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Abstract: The analysis of the interaction of hydrogen and their isotopes with tungsten is important, since this material is a strong 

candidate to form the first wall of fusion reactors for both magnetic and inertial confinement, and these atoms have a very sensitive 

(desired and unwanted) interaction with it. For this purpose, we study the effects and electronic state densities of atomic hydrogen in 

pure tungsten, in order to analyze some important properties such as the density of states of the system. Focusing on this application, 

this work is a preliminary study of the behavior of atoms of hydrogen on a surface of tungsten. We use a program simulation based on 

the DFT (density functional theory) implemented in the Jellium Code, in order to obtain the adsorption energy and the density of states 

of the systems, as well as some properties derived from them. 
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1. Introduction 
 

In terms of energy, for the sustainable development of the 

nuclear option, there is currently worldwide renewed interest 

in new reactors and in the research and technological 

development of the fuel cycle. In this framework, the next 

generations of reactors are under evaluation. The new 

reactor concepts are characterized by greater efficiency and 

better use of nuclear fuel, with the minimization of nuclear 

waste. This approach means that a new and in-depth analysis 

of the structural materials with radiation resistance will have 

to be introduced more accurately than the current ones [1].  

To achieve high performance parameters, continuous 

research and testing of materials is necessary. Hence the 

need to study the design and optimization of alloys and 

composite materials that present properties suitable for the 

latest generation reactors, including fusion ones. 

 

This work is oriented to the study of properties of materials 

for its probable use in advanced technologies in fusion 

reactors. The actual issues to achieve those performances are 

some materials like composites (SiC), oxides dispered steels 

(ODS) or Ferritic-Martensitic (FM) that could be chosen to 

constitute the walls and the divertor of the fusion reactor [1-

3]. Those materials are radiation resistant, but have some 

other difficulties.  

 

Eventually, tungsten (W) was chosen to build the plasma-

facing components. This is the pure metal with the highest 

melting point (3422 ºC), the highest tensile strength and the 

lowest coefficient of thermal expansion. That is why it is an 

adequate material to face the high pressure and high 

temperature conditions in fusion reactor. Furthermore, due 

to its 5d electrons, there are strong covalent bonds between 

atoms [4]. 

 

Thus, the divertor and the first wall of the reactor of the 

ITER project will be in tungsten. This part of the reactor 

must withstand high heat flux and bombardment by particles 

escaping the plasma. This project, to update the fusion 

reactor of ITER projects, is named WEST [5]. 

 

In this work, we focus in the study of the interaction of 

hydrogen with tungsten through computational analysis. 

Firstly, we are going to study some properties of atomic 

hydrogen embedded in tungsten. This is very useful because 

during the process, huge quantities of hydrogen is ejected 

due to the fusion reaction D (T,n) α. Hydrogen impurities 

are the most preponderant part of damages in fusion reactor. 

In this study, we won’t take into account nuclear process 

like neutron capture and others. We only focus on the 

interaction between hydrogen and tungsten. We will find 

some important quantities such as the volume of solution of 

hydrogen in a tungsten material, the heat of this solution and 

the phase shift of the wave function of the system, used to 

calculate the density of states in the material. Then, we add 

the pressure and temperature contribution to the Jellium 

model. This part is quite considerable since it will lead our 

model to the real conditions of a fusion reactor (high 

pressure and high temperature). 

 

2. Theoretical Frame 
 

One of the most useful quantities of characterising metal-

hydrogen systems is their electronic density. This is 

fundamental for determining properties such as volume of 

dissolution of hydrogen, heat of solution, activation 

energies, diffusion properties, values of chemical potential, 

among others. 

 

2.1 Modelling approach 
 

The model used to obtain the electronic density is the so 

called Jellium model, based on Density Functional Theory 

[6]. 

 

The Jellium model considers a background as the equivalent 

of the nucleus of the atoms and the core electrons, fixed and 

uniformly distributed. The valence electrons are embedded 
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in this positive background, and are represented by a 

uniform electron gas. Thus the electronic neutrality 

condition remains due to that the density of valence 

electrons is equal to the density of positive charges, which is 

equal to the initial atom density [7]. 

 

In particular, we use the DJELLY code, which is based in 

the jellium model and uses finite elements method. This 

code is a very useful simulation because the output data give 

direct information about: the distance to the impurity R. the 

screen charge density, the valence density and the integrated 

screen charge density. 

 

With this programme code, we can determinate important 

quantities of the system such as  volume of solution, heats of 

solution, adsorption, interaction and activation energies, 

chemical potential and  stopping power of charged particles, 

among others. 

