depends on clearly identifying its capabilities,

problem-solving logic, internal structure, data organization,

dependencies, interactions, platform compatibility, and pre-

and post-conditions. Finally, producing maintenance planning

involves creating formal or informal plans based on analyses

of time, cost, and effort.

The next phase focuses on selecting and understanding the

OSS component. This involves searching open source code

repositories to find suitable OSS solutions that meet criteria

such as modularity, low coupling, high cohesion, desired

functionalities, and compatible interfaces; the availability of

appropriate OSS can significantly reduce costs. Once a

candidate is identified, understanding source code

characteristics using analysis techniques becomes crucial.

Maintainers must build a complete and accurate mental model

of the OSS, which is influenced by programming style,

comments, coding standards, and code control flow. Given

that maintainers can spend 50% to 90% of maintenance time

on program comprehension, and understanding large OSS

applications is challenging, techniques like control and data

flow analysis and call graphs are essential to identify the

problem domain, estimate resources, choose algorithms, and

find cause-effect relations. Following this, implementing OSS

customization is often necessary to adapt the OSS to the new

environment, utilizing refactoring techniques. While vendor-

provided APIs can restrict customization, there is a general

lack of clear guidelines for companies undertaking OSS

customization.

The final stages involve integrating and deploying the

modified system. Bottom-up integration sees the customized

OSS component combined with other system components to

produce the new software version. Evaluation to update the

current OSS is then performed, involving thorough testing

(including unit testing) to ensure the code works efficiently

and effectively. Key OSS quality review attributes like

usability, functionality, reliability, performance, accessibility,

security, and maintainability are analyzed, some in the initial

release and others in subsequent versions, to reduce user

impact. Issuing a new release (release management) ensures

all changes are tested and deployed, allowing users to

effectively utilize the services. The nature of the release

(major or minor) depends on the extent of changes to old

components or additions of new functionalities based on

software requirements. Finally, end user feedback is gathered,

which initiates a new cycle of maintenance and evolution

aimed at further improving software usability and quality.

5. Conclusion
This paper addresses the increasingly important issue of

leveraging Open Source Software (OSS) in maintenance

activities, driven by its growing popularity. We have

demonstrated that OSS components can be effectively reused

in maintaining legacy software systems, discussing three

main reuse-based maintenance models and their associated

benefits. Furthermore, we have categorized, analyzed, and

determined the key technical, personnel, environmental, and

project managerial factors that influence the success of OSS-

based maintenance and evolution. To ensure that maintenance

does not inadvertently increase design complexity, we

introduced a method for analyzing the modularity of reused

OSS using functional points and their interconnections,

proposing an algorithm based on a breadth-first strategy to

measure modularity strength, which aids in reducing code

complexity, removing unused code, defining understandable

patterns, and producing well-structured designs. Based on

these insights, a general descriptive maintenance processes

framework model has been proposed, clearly outlining the

workflow guidelines for OSS reuse. Finally, the aspects of

OSS customization and its reuse in software maintenance

were evaluated considering reliability, usability, accessibility,

and efficiency.

References

[1] J. E. Corbly, “The free software alternative: Freeware,

open source software, and libraries,” Inf. Technol. Libr.,

vol. 33, no. 3, pp. 65–75, Sep. 2014.

Paper ID: MS2002134347 DOI: https://dx.doi.org/10.21275/MS2002134347 1972

www.ijsr.net
http://creativecommons.org/licenses/by/4.0/

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

ResearchGate Impact Factor (2018): 0.28 | SJIF (2018): 7.426

Volume 9 Issue 2, February 2020

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

[2] A. Zoitl, T. Strasser, and A. Valentini, “Open source

initiatives as basis for the establishment of new

technologies in industrial automation: 4DIAC a case

study,” in Proc. IEEE Int. Symp. Ind. Electron. (ISIE),

2010, pp. 3817–3819.

[3] Open Source Initiative, “The open source definition,”

2003. [Online]. Available:

http://www.opensource.org/docs/definition.php

[4] S. Saini and K. Kaur, “A review of open source software

development life cycle models,” Int. J. Softw. Eng. Its

Appl., vol. 8, no. 3, pp. 417–434, 2014.

[5] S. Mandal, S. Kandar, and P. Ray, “Open incremental

model — A open source software development life

cycle model (OSDLC),” Int. J. Comput. Appl., vol. 21,

no. 1, pp. 33–39, May 2011.

[6] C. M. Schweik and A. Semenov, “The institutional

design of open source programming: Implications for

addressing complex public policy and management

problems,” vol. 8, no. 1–6, Jan. 2003.

[7] V. Potdar and E. Chang, “Open source and closed source

software development methodologies,” in Proc. Int.

Conf. Softw. Eng. (ICSE), 2004, pp. 105–109.

[8] M. Ueda, “Licenses of open source software and their

economic values,” in Proc. Appl. Internet Workshops,

2005, pp. 381–383.

[9] A. Capiluppi and M. Michlmayr, “From cathedral to the

bazaar: An empirical study of the lifecycle of volunteer

community projects,” Eur. J. Inform. Prof., vol. 8, no. 6,

pp. 8–17, 2007.

[10] K. Crowston and J. Howison, “The social structure of

open source software development,” First Monday, vol.

10, no. 2, Feb. 2005. [Online]. Available:

http://firstmonday.org/htbin/cgiwrap/bin/ojs/index.php/

fm/article/view/1207/1127

Paper ID: MS2002134347 DOI: https://dx.doi.org/10.21275/MS2002134347 1973

www.ijsr.net
http://creativecommons.org/licenses/by/4.0/
http://www.opensource.org/docs/definition.php

