
International Journal of Science and Research (IJSR)
ISSN: 2319-7064

SJIF (2019): 7.583

Volume 9 Issue 12, December 2020

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

Version Control Systems (VCS) the Pillars of

Modern Software Development: Analyzing the Past,

Present, and Anticipating Future Trends

Siva Karthik Devineni

Database Consultant, MD, USA

Abstract: This paper provides an in-depth investigation of the best practice changes in the control of software versions in the

development process starting from the initial systems used for the process and the current trends, including predictions on future of

practice. Collaborative workflows, branching strategies, and the availability of version control in DevOps are at the forefront,

highlighting their contributions and development over the years. We discuss various popular version control tactics, including GitFlow,

GitHub Flow, and Mercurial and review how widely these methodologies are used across the software development life cycle and which

benefits and challenges are standing along the way. In addition, the paper delves into the various branching approaches that have

developed while documenting their evolution and the subtlety they take on in different industry fields. A large proportion of the article is

used to comprehend the mutually beneficial tie-in of version control systems and DevOps practices that highlights how this combination

simplifies a deployment pipeline and improves software delivery procedures. Combining the historical analysis, current situation, and an

outlook on the future, this article attempts to provide an overview of version control systems in its entirety and conveys the most

important findings about AI and machine learning integration into the version control workflow, the paramount importance of

adaptability and automation in branching strategies and the prime placement of version control in the continuous improvement of

DevOps. Consequently, this study is a good source of reference for software developers and academicians; as it provides an overview of

the history, and emerging history, the works of, and the expected works of version control best practices in the face of a collaborative

dynamics of software development.

Keywords: Version Control Systems (VCS), GitFlow, GitHub Flow, Mercurial, Branching Strategies, DevOps, Continuous Integration

(CI), Continuous Deployment (CD), Feature Branching, Release Branching, Hotfix Branching, Deployment Pipelines, Artificial Intelligence

(AI) in Version Control, Predictive Analytics, Cloud-Based Version Control, Distributed Version Control Systems (DVCS), Agile Software

Development, Compliance and Security in VCS, Infrastructure as Code (IaC), Microservices and Modular Codebases.

1. Introduction

Verson control system is indispensable in contemporary

software development. Before the advent of version control

systems, programmers relied on manual methods to manage

their code modifications. They would regularly do backups

of their code files or employ naming conventions to

distinguish between various versions. This process was quite

inconsistent and difficult to manage especially when a few

developers were working on the same project. Historical

Overview of Version Control Systems is based on following

attributes [1, 2, 3]:

Early Version Control Systems and Their Impact on

Software Development: The first version control systems

(VCS) were born in the very early era of software

development, when it was realized that something needed to

be done about managing change of programming

code[4].The 1970s and early 1980s saw the emergence of

first so-called early VCS like Source Code Control System

(SCCS) and Revision Control system (RCS), which

introduced that pioneering tools as a baseline for any

modern beneficial control practices[5].These systems

enabled developers to have a history of the individual

changes that were made in the files, which provided a

simple ability to roll back and see how a code base had

evolved. On the other hand, their potential for collaborative

work was somewhat restricted, providing that it still

required some manual arrangements between the

participants. However, in spite of these drawbacks, early

VCS was very important as far as building foundational

concepts in software version management is concerned,

such as the abilities for tracking changes, comparing

versions, and rolling back [6, 7].

Transition to Modern Version Control Systems: From

Centralized to Distributed Models from centralized to

distributed models. The development of VCS has changed

dramatically as the centralized models appeared, which were

characterized by the systems such as Concurrent Versions

System (CVS) and then Subversion (SVN)[8].These central

VCS brought in the idea of having a primary code

repository, from which developers can check out files, make

their modifications, and then commit the changes. This

model helped coders to save time on collaborative work by

allowing many people to work on the same codebase[9].But

there were also some disadvantages of a centralized VCS

mainly in case of bigger project cannot handle properly and

team distributed all over the place. The breakthrough point

was the introduction of distributed version control systems

(DVCS) as Git and Mercurial. However, unlike their

centralized derivatives, DVCS made it possible for every

developer to have a full copy of the code repository, along

with its history, which resulted in much more advanced

collaboration patterns. This change not only increased the

performance and capacity of the control of the version, but

also gave the developers more opportunities to work,

upgrade capabilities on the merging and increased

availability of the offline [10, 11, 12].

Paper ID: SR24127210817 DOI: https://dx.doi.org/10.21275/SR24127210817 1816

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

SJIF (2019): 7.583

Volume 9 Issue 12, December 2020

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

The Role of Open-Source Movements in Shaping Version

Control Practices: The Role of Open-Source Movements in

Shaping Version Control Practices: Open-source movements

have been instrumental in the current practice of

contemporary version control. The open-source

development required powerful tools that allowed for

distributed collaboration and code sharing. One of the

primmest examples to demonstrate this influence is that

upcoming in 2005 was Git created by Linus Torvalds,

mainly designed for coordinating Linux kernel development.

The design of Git was a response directly to the

requirements for an efficient, scalable and decentralized

version tracking system in the open-source community. This

includes Git and hosting platforms such as Github, gitlab,

and Bitbucket which accelerated the willingness to use by

developers on how they collaborate in software projects

with each other that way enabled open source contribution

easy and enhanced community development. Software

development has significantly changed due to these

platforms becoming hubs of open-source projects that drive

innovation, promote code reuse; in essence increasingly

influencing the software development practices [13, 14].

This historical overview lends support to the notion that

version control systems have indeed evolved with a view of

adjusting their functions so as to respond well and in

accordance to the ever dynamic demands for necessities

presented by today‘s software development arena-

transcending simple file tracking systems into complex tools

empowered by global collaboration, open sourcing

developers. Thereby the Evolution of Version Control

Practices/System in Software Development includes [15]:

Local Version Control Systems: Starting from the early

years, local version control systems were embraced by

developers where a project was stored on their computer.

This approach was prone to errors and difficult, if not

impossible, when multiple developers worked on the same

project [16].

Centralized Version Control Systems (CVCS): As the

software development teams grew larger, and collaboration

gained in importance, centralized version control systems

appeared. In CVCS, the project repository was hosted on a

central server and developers could check out the code,

modify it and commit their changes to this central server.

This facilitated more effective cooperation and the ability to

monitor changes [17].

Distributed Version Control Systems (DVCS): As

distributed teams became popular and the demand for more

flexibility, scalability developed DVCS. DVCS allows each

developer to have a local copy of the project repository that

they can work with offline and commit changes locally.

They can subsequently ‗push‘ and ‗pull‘ their changes from

remote repositories. This approach is more robust;

additionally, it gives better branching and merging

capabilities [18].

2. Literature Review

The development of VCS and their effect on software

engineering practices are fresh research topics that have

been explored over the previous few decades, hence offering

a holistic picture of this field‘s growth [1, 19].

Having reflected upon the ideas of Dekleva and Drehmer

(1997) at the end nineties, an interesting approach to

measure impacts on software engineering practices

statistically was devised. They used the Rasch calibration

method to develop metric‘s perspective on process maturity

in software development. This study, however has advanced

on the innovation of its application in measuring how

software engineering methodologies and practices

developed. It paved the way for subsequent empirical

studies in this area, highlighting quantitative instruments as

an essential factor to comprehend software development

evolution [1, 20].

Later, Sawyer and Guinan (1998) studied the software

development processes and their outcomes. The study

highlighted the variety of software development

methodologies and emphasized various approaches applied

in real-life scenarios. Within the scope of this study,

software projects were analyzed to evaluate how different

methods affected the outcome, providing a wide range and

generalization over various methodologies [2].

Atkins et al (1999) conducted a study of the role version-

control data play in assessing how software tools shape

development processes. The scope of their study was

devoted to explaining how tools impact software

development, especially in relation to efficiency and

productivity. This study highlighted the importance of

version control systems and other software tools in

facilitating an effective structure within more operational

realities, thus confirming its applicability for practical use,

leading to better outcomes [3].

In the early 200s, a slight shift of research focused towards

collaborative dimension of version control took place.