 

2.2 Description of the quantities in Jellium model 

 

In order to obtained electronic density, the Wigner-Seitz 

radius rs is theoretically defined as: 

 
With n0 the electron of valence density (considered as 

constant), N the number of electrons, V the volume of the 

considered material and rs is the radius of a sphere whose 

volume is equal to the mean volume per atom in a solid [8] 

For metals, the main contributions to the electronic density 

are the s and p shells electrons, and eventually d shells. 

 

For a non-interacting system, it is defined as: 

 
with molar mass M, 𝜌 mass density and 𝑁𝑎 Avogadro 

number. 

 

Thus, using Jellium model, dealing with density or rs is 

strictly the same because in this model, rs is the radius of the 

sphere that an electron occupies in the jellium. In this way, 

the jellium is represented by a uniform electron gas in which 

each electron is separated from its neighbours a distance 2 rs. 

Adding an external charged particle in the material, the 

charge density abruptly changes. The electronic density is 

now: 

 
with n0 the initial atomic density and Δn(r) the charge 

density variation induced by the embedded impurity 

(external charged particle) [7] 

 

An important quantity of the system is the embedding 

energy in the material. Defining: 

 
with Ef the energy of the system Jellium + Impurity and EJ 

the energy of the pure Jellium   

Defining Eat the energy of the isolate impurity (it means 

before embedding), if:  

 
The embedding process is exothermic: the impurity is more 

bound in the Jellium than in the void. 

So, we define the embedding energy as: 

 
That gives the character of the process. 

Finally, observing the piling electronic charge response 

around the impurity, we see oscillations around it. Those are 

called Friedel oscillations that are the quantum mechanical 

analogy to electric charge screening. This phenomenon is 

well known and has observable consequences whenever a 

defect is embedded in a metal [8]. 

 

3. Results 
 

In our case, the hydrogenic impurity will be generally 

embedded in the tetrahedral vacancies in the tungsten bcc 

lattice. However, due to its important mobility, hydrogen 

atoms diffuse very well through the crystallographic lattice. 

The atomic number Z of the embedded charge is Z = 1, 

because this is the atomic number of an atom with one 

proton (hydrogen, deuterium and tritium). 

 

For the value of rs (or 𝑛0) as input, we select that developed 

in a previous work [9], that relates rs with the bulk modulus 

B of the metal due to that B is a measure of  the compression 

of the electron gas density in the interstitial positions. This 

method is interesting because we base our theoretical tool rs 

on experimental value (from B) and that is a more realistic 

procedure than using a theoretical value form different 

models. 

 

The bulk modulus is linked to the energy of each particle of 

the system as: 

 
 

The energy 𝜀 is the sum of the kinetic εkin (ε= (3/5) 𝛼2𝑟𝑠
2
), 

exchange εx (ε= − (3/2)𝜋 𝑟𝑠) and correlation εc (ε= ε(rs)). α is 

(4/9𝜋)
1/3

. The correlation energy is always negative and 

depends on the value of rs, going from 0.1εx to 0.5εx. 

 

Thus, the bulk modulus becomes: 

 
 

For a good fitting results, and to have a semiempirical 

parametrization for rs>1, it becomes: 

 
 

And finally, the relation between rs and B is:  

 
With ε the contribution factor of the correlation energy 

(between 0.1 and 0.5). 

 

The equation (10) is a parameterization of rs against the 

experimental bulk modulus B, providing a semi empirical 

definition of rs or, equivalently, the electronic density 𝑛0. 

 

Now, we can calculate values of rs for tungsten: The 

different values of rs are given by the contribution factor of 

the correlation energy. We will take the two extreme values 

for computing. 

εc = 0.1 this gives rs1 = 2.1395 a.u.  

εc = 0.5 this gives rs2 = 2.1036 a.u.  

 

The two input parameters for the program are:  the radius of 

rs that gives de electron gas density of the involved material, 

and ISTART, that chooses the electronic potential: ISTART 

= 0, the program takes the Thomas-Fermi potential. ISTART 
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= 1, the program reads the potential computed on the last 

run. 

 

We ran the code taking 24-point Gaussian quadrature for the 

integration. The radial step size (DR1 in the code) is 0.04. 

The tolerance on bound state eigenvalues (TOL) is 10
−6

. 

 

As we can see in figures 1, 2 and 3, the screen charge 

density is decreasing exponentially and it is observed the 

Friedel oscillation on charge element and the integrated 

charge. The graphs come from the computation with rs1 and 

ISTART = 0. The tendency is the same for rs2 and ISTART 

=1. 

 
Figure 1: Screen charge density in the W-H system in terms 

of the distance from the impurity 

 

 
Figure 2: Charge element in the W-H system in terms of the 

distance of the impurity 

 
Figure 3: Integrated charge in the W-H system in terms of 

the distance from the impurity. 

