
International Journal of Science and Research (IJSR) 
ISSN: 2319-7064 

ResearchGate Impact Factor (2018): 0.28 | SJIF (2018): 7.426 

Volume 9 Issue 2, February 2020 

www.ijsr.net 
Licensed Under Creative Commons Attribution CC BY 

Mixed; Lagrange's and Cauchy's Remainders Form 
 

A. Darah 
 

Education Department, University of Alasmariya, Zliten, Libya 

 

 

Abstract: Sometimes numerical methods are needed to solve mathematical problems, especially in applied problems. The numerical 

methods usually associated with errors, so the numerical solution is usually not equivalent to the exact solution, but if the error could be 

estimated then the exact solution could be known.  The Lagrange's and Cauchy's remainders are two poplar methods to calculate the 

remainder and the generalization of them is known Schloemilch-Roeche’s remainder. By comparing: the Lagrange's and Cauchy's 

remainders methods for some functions at a point 𝒙, it could be seen that the Lagrange method has more accuracy if 𝒄 is in a 

neighborhood of 𝒙𝟎, while the Cauchy method gives better results if 𝒄is somewhere near the middle between 𝒙𝟎and𝒙. 
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1. Introduction 
 

To convert a function 𝑓into a sample form as a polynomial 

form 𝑃𝑁 𝑥 , there are some methods could be used for this 

purpose, one of them is known as a Taylor polynomial, its 

form is 

𝑃𝑁 𝑥 =  
𝑓 𝑛 (𝑥0)

𝑛 !

𝑁
𝑛=0 (𝑥 − 𝑥0)𝑛 , 

where 𝑥0 is a center of the polynomial [10]. 

    

The Taylor polynomial of the function 𝑓 is extremely useful 

in all sorts of science applications, and at the same time, it is 

fundamental in pure mathematics, specifically in complex 

function theory. Recall that, if 𝑓(𝑥)is infinitely 

differentiable at 𝑥 ∈ (𝑎, 𝑏), the Taylor series of 𝑓(𝑥) at 

𝑥 ∈ (𝑎, 𝑏) is, by definition, 𝑃𝑁 𝑥  [9]. But the polynomial 

𝑃𝑁 𝑥  which is produced, actually, does not equivalent to 

the original function 𝑓, so there is a difference between 𝑓 

and 𝑃𝑁 𝑥 , which is known the remainder 𝑅𝑁 𝑥  where 

𝑅𝑁 𝑥 = 𝑓 𝑥 − 𝑃𝑁(𝑥). 

 

The most popular forms of the remainder in Taylor’s 

formula are the classical well-known the Lagrange's and 

Cauchy’s forms of the remainder. Lagrange’s and Cauchy’s 

forms are special cases of the Schloemilch-Roeche’s 

remainder, [5, 6]. 

 

Every version of Taylor's Theorem says that the Taylor 

polynomial of some degree 𝑃𝑁(𝑥) about a central point 𝑥0 

can be used to approximate a given function on some (more 

than likely tiny) neighborhood. Thus, the most important 

statement, in every version of Taylor's theorem, is how to 

express the remainder? Taylor himself didn't, actually, 

incorporate an error term. It was not, until Lagrange and 

then Cauchy came about that Taylor's theorem was made 

rigorous [10]. Thus, Roche's version above can naively be 

appreciated as a theorem that interpolates the first rigorous 

expressions of the remainder [6]. 

 

Now, if the Taylor polynomial, as a method or means, is 

used to generate an approximation, it must able to control 

the accuracy of the approximation. Historically, these ideas 

were born early in the development of calculus born the 

development of modern mathematical rigor [10]. The 

mathematicians of the time felt that the Taylor polynomial 

would yield something approximately equal to the function 

in question. 

 

Unfortunately, they were incorrect; since this is not always 

the case.  The Lagrange Remainder theorem does give one 

the desired control.  The remainder term expresses the error 

by breaking the series at N
th

 term. Thus, it is important when 

broken series are used for approximation; the resulting error 

must be evaluated. 

 

The investigation in this paper will concern on the remainder 

𝑅𝑁 𝑥 , and comparing the Lagrange's and Cauchy's 

remainders of some functions in some region. 

 

Note two things about𝑅𝑁 𝑥 . First, it depends on𝑁; as 𝑁 

increases, it is expected the remainder decreases in size. 