Florida‐ James et al. (2000) investigated the application of

agent systems in collaborative version management for

engineering related areas. This research considered the

difficulties and specifics of collaborative engineering

projects, which provided insights that can be used to

improve version control systems. This study focused on the

obstacles of work in cooperated projects and how version

control systems can be used properly to boost collaborations

as well [4, 5].

This field contributed by Lee et al. (2001) was the

proposition of an integrated distributed version management

approach, focusing on role-based access control in

collaborative writing as a particular aspect. The studies

proved enlightening regarding applying version control to

team-based projects. It stressed the necessity of access

management and control in collaborations showing how

version control systems could be adapted to deal with

several parts of team collaboration [6].

Atkins et al. returned to the issue of version control tools in

2002, building on their earlier work by applying a case study

involving Version Editor tool. This study demonstrated the

application points of version control in improving software

development procedures. It was an important milestone in

Paper ID: SR24127210817 DOI: https://dx.doi.org/10.21275/SR24127210817 1817

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

SJIF (2019): 7.583

Volume 9 Issue 12, December 2020

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

clarifying the functional advantages of these systems to be

implemented in software engineering [7].

In the following years, there was still an intriguing focus on

how evolution and influence change became over version

control systems. Fischer et al., (2003) research proposed one

method that could be used for populating release history

database and it was based on information retrieved from

version control systems as they well know the bug tracking

system. Their work addressed the issue of lack of adequate

support for close analysis tools by these systems to address

software evolution aspects. The study was able to combine

version data with bug tracking and provide missing

information that is not captured in the view control systems

such as merge points, which helped participate more

accurately evolutionary aspects of software engineering

practices [8].

Rinderle, Reichert and Dadam (2004) analyzed adaptive

workflow systems with vital process support for teamwork.

Their work provided insight into the adaptation of workflow

systems to facilitate dynamic team processes, which is one

of the core aspects for efficient version control in

collaborative environments [9].

Wang and Kumar in 2005 proposed a general framework for

workflow systems based on documents intended to combine

document-driven methods with version control as part of

business process management. This research provided a

multidisciplinary perspective on the integration of version

control into workflow management, allowing for improved

oversight and business process coordination [10].

Boehm‘s 2006 work provided a historic perspective on

software engineering in the twentieth and early twenty-first

century. Thus, this paper outlined how practices of

contemporary version control systems developed since their

emergence at that time illuminated changes occurring

throughout two centuries until nowadays there are more

opportunities to invent new one. The study underlined the

powerful influence of software engineering methodologies

and tools that have aided over decades, like version control

systems [11].

According to Huang et al. (2006), an Agent-Based

Workflow Managements-Frameworks (W-M-F) for

collaborative product design by integrating version control

systems that will help the product designers in collaborating

in the project.This work showed how version control

systems could be efficiently used within the designing and

development of product, enabling collaboration and

enhancing project results [12].

Lethbridge et al. (2007) predicted on software practices by

education concentrating on the problems and prospects for

software engineering education. Their practice promoted the

adoption of version control systems and other software

engineering implementations into education programs to

ensure that students are within the modern software

development‘s demands [13].

The role of the version control systems in the software

evolution is highlighted by Godfrey and German (2008),

who presented in detail the past, present, and future of

software evolution. This research offered a retrospective

view on software evolution and emphasized the importance

of version control systems regarding managing and

supporting software development throughout history [14,

15].

Ellkvist et al. (2008) made an existing use of Mercurial

within courses, a ‗provenance mapping‘ for real-time

collaborative workflow design that did not actually bid to it

being included in the discussion. This study revealed the

possibility of using version control systems in an

educational context, allowing students to gain some hands-

on experience in team work towards software development

[16].

According to Messinger et al., virtual worlds and their

movement referred as version control systems (Messinger,

Richert & Varikas 2009).The following study allowed us to

investigate, how the VCSs are applied in social computing

virtual scene; it illustrated multiple instances of popular

utility application scales within diverse technological

paradigms [17].Cao et al. (2010) represented the dynamics

in agile software development and stated on compliance

with versions control systems as an item to determine

changeability under levels below those of team

implementation. Their study helped to establish how version

control systems can be implemented in agile methodologies

and make software development teams more agile and

responsive [18].

Mezura-Montes and Coello (2011) demonstrated three

multiple time phases of constraints handling for natures

inspired Numericals optimizations: past, present, and future.

This study, concerned with version control, contributed

important information about the development of

optimization techniques that may be useful for optimizing

the process of version control [19]. Teich (2012) had

commented hardware/software codesign, within it the

evolution of version control systems as part thereof. The

research provided a viewpoint on the utilization of version

control systems in hardware and software integrated

development, which illustrated their multi-functionality and

ability to be adapted to any development environment [20].

Herráiz et al. (2013) focused on the development of software

evolution laws, which had a section on version control

systems. The authors were able to see the full picture of the

theoretical basis of software evolution and the place of

version control systems in this process using their study

[21].

Roy, Zibran, and Koschke (2014) outlined a vision of the

management of software clones. The authors discussed the

past, present, and future of this area. This study identified

challenges and opportunities associated with managing

software clones, such as using version control systems to

address these challenges [22].

Kalliamvakou et al. (2014) conducted a study on the code-

centric collaboration paradigm in software development

based on the insights from the GitHub platform. It was by

participating in this study that it was possible to understand

Paper ID: SR24127210817 DOI: https://dx.doi.org/10.21275/SR24127210817 1818

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

SJIF (2019): 7.583

Volume 9 Issue 12, December 2020

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

how the GitHub and other version control systems altered

the collaboration world of software development [23].

Akbar and Safdar (2015) considered recent international

trend of software development, as well as the state-of-the art

researches in this area. The surveys established fact that

software development organizations around the world relied

more on control systems with increased felt needs for

adequate tools to facilitate coordination and collaborative

activities in distributed environments [24].

Qusef et al. 2015 elaborated on GitBull, a version control

system implementation in the form of source code hosting

web application as an example to guide it basics and mode

functioning operations used by software developers during

process development. This research added to the literature

researches by presenting a real case of how the version

control mechanisms can help in making collaborations and

code management effective for software projects [25].

Capilla et al. (2016) presented a history of software

architecture KM as it stands today, with perspective on its

implementation within the VCS arrangement. Their work

provided a general perspective on the history of evolution in

terms of software architecture measures and use practices

for version control systems as their ways to manage

architectural knowledge[26].

Git is one of many that version control systems currently

available for use, sport application sphere especially

regarding Mouton (2017) habits studied as a survival solo

work and collaboration between the team. The findings of

this research showed some valuable information about how

Git and other VCS are used in personal projects such as solo

programming or group undertakings [27].

But Raunak and Binkley (2017) elucidated the basics of

agile that conjointly explained other software engineering

trends along with version control systems‘ effects on these

developments. Their research adds to knowledge of

evolution of VCS in relation to agile methodology and other

contemporary software engineering practices [28].

Hasselbring (2018) focused on the external environment of

software architecture, so by analyzing its past and future he

explores how it affects the field. This research demonstrated

that the VCS were a valuable tool for architecture practice

evolution reflecting its importance in controlling more

complicated architectural designs and decisions [29].

Simulation of atmier and TolTEC Detector Array used for

data reduction pipeline validation has been discussed in

Horton (2019).Since the present research did not have

anything to do with version control, this study revealed data

on methods of simulation and analysis that are used which

might be considered helpful in terms of looking at versions

and their control[30].

De Sousa Coelho (2019) perform an investigation into

overlooked causes of abandoned projects defined with the

help of this present paper proofs were obtain and gave

fascinating discoveries on issues revolving around software

plans, their maintenance as well in span program version

control systems lifecycle [31].

A branching strategy formulation algorithm for the version

control systems could be proposed in Store (2020).Such

challenges that can be observed while working on

collaborative software development include branching in

version control, and the present case study offers useful

practical guidance as to how this problem could effectively

be managed [32].

For the project-based learning for software engineering,

Miyashita et al. (2020) suggested a review process that was

associated with GitHub flow in its nature. This report makes

evident that GitHub flow could serve a valuable purpose in

academic settings, and the participants of this study

benefitted from gaining experience with version control

systems [33].