 

3.1 Calculation of volume of solution of hydrogen in 

tungsten 
 

The volume of solution of hydrogen, 𝑣H, is important 

because it is a measure of the expansion that produces a 

hydrogenic impurity in the lattice [10, 11]. 

 

In the Jellium model, this quantity is: 

 
with 𝑆 = 4𝜋𝑛0∫𝑑𝑅(1−𝑄(𝑅,𝑛0)),    0≤ R ≤∞ 

 

With these quantities, we calculate 𝑣H, the volume of 

solution of hydrogen in tungsten: 

 

Table 1: Volume of solution of hydrogen in tungsten 
rs1 

Istart=0 

rs1 

Istart=1 

rs2 

Istart=0 

rs2 

Istart=1 

𝑣H [a.u.] 

1.46E+01 

𝑣H[a.u.] 

1.17E+01 

𝑣H [a.u.] 

1.44E+01 

𝑣H [a.u.] 

1.19E+01 

𝑣H [Å3] 

2.1805 
𝑣H [Å3] 

2.2291 

𝑣H [Å3] 

2.1510 

𝑣H[Å3] 

2.2488 

 

From ref [10] we have the empirical rule vH = 2.9 ± 0.3 Å³ / 

atom for transition metals.  

 

Till now, there is no experimental data of 𝑣H in tungsten. 

So, according with our model, we estimate our value as 2.5 

Å³. This value is coherent with the boundary conditions of 

the system (Friedel sum rule and cusp condition [8]). 

 

3.2 Phase shifts 
 

The phase shift of a wave function gives information about 

the probability electronic density. It is very useful to 

compute the electronic Density of State of the system (DOS) 

[12, 13]. 

 

The DJellium code gives the variation of the phase shifts as:  

 
 

With ∂(𝑙,𝑘) the phase shift of the wave function of the 

system, 𝑙 the angular momentum and 𝑘 the wave vector. 
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The code gives ∂del(l,k) from k = 0 to k = kF, being kF the 

Fermi wave vector, maximum value that can have in the 

solid. The total contribution is: 

 

 
Figure 4: ∂del(l,k) for l = 0 to l = 3 and the total as a 

function of k/kF for rs2 = 0.5 and Thomas Fermi potential. 

 

In Figures 4 we show each contribution correspond to l=0, 1, 

2, 3 and the total. We see that the largest contribution to the 

total variation is with l = 0. Thus, for this system, it is 

enough to take into account the contribution of phase shifts 

with the orbital quantum number l = 0. 

 

3.3 Heat of solution 

 

Finally, the other important thermodynamic property of 

hydrogen atom into tungsten is the heat of solution, or 

enthalpy (at infinite dilution).  

 

The DJELLIUM code gives the Fermi Energy EF and the 

energy of the centre of the lowest conduction band of the 

host metal ES, in such a way that [14]: 

 
If the Jellium model were exact, ΔHJELLIUM = ΔEJELLIUM, but 

this is not. Thus, we must refine the latest equation, as a first 

approximation, as: 

 
Furthermore, with the experimental values ΔHEXP and 

ΔEEXP, due to thermodynamics laws, we can approximate: 

 
 

Fixing ΔHjellium to ΔHEXP we obtain: 

ΔEJELLIUM = 0.875 a.u. ,  rs = 2.1395 a.u. 

ΔEJELLIUM = 0.907 a.u. ,  rs = 2.1036 a.u. 

From [10.]:  ΔHEXPERIMENTAL = 0.0397 a.u., for ε =0.1 and 

ΔEEXPERIMENTAL = 0.191 a.u.,  for ε =0.15,  we obtain : 

For ε = 0.1:  

ΔHJELLIUM = 0.208 │ΔEJELLIUM │ - 0.142 

For ε = 0.5:  

ΔHJELLIUM = 0.208 │ ΔEJELLIUM│ - 0.149 

Notice that we take │ΔEJELLIUM│ and no ΔEJELLIUM due to 

the potential reference (ΔE = EF - ES or ΔE = ES – EF). 

For ε = 0.1, ΔHJELLIUM = 0.04 a.u.    (17.a)  

           

For ε = 0.5, ΔHJELLIUM = 0.034 a.u.  (17.b)  

   

Those theoretical values coincide with the experimental ones 

[10]. 

 

4. Jellium model with pressure and 

temperature dependences 
 

Until now, we use the Jellium model for describing a 

hydrogen atom embedded in a tungsten material without 

considering temperature and pressure. However, this study 

does not really fit the genuine conditions of a fusion reactor. 

Those reactors bring the materials to extreme conditions. 

The temperature of work is between 100 million and 200 

million degrees Celsius. In order to approximate the system 

to a more realistic regime we must add pressure and 

temperature dependences in our model. 

