
International Journal of Science and Research (IJSR)
ISSN: 2319-7064

SJIF (2019): 7.583

Volume 9 Issue 12, December 2020

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

DevSecOps Automation: SAST/DAST Integration

in GitLab CI/CD with Semgrep, OWASP ZAP, and

Dependency-Check

Sandhya Guduru

Masters in Information Systems Security, Software Engineer - Technical Lead

Abstract: As software development accelerates, integrating security into continuous integration and continuous deployment (CI/CD)

pipelines is essential. This paper explores the automation of security testing in GitLab CI/CD by embedding Static Application Security

Testing (SAST) with Semgrep, Dynamic Application Security Testing (DAST) with OWASP ZAP, and Software Bill of Materials (SBOM)

generation with Dependency-Check. These tools enable early vulnerability detection, reducing security risks in production. The

implementation of SLSA scorecards is also examined to assess software supply chain security and Kubernetes admission controllers to

enforce security policies by blocking vulnerable builds. Automating these security measures can enhance application security without

compromising development speed. This paper highlights best practices for securing DevSecOps pipelines effectively.

Keywords: DevSecOps Automation, CI/CD Security, GitLab CI/CD, SBOM analysis, SAST and DAST, OWASP ZAP, Dependency-

Check, Kubernetes admission controllers

1. Introduction

Modern software development increasingly adopts

DevSecOps automation practices, integrating security into the

development lifecycle rather than treating it as a separate

phase. This shift ensures vulnerabilities are identified and

mitigated early, reducing risks and improving overall

software security. As organizations rely on GitLab CI/CD

pipelines to streamline software delivery, embedding CI/CD

security automation becomes essential to prevent security

flaws from reaching production.

Traditional security assessments, such as manual code

reviews and penetration testing, struggle to keep pace with

rapid development cycles. SAST and DAST offer automated

solutions, but integrating them seamlessly into CI/CD

pipelines presents challenges. Ensuring comprehensive

security coverage without introducing significant delays

requires careful selection and configuration of security tools.

Additionally, securing software supply chain security has

become a priority, with recent cyber threats targeting

dependencies and building processes.

This paper explores the security testing automation in GitLab

CI/CD by integrating Semgrep for SAST, OWASP ZAP for

DAST, and Dependency-Check for Software Bill of Materials

(SBOM) generation. It also examines the implementation of

SLSA scorecards to assess software supply chain security and

Kubernetes admission controllers to enforce security policies.

By embedding these mechanisms into CI/CD security

pipelines, this research aims to enhance security while

maintaining development efficiency.

2. Literature Review

Research on DevSecOps automation has significantly

expanded in recent years, emphasizing the integration of

security within software development workflows. Traditional

security models often treated security as a separate phase,

leading to delayed vulnerability detection and costly

remediation efforts. Studies have shown that embedding

security into CI/CD pipelines improves software resilience by

catching vulnerabilities earlier in the development cycle [1].

This shift has driven the adoption of static application security

testing (SAST), dynamic application security testing (DAST),

and software bill of materials (SBOM) generation, which

provide multi-layered security analysis. SAST tools, such as

Semgrep, analyze source code before execution, identifying

security flaws without running the application. These tools

are valuable for detecting common coding mistakes and

compliance violations but often generate false positives,

requiring fine-tuned rules [2].

In contrast, DAST tools, such as OWASP ZAP, perform

security testing on live applications, simulating real-world

attacks to uncover vulnerabilities in authentication, session

management, and API endpoints. While DAST scans provide

runtime validation, they may struggle with authentication

challenges and require properly configured test environments

to be effective [3]. The role of SBOM in software security has

gained prominence due to increasing concerns about supply

chain attacks. Dependency-Check and similar tools help

identify vulnerable third-party dependencies by cross-

referencing known vulnerability databases, allowing

organizations to manage risk exposure proactively [4].

The table below compares these security approaches based on

key attributes.