3. Collaborative Workflows in Version

Control

a) GitFlow

Origin and Conceptual Framework of GitFlow: GitFlow

was created by Vincent Driessen in the year 2010 as a

branch model of Git which is nothing but open source

software version control system used for distributed

revisioning. This was intended to address the need for a

usable, model of managing complex software development

processes[3].The main goal of GitFlow is to offer a reliable

structure for project development, merging features into the

working platform or release preparation and support. It

outlines a specific distribution flow that allows for efficient

collaboration and coordination among staff members within

the development team. Although production releases are

done from the master branch, new features are hooked up

and release preparation is prepared via develop. In addition

to these foundational branches, GitFlow also uses topic

support including feature, release and hotfix ones. There

are three types of branches: While feature branches control

the introduction of new functionalities, release branch

prepares for a scheduled version deployment and hotfix is

used to rectify problems in production releases. In general,

Git Flow provides a clear and structured approach to the

administration of software development projects that

increases collaboration possibilities and makes new feature

or bug fix integration seamless [19, 25, 30].

Figure 1: Conceptual Framework of GitFlow

Paper ID: SR24127210817 DOI: https://dx.doi.org/10.21275/SR24127210817 1819

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

SJIF (2019): 7.583

Volume 9 Issue 12, December 2020

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

Advantages and Disadvantages in Practice

Advantages [1, 12, 23]:

 Structured Workflow: GitFlow provides an approach

that enables one to plan and organize the complex

software projects [2].

 Parallel Development: It allows for parallel

development of features within a separate feature branch,

which prevents the conflicts and makes it easier to be

integrated in different branches [3].

 Release Management: Even the presence of release

branch helps towards a manageable readiness for

releasing new versions and post-polishing completions,

as well as minor fixing bugs, however without

hampering onto core development [4].

Disadvantages:

 Complexity: However, GitFlow could also be

considered overly complicated and cumbersome for

projects or teams working on smaller scales that would

hinder development [5].

 Rigid Framework: For instance, the fact that GitFlow is

quite rigid may not allow for snap changes or a direct

deployment approach compared with other workflows

such as the GitHub Flow[6].

Industry Examples

 Large Software Development Firms: The use of

GitFlow in managing product development cycles in

large-scale software companies is very common. It has

shown success in situations where planned discharge

plans are vital and managing several versions is

necessary [7].

 Enterprise-Level Projects: In the enterprise world,

when development, staging and production start separate

tasks that need to be managed independently GitFlow

branching model creates an illusion of a sense of

management and organization over them. For instance, a

large financial services company turned to GitFlow when

it observed higher collaboration among its

geographically distributed development teams as well as

improved release process post the adoption of this new

model [8].

GitFlow stands out from the rest in that it goes to restore

order and predictability with all these advanced software

development projects, wherein structured release cycles are

critical. In contrast, the high level of its intrinsic complexity

and rigidity can be a challenge for some applications that

involve continuous operation on smaller space scales or

when used in dynamic environments [9].

b) GitHub Flow

GitHub Flow refers to a project-oriented method that

facilitates the process of development and delivery for

software teams working with GitHub. However, unlike

GitFlow that works with numerous long-life branches,

GitHub Flow is based on the use of a single main branch as

standard – usually this will be master[10].First of all, the

workflow involves creation of a new branch given to some

feature or fix. This leaves room for the individual

developers to work on their changes unmolested by any

interference from the core codebase. Once the changes are

made, a pull request is issued to initiate the code review and

discussion phase. The pull request is used as a way for

contributors to review, comment, and suggest changes on

the proposed implemented ones. The pull request can be

rewritten and adjusted according to the provided feedback.

Once the changes are reviewed and accepted, they are

merged back into the main branch [11]. This indicates that

the changes are ready to be released to production. GitHub

Flow promotes frequent releases which allow teams to

rapidly iterate and deliver new features or bug fixes. GitHub

Flow is a type of workflow that encourages simplicity and

simplicity, enabling teams to easily develop and deploy

changes to production. With concentration on one main

branch and pull requests, GitHub Flow makes the

development process easier and allows applying the

continuous deployment [12, 13, 14].

Figure 2: GitHub Flow Model

Principles

 Simple and Linear Process: GitHub Flow ensures that

the levels of complexity inherently associated with

continually working with several long-running branches

are easily manageable [15].

 Continuous Deployment: This highlights in the

constant integration and deployment that facilitates

frequent deployment while ensuring that the master

branch is always deployable [16].

 Collaborative and Transparent: Creates a space that

encourages open collaboration via pull requests and,

thus, facilitates transparency and peer review to be a

part of the development process [17].

Comparison with GitFlow in Collaborative

Environments

 Flexibility: The benefits of GitHub Flow highly

contribute to its flexibility compared to GitFlow, which

is best for projects that require frequent and fast

iterations [18].

 Ease of Use: It is more accessible and understandable,

particularly for novice teams unfamiliar with Git or

projects that do not require the stringency of GItFlow

practices [19].

 Suitability for Continuous Deployment: In contrast

with GitFlow, the best thing about a team using GitHub

Flow is to work well on continuous deployment where

changes merged into master are visible quickly[20].

Real-world Applications in Various Industries

 Tech Startups: Many tech startups and agile teams

prefer GitHub Flow because of its simplicity as well as

suitability with continuous deployment. For instance, a

mobile app development startup can incorporate GitHub

Flow to allow fast editing of its product making it easier

Paper ID: SR24127210817 DOI: https://dx.doi.org/10.21275/SR24127210817 1820

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

SJIF (2019): 7.583

Volume 9 Issue 12, December 2020

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

for regular releases and upgrades according to users‘

response[21].

 Open-Source Projects: GitHub Flow is used in well

where the projects are maintained on one of its pages all

over which means that everyone could understand and

participate to a project [22].

 Web Development and SaaS Companies: This

involves industries that are largely characterized by the

need to constantly upgrade with increased rollouts

Businesses in such industries use GitHub Flow for

streamlining their systems integration and release

cycles, which subsequently helps them to react

efficiently on changes appeared at the market or user

needs [23].

The popularity of GitHub Flow may be attributed to its

simplicity and focus on continuous deployment, making it a

highly sought-after model for most domains, especially

those that require a quick iteration and agility. Although it

does not have the strictness of GitFlow, its dynamic in

nature makes it appealing to most modern software

development Life cycles [24, 25].

c) Mercurial

Origin and Conceptual Framework of Mercurial:

Mercurial was developed to address the complicated and

problematic aspects that users experienced while using the

other version control systems for example Git and

Subversion Matt Mackall (2005), who developed Mercurial,

wanted to design a system that was easy for users but could

handle the complexities of large distributed projects [26].

There is simplicity and user-friendliness in the conceptual

framework of Mercurial. The goal is to create a command

environment which is easy to understand by both beginners

and professionals. The focus should be on ensuring that the

user experience is simple and predictable, where actions are

clear and clear[27]. Mercurial, on the other hand, focuses on

direct control over files and repositories. It lets users trace

changes in particular documents, making it easy to monitor

and roll out projects. Because of its distributed nature,

Mercurial makes it possible to work with large projects

involving multiple contributors efficiently, because each

user owns their own local copy of the repository [28]. All in

all Mercurial originates and is underpinned by simplicity in

its use and in the handling of distributed projects, hence its

widespread popularity for version control in several

industries [29, 30, 31].

Figure 3: Conceptual Framework of Mercurial

Key Features

 Ease of Use: Mercurial is known for its particularly

easy-to learn interface, so beginners in version control

have access to it [3, 5].

 High Performance: Fast operation and management of

huge codebases which is suitable for working with large-

scale projects [32].

 Extensibility: Provision of plugins and extensions,

enabling one to personalize the product as per his or her

special requirements [7].

 Robust Branching and Merging: Mechanisms for

efficient branching and merging, enabling various

development workflows [10].

d) Mercurial vs. Git: A Comparative Analysis

Two of the widely used distributed version control systems

in software development include Mercurial and Git.

Although these two systems have similar functions, there are

some major differences that define them [12].

 User Interface: The user interface is one of the major

differences between Mercurial and Git. It is often

perceived that mercurial is the more user friendly with a

less complex command set and a lower learning curve.

This makes Mercurial simpler for first time users as

compared to Git [21].