Second, 𝑅𝑁 𝑥  depends on 𝑥, as 𝑥 moves away from the 

center of the polynomial, the size of 𝑅𝑁 𝑥  will usually be 

expected to increase. In short, for any 𝑥-value in the domain 

of𝑓, then 𝑓 𝑥 = 𝑃𝑁 𝑥 + 𝑅𝑁 𝑥 ,this says that the actual 

value of 𝑓 at some x-value is equal to the polynomial 

approximation at x plus some remainder 𝑅𝑁 𝑥 . 

 

The function 𝑅𝑁 𝑥  is almost never be known explicitly. 

Coming up with such a function is just too tall an order. 

However, that does not mean it cannot be known anything 

about it. One fundamental fact about 𝑅𝑁 𝑥  is given by the 

following. 

 

Definition: (Taylor Polynomial) 

Let 𝑓 be a continuous function with 𝑁 continuous 

derivatives. Then, the Taylor polynomial of 𝑓 is defined as: 

 
and 

 
where the remainder term is 

 
 

The Taylor series does converge to the function itself must 

be a non-trivial fact. Most calculus textbooks would invoke 

Taylor's theorem (with Lagrange remainder), and would 

probably mention that it is a generalization of the mean 

value theorem. Fortunately, a very natural derivation based 

only on the fundamental theorem of calculus (and a little bit 

of multi-variable perspective) is all one would need for most 
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functions. It seems that Lagrange was the first to study the 

condition to expand a function in the Taylor series [11].  

 

Lagrange form of the remainder: 

 

Theorem: (Taylor's Theorem with Lagrange 

Remainder): 

Let f be 𝑛 times differentiable of the interval [𝑥0 , 𝑥] and let 

𝑓(𝑛+1) exists in the open interval (𝑥0 , 𝑥). Then, for some 

𝑐 ∈ (𝑥0 , 𝑥) 

 
the remainder term is: 

 
 

where c is a point between 𝑥0 and 𝑥. 

 

This formula for the remainder term is called Lagrange’s 

form of the remainder term. Note that, this expression is 

very similar to the terms in the Taylor series except that 

𝑓 𝑛+1  is evaluated at 𝑐 instead of at 𝑥0. 

 

All it can be said about the number 𝑐 is that it lies 

somewhere between 𝑥 and 𝑥0 [9]. 

 

One thing that is important to realize about the theorem, that 

it is an existence theorem. It tells us that there must be some 

number 𝑐 with the property expressed in equation (3), but it 

does not tell us how to find that number. In the vast majority 

of cases, in fact, it will be completely unable to find the 

magic𝑐. 

 

The appearance of 𝑐, a point between 𝑥 and 𝑥0, and the fact 

that it has been plugged into a derivative suggests that there 

is a connection between this result and the Mean Value 

Theorem. In fact, for 𝑛 = 0 the result says that there is a 

number c between 𝑥0 and 𝑥  such that 

 
 

this is the Mean Value Theorem. On one hand, this reflects 

the fact that Taylor’s theorem is proved using a 

generalization of the Mean Value Theorem. On the other 

hand, it shows that it can be regard a Taylor expansion as an 

extension of the Mean Value Theorem. 

 

Because of the difficulties in finding the number 𝑐, the best 

it can be hope for is an estimate on the remainder term. This 

may seem like settling, but it actually makes some sense. 

The Taylor polynomials are used to approximate the values 

of functions that it cannot evaluate directly. The situation is 

already settling for an approximation. If the exact error in 

the approximation could be found, then it would be able to 

determine the exact value of the function, simply by adding 

it to the approximation. If the situation, it could find the 

exact value of the function, then the approximation does not 

need at all. 

 

The first order of business is to convert the existence-based 

Lagrange's and Cauchy's remainders, and the relation 

between them to estimate the value of 𝑐. 

 

Theorem: Lagrange Error Bound: 

Suppose that𝑥 > 𝑥0, if 𝑓 𝑛+1 (𝑥) is bounded on the 

interval[𝑥0, 𝑥], i.e., if there is a positive number 𝑀 such that: 

−𝑀 ≤ 𝑓 𝑛+1 (𝑡) ≤ 𝑀, 

 for all 𝑡 ∈ [𝑥0 , 𝑥]), then  

 
 

If𝑥 < 𝑥0, then the interval[𝑥0 , x], in question, is simply to be 

replaced with [𝑥, 𝑥0]. No other change is required [10]. 