 

4.1 Pressure contribution 

 

It is necessary to find a relation (or equation of states) for 

solids for extended P-V-T conditions. One theory, the 

Murnaghan equation of states, is particularly remarkable 

[15]. It is based on the assumption of a bulk modulus linear 

with pressure. That was experimentally demonstrated at low 

and intermediate pressure. This theory sets down the 

derivative of the bulk modulus respective to pressure: 

 
Using the equation (10) to get B in terms of rs, we obtain 𝑛 

constant and equal to 5/3. This result is agree with 

Murnaghan equation because it made the assumption that the 

bulk modulus is linear with the pressure. However, the 

experimental value of 𝑛 taken in the literature [11] is 4.5 

(our theoretical result gives 30% of the experimental value). 

It must be consider that the volume of the system can be 

written as 𝑉= 43𝜋𝑟𝑠𝑁, with N number of electrons in 

tungsten. Eventually, we remind that this model is for low 

and intermediate pressures, and in a fusion reactor pressure 

is enormously high. Thus the 70% to get the experimental 

value should come from the temperature contribution. In 

addition to that, several researches have been made to take 

into account the temperature dependence of 𝑛. All the results 

suggest that ∂𝑛/∂ 𝑇 is always positive. So it is reasonable 

that the value of 𝑛 of our model (taken at zero temperature) 

is lower that the value of 𝑛 of the experiments (with a given 

value of T and P). 

 

Furthermore, we tried to get a better approximation to the 

experimental value using our model and the correlation 

explain in the part 3.2 dealing with a correlation B(T). 

However, we have not dependable relation between B(T) 

and 𝑛. 

 

This definition of 𝑛 (eq. 19) describes the electronic 

contribution. For p-type and d-type metal, the electronic 

contribution to 𝑛 is no more than 30%. To improve this 

model, we have to add other contributions like the 

crystallographic lattice or maybe we can change the 

parameterization of B, adding a new term. Those 

contributions might be due to the temperature and the 

pressure of the experiment. Thus, to complete our model, we 

propose: 
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with 𝑛0= 5/3. 

 

We use an experimental correlation ñ (𝑇) found in the 

reference [17] and also use the perfect gas equation of states. 

Thus, writing: 

 
 

∂𝐵/ ∂𝑇 is known due to the experimental correlation of [10], 

and ∂𝑇/∂𝑃 is computed from the perfect gas equation of 

states (∂𝑇/∂ 𝑃= 𝑉/𝑛𝑅=𝑀/dR , with M the molar mass, d the 

density of tungsten, R the constant of perfect gas). With this 

approximation, we improve the value, (40%), but we are far 

from the experimental ones due to the symmetry of the 

system was broken. 

 

4.2 Temperature contribution 

 

In reference [18], we obtain a correlation between the bulk 

modulus B and the temperature for polycrystalline tungsten. 

This correlation coincides with experimental available 

values between 28ºC and 1800ºC [19]. In fact, these results 

were obtained from ultrasonic shear and compressional 

waves experiments, measured with a pulse echo technique, 

for polycrystalline tungsten at 99.4% dense. Our correlation, 

for pure dense tungsten (100%, and in Celsius degrees), is: 

B (𝑇)= 3.122410
11

−1.775510
7𝑇−1.33310

3𝑇2
 (22) 

           

In figure 5 we observe the bulk modulus decreases with the 

temperature. 

 
Figure 5: Bulk modulus in terms of temperature 

 

5. Conclusions 
 

In our work, we consider the extended nature of Tungsten-

hydrogen interaction, using the effective jellium model, 

where the metal ion cores are spread in a uniform 

background. With this model, we take into account the 

fundamental effects of the electron screening in the 

conduction band of the material. On the other hand, the 

effects due to the local environment of the hydrogenic 

impurity are reasonably well incorporate including exchange 

and correlation through the local density approximation. 

 

The results obtain with our model are in a very good 

approximation to the available experimental values of 

volume of solution and heat of solution of hydrogen in 

tungsten. Clearly, this approximation is good in the systems 

that have spherical symmetry. For the density of states this 

method is not exact, but is simple and general and can be 

used as long as sufficiently accurate first principles results 

are not available.   

 

For the application in a fusion reactor, we have to take into 

account the pressure and temperature at which the system is 

undergo.  In order to introduce these contribution, we 

applied the non-stabilized jellium model, which requires 

external parameters, as we indicated thorough this work. 

 

 Taking into account the temperature, we see that in 

approximately a range of temperature of 1800ºC, the bulk 

modulus varies as a function of second order. This behaviour 

is the realistic one in a fusion reactor, and we have to take 

into account this behaviour. Although we have to improve 

our results with high temperatures, the method used here is 

useful and gives some accurate results for the complex 

tungsten-hydrogen system in extreme conditions as is in the 

first wall of a fusion reactor. 
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