 Internal Mechanism: The last difference is the inner

workings of the two systems. Git‘s repository model is

snapshotting, in which Git maintains and saves changes

by representing the entire project condition at each

commit. Instead, Mercurial uses a changeset approach by

which changes are tracked and stored as individual

changesets. This may result in different approaches to

change management and treatment in the two systems

[4].

 Adoption and Community Support: Regarding

adopters and communities, Git has a larger number of

users and a more active community. This is partly

because of platforms such as GitHub that have made Git

the most popular version control system for most

developers. Mercurial, with smaller community, is still

widely used [7].

 Extension and Customization: Both Mercurial and Git

provide extensibility and customization possibilities. But

they differ in terms of how they facilitate such

customizations. Mercurial offers a more unified approach

to plugins, enabling the users to greatly extend Mercurial

functionality via built-in plugin mechanisms. However,

Git supports greater personalization with the help of

external tools and scripts [13].

Finally, Mercurial and Git are both robust version control

systems that have their strengths and weaknesses. The

decision between the two at the end of the day is dependent

on the peculiar needs and preferences of the development

team[15, 16, 20].

Implementation Examples in Industry

 Large-scale Enterprise Projects: Mercurial is preferred

by many large corporations and enterprises due to its

simplicity, as well as how efficiently it handles very big

codebases. For instance, a large telecommunications

Paper ID: SR24127210817 DOI: https://dx.doi.org/10.21275/SR24127210817 1821

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

SJIF (2019): 7.583

Volume 9 Issue 12, December 2020

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

company switched to Mercurial because of its ability to

handle major projects[9].

 Game Development: Some of the game development

studios opt for Mercurial to ride on its strong features of

branching and merging tailored towards their large and

highly configurable codebases[15].

 Academic and Research Institutions: As the ease of

use makes Mercurial popular in such areas as academics

where students and researchers can work with their

project without spending a lot on supporting[7].

Mercurial plays a critical role in the ecosystem of version

control systems by combing usability and functionality. Its

design philosophy is aimed at the people who want

simplicity and minimalistic workflow but do not sacrifice

power needed to deal with great complex projects [8].

e) Emerging Trends and Future Directions

Integration of AI and Automation in Collaborative

Workflows: The integration of the Artificial Intelligence

with automation is going to change version control &

collaborative workflow in software development. This

integration aims to enhance efficiency, accuracy, and overall

productivity in several ways[12]:

 Automated Code Reviews and Quality Assurance: AI

algorithms can quickly review the code for possible

errors, inconsistencies of style and compliance to best

practices[13].

 Predictive Analytics for Conflict Resolution: AI is able

to foresee possible merge conflicts and offer ideal

solutions, thus reducing the manual work of solving

coding problems [14].

 Intelligent Branching and Merging Strategies:

Automation tools using AI capabilities can help to

establish optimal junction and fusion points, productivity

which makes the need for branching and merging

processes easier[15].

 Customized Workflow Recommendations: AI helps in

assessing the past data of project to provide suitable

workflow adjustment that would be based on the team

configuration and specifics [16].

Predictions for Future Workflow Models: As we look

towards the future of version control and collaborative

workflows, several key predictions and trends are emerging:

 Decentralized and Peer-to-Peer Models: Also, the

interest in decentralized version control systems is a

trend and this means that these are not centrally

controlled by a server – they allow more peer-to-peer

interactions and collaborations [17].

 Increased Emphasis on Security and Compliance:

New revisions of version control systems will almost

certainly provide stronger security measures, especially

in sectors that require high levels of data confidentiality

and compliance [18].

 Seamless Integration with Development Tools:

However, prepare for closer integration with other tools

in the software development fraternity – continuous

integration/deployment (CI /CD) channels; issue tracking

devices and also cloud based environments of

programming [19, 20].

 Personalization and Adaptability: The version control

systems might become more responsive incorporating AI

that would be learning from users‘ conduct and

preferences to perform with a customized personal

environment capable of optimizing efficiency [21].

 Enhanced Support for Non-Code Artifacts: Future

versions could more effectively support various

versioning and artifact-management features for design

documents, graphics, data models that reflect the

interdisciplinary character of contemporary software

initiatives [22].

In all, the future of collaborative workflows in version

control will become more cooperative smart secure fully

integrated impregnated and user centric. The merger of AI

and automation will enable not only the more efficient

functioning that is already available on solution, it will also

embrace new horizons in the software development

industry. These innovations will meet the growing demands

of different groups and projects, transcending conventional

barriers in team software engineering [23, 24, 25].

Table 1: Gitglow
Feature Branching Model Release Management Feature Development Hotfix Management Complexity

Description Dual-branching Dedicated Independent Urgent Complex

Suitability Structured Methodical Parallel Quick Enterprise

Workflow Planned Controlled Isolated Responsive Detailed

Table 2: GitHub Flow
Feature Branching Model Deployment Development Release Simplicity

Description Master-centric Rapid Short-lived Direct Straightforward

Suitability Continuous Rapid Quick Simplified Agile

Workflow Linear Dynamic Collaborative Streamlined Accessible

Table 3: Mercurial
Feature System Type Interface Performance Branching Extensibility

Description Distributed Intuitive Efficient Flexible Supports plugins

Suitability Large-scale All users High Adaptive Customizable

Workflow Independent User-centric Fast Versatile Expandable

Paper ID: SR24127210817 DOI: https://dx.doi.org/10.21275/SR24127210817 1822

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

SJIF (2019): 7.583

Volume 9 Issue 12, December 2020

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

Table 4: Comparative Analysis of Version Control Workflows
Feature GitFlow GitHub Flow Mercurial

Origin Vincent Driessen GitHub Team Matt Mackall

Structure Highly Structured Simple & Linear User-friendly

Best for Complex Projects Continuous Deployment Large Projects

Branching Multiple Branches Single Branch Flexible

Deployment Scheduled Continuous Adaptable

Popularity Enterprise Level Tech Startups Large-Scale Projects

Branching Strategies in Version Control

a) Fundamentals of Branching Strategies

In version control, branch is defined as diversion from a

head code base which form an individual development line.

This allows developers to be able to work on features, fixes,

or experiments that should not interfere with the stable

version of such computer program. Branching is important,

to the extent that it allows paralleling development activities

by different team members who can develop and test new

codes without serious risks for impairment of main or

production code [26].

Common Branching Models

 Gitflow: This branching model is based on the concept of

having one primary line or "master" and a development

stage known as ―develop‖. Features are created in feature

branches and integrated into the develop branch. A

release branch is fashioned from the develop branch

when a release eventually becomes accessible. Bug fixes

for the release are done in hotfix branches. When a

release becomes stable it is merged into the master

branch [2].

 GitLab Flow: This approach resembles Gitflow but

simplifies it by eliminating the release branch.

Alternatively, releases are done directly from the

mainline. Features are developed in feature branches and

merged into the main branch. Hotfixes created in

separate branches are also merged to both the main

branch and feature branches [9].

 Trunk-based Development: Under this model, all

development occurs on the primary branch only. The use

of feature flags enables hiding unfinished features from

users. Developers adding small, incremental changes

regularly push them into production [11].

 Forking Workflow: In this model, each developer works

with their own copy (fork) of the main repository. They

modify their fork and open pull requests in the main

repository to merge their changes. Open-source projects

typically utilize this model [14].

These are some of the branching models available, with each

team and organization developing its unique versions or a

mix of these models. The type of branching model used is

driven by the specific needs and workflows associated with

a project [16].

b) Evolving Practices in Branching

Historical Evolution and Best Practices over Time: With the

emergence of version control systems, branching approaches

have evolved. First, the simple branching techniques were

sufficient but as software got complex a lot more expanded

methods emerged such as GitFlow and Github Flow. An

integrated environment should have the presence of some

outstanding workflows that promote proper collaboration,

good labelled naming conventions to avoid communication

problems within collaborators; timely merging tools

incorporated by lecturers for smooth operations with

frequent continuous integrations so as it would call for

quality codes [5, 10].