 

Since it is known that 𝑓 𝑛+1 (𝑐) is no more than 𝑀 in 

absolute value, it could replace with 𝑀, sacrificing equality 

for inequality. 

 

The Lagrange error bound frees us from the need to find 𝑐, 

but it replaces 𝑐 with 𝑀. But many times, 𝑀 is no easier to 

find than 𝑐. The difficulty in using the Lagrange error bound 

is to find a reasonable upper bound—a cap—on the values 

of 𝑓 𝑛+1 (𝑡) on the interval in question. 

 

Cauchy's Remainder: 

Often when using Lagrange's Remainder, we’ll have a 

bound on 𝑓(𝑛), and rely of the 𝑛! beating the (𝑥 − 𝑎)𝑛  as 

𝑛 → ∞. But if 𝑓(𝑛)begins to provide us with an 𝑛!-
shapedterm on top, as with the binomial expansion, we may 

need a better expression of (𝑥 − 𝑎)𝑛 . So, in the Cauchy 

method, the term (𝑥 − 𝑎)𝑛  in Lagrange method was 

replaced by the term (𝑥 − 𝑥0)(𝑥 − 𝑐)𝑛 , as well as the 

value(𝑛 + 1)! being replaced by the value 𝑛!. Cauchy's 

remainder after 𝑛 terms of the Taylor series for a function 

𝑓(𝑥) expanded about a point 𝑥0 is given by: 

 
where 𝑐 is a point between 𝑥0 and𝑥[7]. 

    

Note that the Cauchy remainder 𝑅𝑛  is also sometimes taken 

to refer to the remainder when terms up to the (𝑛 − 1) 

power are taken in the Taylor series [16]. 

 

Schloemilch-Roeche's Remainder: 

The Schloemilch-Roeche’s remainder formula, after N terms 

of the series, gives 

 
For  𝑐 ∈ (𝑥0 , 𝑥) and any 𝑝 > 0. The choices 𝑝 = 𝑛 + 1and 

𝑝 = 1give the Lagrange and Cauchy remainders, 

respectively [5]. Many other researchers have developed 

different forms of Taylor’s remainder in order to improve 

the bounds of error. In the literature (seefor example [1, 5, 

12] many forms of the remainder in Taylor’s formula are 

given). 

 

New form of the remainder: 

 

By comparing the Lagrange formula (3) and the Cauchy 

formula (7), the factor 
𝑓 𝑛+1  𝑐 

𝑛 !
  appears in both formulas, 

but the difference is the following: 

From (3)  
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Lagrange's remainder  

and from (7)    𝑅𝑁𝐶 𝑥 =
𝑓 𝑛+1  𝑐 

𝑛 !
(𝑥 − 𝑥0)(𝑥 − 𝑐)(𝑛),  

Cauchy's remainder. 

 

Suppose that they are equal, 

 
then 

 
and 

 

 

 
 

Other forms of the remainder in Taylor formula: 

 

Theorem: If  𝑔 ∈ 𝐶𝑛+1 𝑎, 𝑏 , 𝑔𝑛+2 exists on 

 𝑎, 𝑏 , 𝑔𝑛+1(𝑡) ≠ 0, and  𝑔𝑛+2(𝑡) ≠ 0 for all 𝑡 ∈ (𝑎, 𝑏), 

then there is a number 𝜉 ∈ (𝑎, 𝑏) such that 

 
 

In many cases, this formula of the remainder gives 

essentially better bounds of error than all other known forms 

of the remainder [8].  

 

The generalization of Taylor form 

 

Theorem If  𝑓𝑛 , 𝑔𝑛  are continuous on [𝑎, 𝑏], and 𝑓𝑛+1 ,

𝑔𝑛+1 exist on (𝑎, 𝑏), and if 𝑔 𝑛+1 (𝑡) ≠ 0 for any 𝑡 ∈ (𝑎, 𝑏), 

then there is a number 𝜉 ∈ (𝑎, 𝑏) such that 

 
 

Moreover, the remainder could be calculated by using an 

integral formula. In this version, the error term involves an 

integral, so it is assumed that 𝑓 𝑛+1  is continuous, whereas 

previously, it is only assumed this derivative exists. 

However, this integral version of Taylor’s theorem does not 

involve the essentially unknown constant𝑐. This is vital in 

some applications [8]. 