Paper ID: SR20127082903 DOI: https://dx.doi.org/10.21275/SR20127082903 1893

www.ijsr.net
http://creativecommons.org/licenses/by/4.0/

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

SJIF (2019): 7.583

Volume 9 Issue 12, December 2020

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

Table 1: Security Tool Comparison for GitLab CI/CD Integration
Security Tool Type Strengths Limitations

Semgrep SAST Fast scans, customizable rules, detects vulnerabilities early High false positive rate, rule complexity

OWASP ZAP DAST Real-time attack simulation, API security testing False negatives, authentication issues

Dependency-Check SBOM Identifies vulnerable dependencies, enhances supply chain security Limited coverage of proprietary libraries

Several studies have explored the integration of security tools

within GitLab CI/CD pipelines, demonstrating how

automated security checks can enhance software security

while maintaining developer productivity [5]. Implementing

SAST, DAST, and SBOM analysis at different stages ensures

a comprehensive security assessment before deployment. The

following code snippets illustrate how these security tools can

be embedded within GitLab CI/CD configurations.

A common method for implementing SAST involves

integrating Semgrep into the CI/CD pipeline. Semgrep is a

lightweight static analysis tool that enables customizable rule-

based scanning, making it effective for detecting security

vulnerabilities early in the development process. The

following GitLab CI/CD configuration shows how Semgrep

can be executed as a pipeline job.

Figure 1: A GitLab CI/CD pipeline configuration integrating Semgrep for SAST

While SAST is effective for identifying vulnerabilities in

source code, it does not assess how the application behaves at

runtime. To complement this, DAST tools like OWASP ZAP

perform real-world security testing by attacking the

application in a controlled environment. The following

pipeline configuration integrates OWASP ZAP to scan an

application’s API endpoints.

Figure 2: OWASP ZAP integration in GitLab CI/CD for DAST-based API security testing

Another critical component of DevSecOps automation is

SBOM analysis, which helps track software dependencies and

detect vulnerable third-party libraries. Dependency-Check is

a widely used tool for generating SBOMs and identifying

security flaws within dependencies. The following GitLab

CI/CD configuration demonstrates how to incorporate

Dependency-Check into a security pipeline.

Paper ID: SR20127082903 DOI: https://dx.doi.org/10.21275/SR20127082903 1894

www.ijsr.net
http://creativecommons.org/licenses/by/4.0/

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

SJIF (2019): 7.583

Volume 9 Issue 12, December 2020

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

Figure 3: Dependency-Check implementation in GitLab CI/CD to generate SBOM and detect vulnerabilities in dependencies.

Beyond vulnerability detection, researchers have explored

enforcement mechanisms to strengthen CI/CD pipeline

security. Studies using empirical vulnerability models, such

as those analyzing OpenSSL, demonstrate how software

supply chain risks can be identified and predicted -reinforcing

the need for structured frameworks like SLSA to evaluate

build provenance and ensure artifact integrity [6].

Similarly, Kubernetes admission controllers act as a

gatekeeper for production environments, blocking

deployments that fail security policies. These controllers

enforce security constraints, such as rejecting images with

critical vulnerabilities or unapproved dependencies,

preventing high-risk applications from being deployed [7].

The table below summarizes the role of these enforcement

mechanisms.

Table 2: Security Enforcement Mechanisms in CI/CD

Pipelines
Security Measure Function Benefit

SLSA Scorecards
Software artifact

security assessment

Ensures build integrity

and security compliance

Kubernetes

Admission

Controllers

Blocks deployments

with vulnerabilities

Prevents insecure

applications from

reaching production

Despite advancements in automated security tooling,

challenges remain in optimizing these solutions for

performance, accuracy, and scalability. False positives in

SAST scans, authentication difficulties in DAST, and

incomplete vulnerability databases in SBOM analysis

introduce operational complexities that organizations must

address. Moreover, integrating security enforcement

mechanisms such as SLSA scorecards and Kubernetes

admission controllers requires fine-grained policies and

continuous monitoring. Future research may explore the use

of machine learning and AI-driven security analytics to

improve scan accuracy and reduce developer friction.

The integration of machine learning (ML) in automated

security tooling has been explored in areas like networking

security, where ML techniques are used to identify anomalies

and attacks. These advancements highlight the potential of

AI-driven analytics to enhance the accuracy, performance,

and scalability of security solutions in complex environments

like DevSecOps pipelines [8].

Ultimately, combining SAST, DAST, SBOM analysis, SLSA

scorecards, and Kubernetes admission controllers forms a

robust security framework for modern DevSecOps practices,

reinforcing the need for security automation within CI/CD

pipelines [9].