Branching‘s Effect on Software Quality and Productivity:

Similarly, practitioners in those related fields of the same

hierarchy also show that branching approaches result into

considerably more efficient improvements on quality and

productivity. Branching allows for cultures of independent

innovation to develop, offshoots that present a risk but do

not compromise the original (uncompromisable) business. In

fact, it is the repeated merge and integration testing that

helps to ensure minimal divergence of branch in such a way

preventing major code breaking change [27, 30].

c) Industry-Specific Branching Strategies

Examples from Various Sectors like Healthcare, Finance,

etc.

 Healthcare: A significant reason for such branching

software strategy in the development of healthcare

product is that this process requires a very strict

assessment and regulatory methods which are long

review practices[31, 32].

 Finance: In terms of finance, security and stability are

the top priorities. In this branch in particular, many

diversification strategies are very conservative because

they focus on low-risk portfolio choices that require

rigorous testing and reporting [33].

Comparative Analysis of Strategies across Industries: The

strategic preferences for branching in different industries

that, correctly, satisfy operational regulatory and

technological imperatives are various. As opposed to

GitHub Flow, gitflow is a branching model that provides

more structure and control for software development.

Frequently used in the industries such as banking or medical

where stability and dependability is highly crucial [8].

In Gitflow, the development process is divided into two

main branches: The master branch and the develop branch.

The master branch which has the stable and production-

ready variant of software while develop is a continuous

development, integration new features into it [20].

It also brings different types of branches such as feature

branch, release brach and hot fixes. Develop branches are

used for the implementation of new features and generated

from develop branch. When a feature is finished, it goes

back into the develop branch [1, 9].

Paper ID: SR24127210817 DOI: https://dx.doi.org/10.21275/SR24127210817 1823

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

SJIF (2019): 7.583

Volume 9 Issue 12, December 2020

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

Release branches are made when we prepare a new release

of the code. It enables final bug fixes and testing before the

merge with master branch. A hotfix branch is used in the

production environment to perform quick fixes on critical

issues. They are made off the master branch, and they merge

back into both the master and develop branches [23].

However, the gitflow creates a clear division of labor and

more regulated development processes. It gives preference

to reliability and stability over velocity, which is very

important in the spheres where mistakes or downtime may

cause serious problems [17].

Generally, although tech startups tend to favor the rash and

nimble process of GitHub Flow, industries like banking or

medicine might go for a more structured and predictable

approach offered by gitflow as it guarantees consistency

within its products [2, 3].

d) Future Trends in Branching

Predictive Modeling and Intelligent Branching: The

evolutionary predictive modeling and artificial intelligence

will also support the emergence of branching approaches.

The technologies may lead to recommendations that are

derived from the history, dynamics and self-complexity of

code. The trend will provide a sufficient and smoothly

working branching procedure, which has been modelled to

adhere with the requirements of minimal standard quality

assurance part but not limiting developer‘s vision in terms

on time productivity should be enhanced as human-oriented

under advice [4].

The Role of Data Analytics in Branching Strategies: This

shows how these branching strategies operate and are

translated into decisions that should be made through a

practical argument according to the results of data analytics.

The processes that engines should improve bugs, which

could tell how branches must alter the progression of both

projects afford you a possibility from dev operations itself

and place help desk in its operation therefore according to

development sitting organization must adequately construct

bugrash schemes linked brigs munch bend [5].

In this way, on the whole branching methods employed with

regard to version control lay an essential component in

modern software development and have a strong impact

upon one‘s productivity – productive output; thus under

these circumstances it is hard to underrate such phenomena.

With time, such approaches have developed and advanced

with the demands of these software firms under which they

fall into different fields. In this respect, AI and predictive

modeling plus data analytics will enable refinement of these

strategies to a significant extent towards more

personalization thus making them cleverer[6, 7, 19].

Table 5: Branching Strategies in Version Control
Strategy Description Use Case

Feature

Branching

Separate branches

for new features

Independent feature

development

Release

Branching

Branches for release

preparation

Pre-release

adjustments

Hotfix

Branching

Quick-fix branches

for production

Immediate

production bug fixes

1) Version Control in DevOps: Streamlining

Deployment Pipelines

a) Integration of Version Control in DevOps

Conceptual Overview and Significance: The incorporation

of version control in DevOps reflects the transition to a new

paradigm for software development and operations. DevOps

is the collection of practices that work towards minimizing

the systems development life cycle, increasing deployment

frequency and ensure high quality delivered by software. In

this perspective, then version control does not merely serve

as a means of tracking changes in software development;

rather, it becomes an integral part and parcel of the complete

software delivery chain [8].

The DevOps version control system is the infrastructure that

holds together collaboration of developers, CI, and CD

whereby there is a smooth transition from development to

production. It guarantees that each line of code, from the

introduction of new features to hotfixing, is documented in

its version number and integrated into the delivery pipeline

as a single source of truth for the entirety of the project. This

is very important for automating several critical stages of a

typical software development cycle, making it easier to

deploy more frequently and conclude iterations swiftly[9].

Improving Deployment Pipelines through Efficient

Version Control: Efficient version control is key to

optimizing deployment pipelines in DevOps. It provides

several benefits [10, 11, 12]:

 Traceability and Accountability: The codebase

undergoes the change and every phenomenon of this

kind is traced making it possible to understand how

sources from where problems originated in detail, as

well as know what repercussions have associated with

changes that were recently introduced. At this stage of

traceability, responsibility within a team is increased.

 Automated Testing and Integration: With version

control, CI/CD tools work to automate the testing and

integrating of code changes. This automation assures

that commits performed are tested and validated on time

instantaneously, minimizing the possibility of errors in

production settings[13].

 Rollbacks and Quick Recovery In the case of a

failure, version control systems give teams an ability to

rollback to latest stable state hence minimizing

downtime and service disruptions[14].

 Branching and Feature Toggles: Feature toggling and

complex branching tactics make it possible for teams to

handle different features at the same time without

interfering with the principal code line. This ‗parallel

development‘ method speeds up the cycle of

development and broadens release management[15].

 Collaboration and Communication: Through version

control, developers can work together on code, update

each other and communicate changes in an efficient

manner. These resources make it easy for participants to

collaborate by providing features such as pull requests

and merge requests that double up as code reviewing

platforms; basis for knowledge exchange [16].

Summing up, the version control embedded in DevOps is

essential for streamlining deployment pipelines. It increases

Paper ID: SR24127210817 DOI: https://dx.doi.org/10.21275/SR24127210817 1824

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

SJIF (2019): 7.583

Volume 9 Issue 12, December 2020

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

cooperation, makes involves faster and secure deployments

while maintaining high code quality and reliabilities.

Though DevOps continues to develop, version control will

always be at its core and adjusts accordingly in order to

satisfy the needs resulting from more automated procedures

that are faster and progressively advanced[17].

b) Success Stories in DevOps

Analysis of Effective Version Control Practices in

DevOps Environments:

In their work in 2012, Novakouski et al. focus on the

importance of efficient version control practice in DevOps

environments, especially within the SOA context. They

revealed that version control is the key for managing

software evolution, most especially in complex, distributed

systems. Several key insights from their analysis include

[18, 19]:

 Adaptation to Rapid Changes: The research

emphasizes and shows how in the case of DevOps,

version control systems should be able to solve changes

that are extensive and are set to recur and change

continuously. This agility is necessary so that

businesses can remain competitive and quickly respond

to market demands [20].

 Automated Compliance and Tracking: The study

highlights the need for autonomy compliance

restrictions and monitoring variations across different

layers in SOAs. In an effective version control

practices, all the artifacts including services and

configurations has to be versioned and audit so that

consistency of compliance can be maintained[21].

 Streamlining Collaboration and Integration: As for

the case analysis, the case studies show how a source

control is indispensable in simplifying cooperation

between remotely located teams which you would not

believe at first site. The version control systems ensure

integration of various stages in the software

development life cycle through a single version control

tool which enables continuous integration and

deployment [22].

 Enhancing Transparency and Accountability:

Version control integration into the DevOps practices‘

scene improves visibility throughout the entire

development stack. It ensures that the team has full

visibility into where the modifications took place and

who made them and why and when they were made,

which is particularly important when it comes to

accountability and traceability in large projects [23].