 

Theorem: If 𝑓(𝑛+1) is continuous on an open interval 𝐼 that 

contains 𝑥0 and 𝑥 is in 𝐼 then 

 
 to give an error estimate for approximating a function by 

the first few terms of the Taylor series, Taylor's theorem 

(with Lagrange remainder) provides the crucial ingredient to 

prove that the full Taylor series converges exactly to the 

function, it is supposed to be represented. [3, 11].  

In the following examples a comparison between Lagrange's 

and Cauchy's remainders and the new form. 

 

Example 1: consider the function: 

𝑓 𝑥 = 𝑒𝑥 , 𝑥0 = 0.5, 𝑥 = 0.7,   in the interval [0,1]. 
 

The Taylor series of order 3 of the function 𝑓 is 

𝑃3 𝑥 =

1.64872 + 1.64872 𝑥 − 0.5 + 1.64872
(𝑥−0.5)2

2!
+

1.64872
(𝑥−0.5)3

3!
. 

For 𝑥 = 0.7, 

𝑓 0.7 = 2.013752707, 

𝑃3 0.7 = 2.013636693, 

then the remainder is 𝐸 0.7 =  𝑓 0.7 − 𝑃3 0.7  =
0.00011601367. 

The following tables (I) and (II) illustrate the remainders of 

the Lagrange and the Cauchy methods respectively 

 

Table (I): 𝑐 values and the corresponding remainder in the 

Lagrange formula for the function 𝑓 𝑥 = 𝑒𝑥 . 

𝑅3(0.7) 𝑐 

0.000112135373 0.52 

0.0001132627202 0.53 

0.0001144010495 0.54 

0.0001144582443 0.5405 

0.00011550259 0.55 

0.0001167115584 0.56 

0.000117884529 0.57 

0.0001214746474 0.6 

 

Table (II): 𝑐 values and the corresponding remainder in the 

Cauchy formula for the function 𝑓 𝑥 = 𝑒𝑥 . 

𝑅3(0.7) 𝑐 

0.001332593769 0.51 

0.00082002248 0.54 

0.000682468 0.55 

0.000560448623 0.56 

0.0004532363164 0.57 

0.0002125805 0.6 

0.00015652869 061 

0.000111039968 0.62 

0.00002793497 0.65 

0.00000023260014 0.69 

 

Example 2:  Consider the function: 

𝑓 𝑥 = 𝑐𝑜𝑠 x ,   𝑥 ∈  0,
𝜋

2
 ,      𝑥0 =

𝜋

5
,    𝑥 =

𝜋

3
. 

𝑃3 𝑥 = 0.809016991 − 0.587785252  𝑥 −
𝜋

5
 

− 0.404508497  𝑥 −
𝜋

5
 

2

+ 0.097964208  𝑥 −
𝜋

5
 

3

 

𝑃3  
𝜋

3
 = 0.499031181, 

𝑓  
𝜋

3
 = 0.5, 

𝐸3  
𝜋

3
 =  𝑓  

𝜋

3
 − 𝑃3  

𝜋

3
  = 0.000968819, 

 

Table (III): 𝑐 values and the corresponding remainders in 

the Lagrange's and Cauchy's formulas for the function 

𝑓 𝑥 = 𝑐𝑜𝑠 𝑥 

𝑐 Lagrange 𝑅3  
𝜋

3
  Cauchy 𝑅3  

𝜋

3
  

0.63 ≅
𝜋

5
 0.00103650083 0.004096271712 

0.7 0.0009811039633 0.00234802526 

0.8 0.000893702943 0.0007347165858 

0.9 0.0007973723385 0.0001384066904 

1.0 ≅
𝜋

3
 0.0006930746534 0.000003965816 
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2. Discussion 
 

Table (I), for the Lagrange formula, shows that the perfect 

value of  𝑐 is 𝑐 ≅ 0.55 which gives a suited remainder value 

𝑅3 0.7 = 0.00011550259, it has seven decimal places 

true, this value of 𝑐  is closer to 𝑥0 = 0.5 than 𝑥 = 0.7. 