 Reduction in Downtime and Faster Recovery:

Through the use of strong version control practices,

organizations have cut downtime during deployments

considerably. In the event of such failures, the

capability to quickly return to a stable version reduces

the amount of service disruptions [5, 24].

The cases presented from the study that require valuable

SOAs such as telecommunications and financial services

industries have shown the adoption of dunes effective

version control practices in DevOps has enhanced

efficiency, dependability, and accelerated time–to–market.

In this regard, the given success stories demonstrate the

transformative nature of the incorporation of version control

systems into DevOps environments and underline their

importance in contemporary software development and

deployment practices [7, 25].

2) Challenges and Solutions

a) Common Challenges in Integrating Version Control

with DevOps

Integrating version control systems into DevOps workflows,

while beneficial, comes with its set of challenges[26, 27]:

 Complexity in Large and Diverse Codebases: The

version control management of large and heterogeneous

codebases can be a challenging task, especially in the

presence of several parallel development streams[28].

 Ensuring Consistency across Environments:

Maintaining continuity throughout the development,

testing and production environments along with the

continuous integration and deployment of new code

changes has been a real challenge[29].

 Branching Strategy Overheads: Since projects change

rapidly, the traditional branching models may not be at

par with the best hierarchical processes. The initiation of

this effort to select and curb on these ―best‖ strategic

branches can prove a challenge even though both group

needs some selection which leaders will normally seek

for[30]. OR/and From this perspective, any attempt

aimed at identifying and asserting command over the

most optimal branch strategies can be an onerous task –

highly difficult even for faster-modifying projects were

the traditional merges may not yield desirable

results[31].

 Cultural and Operational Shifts: The cultural change

and process operational changes that need to take place

in order for version control to become part of DevOps is

a move from siloed operations towards more

collaborative integrated practices[32].

 Security and Compliance: Other than the additional

work done because security and compliance should be

embedded in version control as part of DevOps,

especially for highly regulated industries there is also an

added level of complexity[33].

b) Solutions and Best Practices from Industry Leaders

In order to address these hurdles, the leading figures in

industry have engaged different solutions and best

practices[2]:

 Simplifying Branching Models: Simpler strategies of

branching such as Trunk Based Development or GitHub

flow may help in reducing the complication while

increasing delivery speed[6].

 Automated Testing and Continuous Integration: The

effective working tested automated testing and

continuous integration is in place so that on-the-fly the

code changes are checked which leads to reduction of

differences between environments [9].

 Microservices and Modular Codebases: By breaking

down big application into smaller building blocks such

as microservices or modules helps in higher isolation and

versioning[14].

 Embracing Cultural Change: When integrating

DevOps, the development of a culture that fosters

collaboration and learning for sustainable innovation is

Paper ID: SR24127210817 DOI: https://dx.doi.org/10.21275/SR24127210817 1825

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

SJIF (2019): 7.583

Volume 9 Issue 12, December 2020

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

critical. Workshops and training in a regular cycle

support teams to cope with new workflows [16].

 Security and Compliance Automation: Combining

automated security scans and compliance checks into the

CI/CD pipeline helps to keep the security standards

while simultaneously speeding up process of

developments.

 Version Control as a Single Source of Truth: As the

version control system ensures that the ideal standard is

the only source of information about all code and

configuration revisions, uniformity and responsibility are

fostered [20].

 Utilizing Version Control Integrations: By integrating

with project management tools, automated build systems,

and deployment tools, workflows can be simplified while

also increasing efficiency [22].

Through the adoption of these measures, organizations can

successfully incorporate version control in the DevOps

protocols by overcoming the obstacles and getting the flu of

the benefits of streamlined, efficient, and collaborative

software development procedures [25, 28].

Table 6: Version Control in DevOps - Key Elements

Aspect Function in DevOps Benefits

Integration in

DevOps

Fundamental

component of the

software delivery

pipeline.

Enhances the entire

development and

operation process.

Collaborative

Development

Backbone for

development, CI, and

CD.

Enables seamless flow

from development to

production.

Continuous

Integration (CI)

Ensures every change

is tracked and

integrated.

Maintains a single

source of truth for the

project.

Continuous

Deployment

(CD)

Facilitates rapid

iterations and frequent

deployments.

Accelerates the release

cycle, improving

responsiveness.

Traceability and

Accountability

Tracks every change in

the codebase.

Eases issue tracing and

enhances team

accountability.

Automated

Testing and

Integration

Integrates with CI/CD

tools for code testing

and integration.

Reduces bugs and

errors in the production

environment.

4. The Future of Version Control in DevOps

a) Predictions and Emerging Trends

Today, the future of the version control inside the world of

the DevOps is ready for its revolution upgrades, which are

mainly caused by dynamic to be modified technologic types

of landscape and an overflow of the software work

cultivated nowadays. Key predictions and emerging trends

include [30]:

1) Increased Adoption of Machine Learning and AI: AI

and ML will play a more central role in the future of

version control systems. AI would provide predictive

analytics for conflict resolution, automated code

reviews, and intelligent branching strategies [1].

2) Shift towards More Integrated and Unified Tools:

Another trend that is emerging is the integration of

version control with other tools in the DevOps

environment, leading to the creation of more cohesive

and integrated platforms that facilitate the development

pipeline from the commitment phase to the deployment

[2].

3) Enhanced Focus on Security and Compliance: With

the significance of data security increases, more

advanced security measures will be ven included into

version control systems next features such as automated

vulnerability scanning and compliance checks built

within the CI/CD pipeline [3, 4, 5].

4) Version Control for Non-Code Artifacts: Users

realize more every time that code is not the only one

that should be version-controlled, and that the

containerization architectures themselves and such basic

things as configurations and even datasets must be

version-controlled as well. This holistic mindset is

expected to become one of the most prevalent DevOps

practices [7].

5) Greater Emphasis on Real-time Collaboration:

Better real-time collaboration features within version

control systems that enable distributed teams are

predicted.This includes tasks such as a more interactive

and active code reviewing process, merger request

procedures [10].

b) The Role of Cloud and Distributed Systems in Version

Control

The cloud and distributed systems which are set to play a

critical role in the future of version control within

DevOps[15]:

1) Cloud-Based Version Control Services: The services

of version control in the cloud like GitHub, GitLab and

Bitbucket will gain popularity. These platforms offer

scalability, reliability and receptiveness which are key

elements of current DevOps models [19].

2) Distributed Version Control Systems (DVCS):

Popularity of DVCS, such as Git will be on the rise.

Distributed systems offer some advantages, including

flexibility, good performance and support of a

distributed teams, which fit well with the philosophy

behind DevOps [6, 14].

3) Hybrid Cloud Environments for Version Control:

The rise of hybrid cloud approaches, version control

systems should seamlessly work on-premise and

multiple clouds ensuring comparability and efficiency

[18, 25].

4) Cloud-native Development and Version Control:

Due to the emergence of cloud-native development,

version control systems will have to innovate

appropriately and accommodate containerization,

microservices architectures and serverless computing

[4, 26, 28].

5) Automation in Cloud Environments: Version control

integration into cloud-based pipelines and automation

tools will play an important role in expediting software

delivery cycles and optimizing developmental

processes[29, 30].

Finally, the future of version control in DevOps is tied

directly to the development of AI, the cloud, and distributed

systems. These changes will influence the use of version

control systems, and shape innovations that will make the

development life cycle even more efficient and safe[31, 32,

33].

Paper ID: SR24127210817 DOI: https://dx.doi.org/10.21275/SR24127210817 1826

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

SJIF (2019): 7.583

Volume 9 Issue 12, December 2020

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

5. Conclusion

The above discussion on the growth of version control best

practices in software development regarding its history,

current state, and its trends gives a broad understanding of

the role such practices have played in influencing the trends

in software development.

Collaborative Workflows: The contrasting analysis between

GitFlow, GitHub Flow, and Mercurial showed unique

methods to collaborative workflows in version control. For

this purpose, a tool like GitFlow, which has a well-defined

and meticulous procedures, has been found appropriate for

the projects which need higher release intensity. On the

other hand, GitHub Flow provides simplicity and continual

delivery and goes well with agile and more rapid cycles of

development. User friendliness is the forte of Mercurial, and

hence it is the best choice for those teams that are not ready

to venture into the complications of version management.

Branching Strategies: The analysis of branching strategies

proved that they played a vital role in providing the

opportunity for effective version control, allowing parallel

development, and ensuring sound project management.

These strategies have transformed over time from feature

branches to release and hotfix branches that make sure that

software development projects of various types can use the

method stably, flexibly, and at scale.

Version Control in DevOps: In addition to that, version

control has played a big role in the integration of DevOps as

it has simplified the whole process of deployment pipelines.

This collaboration helps in strengthening the synergy while

at the same making sure that the development stages will

continue to have consistency as well as a smooth movement

of events from the development stage to the production

stages. This means that where DevOps takes on more of a

warehouse environment, one that emphasizes quick release

cycles, automation, and integration; the adoption of version

control in a DevOps environment has stressed the mass

production factor of mass production and mass

customization.

Industry-Specific Examples: Across different fields such as

technology start-ups, health care and financial sector best

practices of implementing version control have been

customized to meet industry unique need. The software and

tech industries usually value a need for quick iteration and

quick deployment and hence prefer systems that are easy to

pivot like GitHub Flow. On the other hand, regulated

industries such as health care and finance often use clinical

workflows, such as GitFlow, to ensure compliance and

accurate release management.

Thus, the evolution of best practices in terms of version

control harvesting certain needs incorporated into it reflects

its changeable character that reflects software development

evolution, matching new technological advancements and

new project demands, and new industry characteristics. With

current trends, the future holds these practices growing even

more advanced and incorporating AI and cloud computing

to enrich efficiency, collaboration, and flexibility in

software development. The version control tools continue

evolving to prove their fundamental position in the dynamic

arena of software development.

References

[1] S. Dekleva and D. Drehmer, "Measuring software

engineering evolution: A Rasch calibration,"

Information Systems Research, vol. 8, no. 1, pp. 95-

104, 1997. [Online]. Available:

https://pubsonline.informs.org/doi/abs/10.1287/isre.8.1

.95

[2] S. Sawyer and P. J. Guinan, "Software development:

Processes and performance," IBM Systems Journal,

vol. 37, no. 4, pp. 552-569, 1998. [Online]. Available:

https://ieeexplore.ieee.org/abstract/document/5387128/

[3] D. Atkins, T. Ball, T. Graves, and A. Mockus, "Using

version control data to evaluate the impact of software

tools," in Proceedings of the 21st International

Conference on Software Engineering, 1999, pp. 324-

333. [Online]. Available:

https://dl.acm.org/doi/pdf/10.1145/302405.302649

[4] B. Florida‐James, N. Rossiter, and K. M. Chao, "An

agent system for collaborative version control in

engineering," Integrated Manufacturing Systems, vol.

11, no. 4, pp. 258-266, 2000. [Online]. Available:

https://www.emerald.com/insight/content/doi/10.1108/

09576060010326384/full/html

[5] B. G. Lee, N. H. Narayanan, and K. H. Chang, "An

integrated approach to distributed version management

and role-based access control in computer supported

collaborative writing," Journal of Systems and

Software, vol. 59, no. 2, pp. 119-134, 2001. [Online].

Available:

https://www.sciencedirect.com/science/article/pii/S016

4121201000139

[6] D. L. Atkins, T. Ball, T. L. Graves, and A. Mockus,

"Using version control data to evaluate the impact of

software tools: A case study of the version editor,"

IEEE Transactions on Software Engineering, vol. 28,

no. 7, pp. 625-637, 2002. [Online]. Available:

https://ieeexplore.ieee.org/abstract/document/1019478/

[7] M. Fischer, M. Pinzger, and H. Gall, "Populating a

release history database from version control and bug

tracking systems," in International Conference on

Software Maintenance, 2003. ICSM 2003.

Proceedings, 2003, pp. 23-32. [Online]. Available:

https://ieeexplore.ieee.org/abstract/document/1235403/

[8] S. Rinderle, M. Reichert, and P. Dadam, "Flexible

support of team processes by adaptive workflow

systems," Distributed and Parallel Databases, vol. 16,

pp. 91-116, 2004. [Online]. Available:

https://link.springer.com/article/10.1023/B:DAPD.000

0026270.78463.77

[9] J. Wang and A. Kumar, "A framework for document-

driven workflow systems," in International Conference

on Business Process Management, Berlin, Heidelberg,

2005, pp. 285-301. [Online]. Available:

https://link.springer.com/chapter/10.1007/11538394_1

9

[10] B. Boehm, "A view of 20th and 21st century software

engineering," in Proceedings of the 28th International

Conference on Software Engineering, 2006, pp. 12-29.

Paper ID: SR24127210817 DOI: https://dx.doi.org/10.21275/SR24127210817 1827

https://pubsonline.informs.org/doi/abs/10.1287/isre.8.1.95
https://pubsonline.informs.org/doi/abs/10.1287/isre.8.1.95
https://ieeexplore.ieee.org/abstract/document/5387128/
https://dl.acm.org/doi/pdf/10.1145/302405.302649
https://www.emerald.com/insight/content/doi/10.1108/09576060010326384/full/html
https://www.emerald.com/insight/content/doi/10.1108/09576060010326384/full/html
https://www.sciencedirect.com/science/article/pii/S0164121201000139
https://www.sciencedirect.com/science/article/pii/S0164121201000139
https://ieeexplore.ieee.org/abstract/document/1019478/
https://ieeexplore.ieee.org/abstract/document/1235403/
https://link.springer.com/article/10.1023/B:DAPD.0000026270.78463.77
https://link.springer.com/article/10.1023/B:DAPD.0000026270.78463.77
https://link.springer.com/chapter/10.1007/11538394_19
https://link.springer.com/chapter/10.1007/11538394_19

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

SJIF (2019): 7.583

Volume 9 Issue 12, December 2020

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

[Online]. Available:

https://dl.acm.org/doi/abs/10.1145/1134285.1134288

[11] C. J. Huang, A. J. Trappey, and Y. H. Yao,

"Developing an agent‐based workflow management

system for collaborative product design," Industrial

Management & Data Systems, vol. 106, no. 5, pp. 680-

699, 2006. [Online]. Available:

https://www.emerald.com/insight/content/doi/10.1108/

02635570610666449/full/html

[12] T. C. Lethbridge, J. Diaz-Herrera, J. Richard Jr, and J.

B. Thompson, "Improving software practice through

education: Challenges and future trends," in Future of

Software Engineering (FOSE'07), 2007, pp. 12-28.

[Online]. Available:

https://ieeexplore.ieee.org/abstract/document/4221609/

[13] M. W. Godfrey and D. M. German, "The past, present,

and future of software evolution," in 2008 Frontiers of

Software Maintenance, 2008, pp. 129-138. [Online].

Available:

https://ieeexplore.ieee.org/abstract/document/4659256/

[14] T. Ellkvist, D. Koop, E. W. Anderson, J. Freire, and C.

Silva, "Using provenance to support real-time

collaborative design of workflows," in Provenance and

Annotation of Data and Processes: Second

International Provenance and Annotation Workshop,

IPAW 2008, Salt Lake City, UT, USA, June 17-18,

2008. Revised Selected Papers 2, 2008, pp. 266-279.

[Online]. Available:

https://link.springer.com/chapter/10.1007/978-3-540-

89965-5_27

[15] P. R. Messinger, E. Stroulia, K. Lyons, M. Bone, R. H.

Niu, K. Smirnov, and S. Perelgut, "Virtual worlds—

past, present, and future: New directions in social

computing," Decision Support Systems, vol. 47, no. 3,

pp. 204-228, 2009. [Online]. Available:

https://www.sciencedirect.com/science/article/pii/S016

792360900061X

[16] L. Cao, B. Ramesh, and T. Abdel-Hamid, "Modeling

dynamics in agile software development," ACM

Transactions on Management Information Systems

(TMIS), vol. 1, no. 1, pp. 1-26, 2010. [Online].

Available:

https://dl.acm.org/doi/abs/10.1145/1877725.1877730

[17] E. Mezura-Montes and C. A. C. Coello, "Constraint-

handling in nature-inspired numerical optimization:

past, present and future," Swarm and Evolutionary

Computation, vol. 1, no. 4, pp. 173-194, 2011.