 

For the Cauchy formula, table (II), the value of 𝑐 which 

gives a good estimate of the remainder is  0.60 < 𝑐 < 0.61 

which gives0.000156528 ≤ 𝑅3 0.7 ≤ 0.0002125805, the 

value of c is seemed to be somewhere near the middle of 

𝑥0 = 0.5, and 𝑥 = 0.7,  after that the remainder decreases as 

𝑐 moves to 𝑥 = 0.7. So,good results of the remainder by 

using Lagrange formula could be got if c is close to𝑥0, and 

by Cauchy formula, if c nearsthe middle between 𝑥0 and x. 

 

By checking the value of 𝑐 using the equation (9),  

 
where 𝑥0 = 0.5, 𝑥 = 0.7, 𝑛 = 3, 𝜉 = 1.5874, 

it gives: 

 
and the remainder is 

𝑅3𝐿 0.7 = 0.000118356 and  𝑅3𝐶 0.7 = 0.000118379, 

 

which gives at least five valid digits. 

 

Table (IV): The values of c and the remainders for the 

Lagrange and the Cauchy methods for the example (1) 
Method c value The remainder c value The remainder 

Lagrange 0.55 0.00011550259 0.574 0.000118356 

Cauchy 0.61 0.00015652869 0.000118379 

 

A table (III), it seems that 𝑅3(
𝜋

3
) has more accuracy when 

𝑐 ≈ 0.7 is close to 𝑥0 =
𝜋

5
, for the Lagrangemethod,  while 

for Cauchy method, 𝑅3(
𝜋

3
),  has more accuracy when 

𝑐 ≈ 0.9 is close to 𝑥 =
𝜋

3
. Meanwhile, the value of 𝑐could be 

estimated by the following 

 
 

By using the equation (9)  

 
 

This gives a remainder? 

 
 

The following tables show the values of c and the estimation 

of the error according to the Lagrange remainder (a)and the 

Cauchy remainder (b), they show that thesuitable c values 

which give the nearest error of polynomial 𝑃𝑛  for the 

example 1, by studying higher-order of the polynomial for 

example 1. Now it could say that by using equation 9, it may 

be able toguess the value of c, than introduce a good 

estimation of the polynomial. Table V, shows the values of c 

according to higher-order for polynomial. The values of c 

accompanying the resulting polynomial degree for Lagrange 

(a) and Cauchy (b), which give close values of both cases, 

 

Table (V- a): The value of c and Lagrange's remainder for 

𝑃𝑛 ,  𝑛 = 1, 2, . . ,5  
n c 𝑅𝑛  𝐸𝑛   𝐸𝑛 − 𝑅𝑛   
1 0.6 0.036442376 0.035287182 0.001155194 

2 0.58 0.002381384 0.002312757 0.00006863 

3 0.574 0.000118356 0.000114462 0.000003894 

4 0.566 0.000004696 0.000004547 0.000000149 

5 0.56 1.5 × 10−7 1.5 × 10−7 0.0 

 

Table (V - b): The value of c and Cauchy's remainder for 

𝑃𝑛 ,  𝑛 = 1, 2, . . ,5  
n c 𝑅𝑛  𝐸𝑛   𝐸𝑛 − 𝑅𝑛   
1 0.6 0.036442376 0.035287182 0.001155194 

2 0.58 0.002571895 0.002312757 0.000259138 

3 0.574 0.000118379 0.000114462 0.000003917 

4 0.566 0.0000044732 0.000004547 0.000000073 

5 0.56 1.5 × 10−7 1.5 × 10−7 0.0 

 

3. Conclusion 
 

Interpolation, in general, is a recurring useful idea of 

mathematics. In this way, Roche's Theorem can be viewed 

as generalizing of Lagrange's and Cauchy's remainders 

versions in the same way that Young's Inequality generalizes 

[1], the same way that Holder's Inequality generalizes [5], 

Cauchy's inequality [8]. There are some methods could be 

used for this purpose, the most famous of them are the 

Lagrange's and Cauchy's remainders. By studying and 

comparing these two methods, some of them could be used; 

it depends on the value ofc; if c is in the neighborhood of x0 

then Lagrange method will be more suitable, and if c is near 

themiddle of x and x0 however, then Cauchy method should 

be the choice. 

 

The value of c can be estimated by the relation between 

Lagrange's and Cauchy's remainders to get a new form to 

define a good value of  c which is used to estimate the 

required remainder. Now, by finding the value of c, it could 

help to estimate the remainder and, then produce a suitable 

polynomial. 

 

Moreover, there are plenty of methods could be used to 

calculate the remainder; some of them use an integral form. 
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