[Online]. Available:

https://www.sciencedirect.com/science/article/pii/S221

0650211000538

[18] J. Teich, "Hardware/software codesign: The past, the

present, and predicting the future," Proceedings of the

IEEE, vol. 100, Special Centennial Issue, pp. 1411-

1430, 2012. [Online]. Available:

https://ieeexplore.ieee.org/abstract/document/6172642/

[19] I. Herraiz, D. Rodriguez, G. Robles, and J. M.

Gonzalez-Barahona, "The evolution of the laws of

software evolution: A discussion based on a systematic

literature review," ACM Computing Surveys (CSUR),

vol. 46, no. 2, pp. 1-28, 2013. [Online]. Available:

https://dl.acm.org/doi/abs/10.1145/2543581.2543595

[20] C. K. Roy, M. F. Zibran, and R. Koschke, "The vision

of software clone management: Past, present, and

future (keynote paper)," in 2014 Software Evolution

Week-IEEE Conference on Software Maintenance,

Reengineering, and Reverse Engineering (CSMR-

WCRE), 2014, pp. 18-33. [Online]. Available:

https://ieeexplore.ieee.org/abstract/document/6747168/

[21] E. Kalliamvakou, D. Damian, L. Singer, and D. M.

German, "The code-centric collaboration perspective:

Evidence from github," Technical Report DCS-352-

IR, University of Victoria, 2014. [Online]. Available:

http://thesegalgroup.org/wp-

content/uploads/2014/04/code-centric.pdf

[22] [22] R. Akbar and S. Safdar, "A short review of global

software development (gsd) and latest software

development trends," in 2015 International Conference

on Computer, Communications, and Control

Technology (I4CT), 2015, pp. 314-317. [Online].

Available:

https://ieeexplore.ieee.org/abstract/document/7219588/

[23] A. Qusef, I. Albadarneh, and A. Albadarneh, "GitBull:

Source code hosting web application," in 2015 IEEE

Jordan Conference on Applied Electrical Engineering

and Computing Technologies (AEECT), pp. 1-6,

November 2015. [Online]. Available:

https://ieeexplore.ieee.org/abstract/document/7360574/

[24] R. Capilla, A. Jansen, A. Tang, P. Avgeriou, and M.A.

Babar, "10 years of software architecture knowledge

management: Practice and future," Journal of Systems

and Software, vol. 116, pp. 191-205, 2016. [Online].

Available:

https://www.sciencedirect.com/science/article/pii/S016

4121215002034

[25] C. Mouton, "Git: Le fil d‘Ariane de vosprojets, pilier

des forges modernes - Git en solo et en équipe via une

forge logicielle (GitHub)," in JDEV2017 - Journées du

DéveloppementLogiciel de l'EnseignementSupérieur et

de la Recherche, July 2017. [Online]. Available:

https://hal.science/hal-02084440/

[26] M.S. Raunak and D. Binkley, "Agile and other trends

in software engineering," in 2017 IEEE 28th Annual

Software Technology Conference (STC), pp. 1-7,

September 2017. [Online]. Available:

https://ieeexplore.ieee.org/abstract/document/8234457/

[27] W. Hasselbring, "Software architecture: Past, present,

future," in The Essence of Software Engineering, pp.

169-184, 2018. [Online]. Available:

https://library.oapen.org/bitstream/handle/20.500.1265

7/27814/1/1002191.pdf#page=181

[28] P.A. Horton, "Simulating Atmosphere and the TolTEC

Detector Array for Data Reduction Pipeline

Evaluation," Arizona State University, 2019. [Online].

Available:

https://search.proquest.com/openview/918d2cc36fdbb

0607eb8043b6823f854/1?pq-

origsite=gscholar&cbl=18750&diss=y

[29] J.J. de Sousa Coelho, "Identifying and characterizing

unmaintained projects in github," 2019. [Online].

Available:

https://repositorio.ufmg.br/handle/1843/31230

[30] J. Store, "Qualities and Issues of Branching: A Method

Proposal for Formulating a Branching Strategy," 2020.

[Online]. Available:

https://helda.helsinki.fi/server/api/core/bitstreams/893b

2467-0bf3-4dc9-8ea8-2757d2fd7a5b/content

Paper ID: SR24127210817 DOI: https://dx.doi.org/10.21275/SR24127210817 1828

https://dl.acm.org/doi/abs/10.1145/1134285.1134288
https://www.emerald.com/insight/content/doi/10.1108/02635570610666449/full/html
https://www.emerald.com/insight/content/doi/10.1108/02635570610666449/full/html
https://ieeexplore.ieee.org/abstract/document/4221609/
https://ieeexplore.ieee.org/abstract/document/4659256/
https://link.springer.com/chapter/10.1007/978-3-540-89965-5_27
https://link.springer.com/chapter/10.1007/978-3-540-89965-5_27
https://www.sciencedirect.com/science/article/pii/S016792360900061X
https://www.sciencedirect.com/science/article/pii/S016792360900061X
https://dl.acm.org/doi/abs/10.1145/1877725.1877730
https://www.sciencedirect.com/science/article/pii/S2210650211000538
https://www.sciencedirect.com/science/article/pii/S2210650211000538
https://ieeexplore.ieee.org/abstract/document/6172642/
https://dl.acm.org/doi/abs/10.1145/2543581.2543595
https://ieeexplore.ieee.org/abstract/document/6747168/
http://thesegalgroup.org/wp-content/uploads/2014/04/code-centric.pdf
http://thesegalgroup.org/wp-content/uploads/2014/04/code-centric.pdf
https://ieeexplore.ieee.org/abstract/document/7219588/
https://ieeexplore.ieee.org/abstract/document/7360574/
https://www.sciencedirect.com/science/article/pii/S0164121215002034
https://www.sciencedirect.com/science/article/pii/S0164121215002034
https://hal.science/hal-02084440/
https://ieeexplore.ieee.org/abstract/document/8234457/
https://library.oapen.org/bitstream/handle/20.500.12657/27814/1/1002191.pdf#page=181
https://library.oapen.org/bitstream/handle/20.500.12657/27814/1/1002191.pdf#page=181
https://search.proquest.com/openview/918d2cc36fdbb0607eb8043b6823f854/1?pq-origsite=gscholar&cbl=18750&diss=y
https://search.proquest.com/openview/918d2cc36fdbb0607eb8043b6823f854/1?pq-origsite=gscholar&cbl=18750&diss=y
https://search.proquest.com/openview/918d2cc36fdbb0607eb8043b6823f854/1?pq-origsite=gscholar&cbl=18750&diss=y
https://repositorio.ufmg.br/handle/1843/31230
https://helda.helsinki.fi/server/api/core/bitstreams/893b2467-0bf3-4dc9-8ea8-2757d2fd7a5b/content
https://helda.helsinki.fi/server/api/core/bitstreams/893b2467-0bf3-4dc9-8ea8-2757d2fd7a5b/content

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

SJIF (2019): 7.583

Volume 9 Issue 12, December 2020

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

[31] Y. Miyashita, Y. Yamada, H. Hashiura, and A.

Hazeyama, "Design of the inspection process using the

GitHub flow in project-based learning for software

engineering and its practice," arXiv preprint

arXiv:2002.02056, 2020. [Online]. Available:

https://arxiv.org/abs/2002.02056

[32] J. Abildskov and J. Abildskov, "Collaboration in Git,"

in Practical Git: Confident Git through Practice, pp.

83-106, 2020. [Online]. Available:

https://link.springer.com/chapter/10.1007/978-1-4842-

6270-2_5

[33] C. Kamoun, J. Roméjon, H. de Soyres, A. Gallois, E.

Girard, and P. Hupé, "biogitflow: development

workflow protocols for bioinformatics pipelines with

git and GitLab," F1000Research, vol. 9, 2020.

[Online]. Available:

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC79218

91/

Paper ID: SR24127210817 DOI: https://dx.doi.org/10.21275/SR24127210817 1829

https://arxiv.org/abs/2002.02056
https://link.springer.com/chapter/10.1007/978-1-4842-6270-2_5
https://link.springer.com/chapter/10.1007/978-1-4842-6270-2_5
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7921891/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7921891/