3. Problem Statement

The adoption of CI/CD pipelines has transformed software

development by enabling rapid and continuous deployment.

However, security concerns have not kept pace with this

acceleration. Traditional software development models

incorporate security as a final step, but CI/CD demands a

shift-left approach where security is embedded throughout the

development lifecycle. Without this integration,

organizations face increased risks of deploying vulnerable

software, which can be exploited by malicious actors.

A key challenge in modern DevSecOps practices is balancing

security and development speed. Security tools must operate

efficiently within CI/CD workflows without disrupting

developer productivity. Many organizations still rely on

outdated security practices that do not scale with automated

deployment models, leading to security gaps. Additionally,

the complexity of integrating multiple security tools within a

pipeline creates operational friction, making security

implementation inconsistent across teams.

The following sections outline the major security challenges

in CI/CD environments, including risks associated with

traditional pipelines, the inefficiencies of manual security

testing, difficulties in tool integration, and the need for

automated enforcement of security policies.

3.1 Security Risks in Traditional CI/CD Pipelines

Modern CI/CD pipelines streamline software delivery but

often lack built-in security measures, exposing applications to

critical vulnerabilities. When security is not integrated into

the development process, insecure code can be deployed into

production, increasing the risk of breaches, data leaks, and

system compromise. Threat actors target misconfigured

CI/CD environments, exploiting exposed secrets, unpatched

dependencies, and weak access controls. Additionally, lack of

visibility into security risks across the pipeline makes it

difficult to track and remediate vulnerabilities before they

become exploitable.

Paper ID: SR20127082903 DOI: https://dx.doi.org/10.21275/SR20127082903 1895

www.ijsr.net
http://creativecommons.org/licenses/by/4.0/

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

SJIF (2019): 7.583

Volume 9 Issue 12, December 2020

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

3.2 Limitations of Manual Security Testing

Traditional security testing relies on manual assessments,

which are slow, inconsistent, and unable to scale with modern

development cycles. As software updates become more

frequent, security teams struggle to keep pace, leading to

delayed vulnerability detection and patching. Manual code

reviews and penetration testing require significant expertise

and effort, making them resource-intensive and impractical

for fast-moving CI/CD environments. Moreover, human error

introduces inconsistencies, resulting in missed vulnerabilities

or wrongly prioritized risks. Developers often perceive

security reviews as bottlenecks, leading to resistance in

adopting security best practices.

3.3 Challenges in Integrating Security Tools Seamlessly

Integrating SAST, DAST, and SBOM tools into CI/CD

pipelines introduces technical and operational challenges.

SAST tools often generate excessive false positives,

overwhelming developers with irrelevant security alerts.

DAST scans can be slow and require fully deployed

environments, making real-time vulnerability detection

difficult. SBOM generation and dependency scanning help

track vulnerabilities in third-party components but require

accurate dependency resolution to avoid false reports.

Without careful tuning and integration, security tools can

slow down development and increase friction between

security and engineering teams.

3.4 Need for Automated Security Policy Enforcement

Even when security tools are present, enforcing security

policies consistently remains a challenge. Developers may

bypass security checks if they cause workflow disruptions,

leading to unsecure builds being deployed. Inconsistent

enforcement of security policies results in non-compliant

releases, increasing risk exposure. Additionally,

organizations often lack a structured mechanism to block

vulnerable artifacts from entering production, relying instead

on reactive measures after deployment. Without automated

policy enforcement, security remains an afterthought rather

than an integral part of the software development lifecycle.

4. Proposed Solutions

To address the security challenges in CI/CD pipelines, this

paper proposes a DevSecOps automation framework that

integrates SAST, DAST, and SBOM generation within

GitLab CI/CD. This approach ensures security is embedded

throughout the development lifecycle, reducing risks

associated with insecure code, vulnerable dependencies, and

misconfigured deployments. Additionally, SLSA scorecards

are leveraged to assess the security posture of the software

supply chain, while Kubernetes admission controllers enforce

security policies before deployment.

4.1 Integration of SAST, DAST, and Dependency

Scanning in GitLab CI/CD

A key aspect of this solution is the seamless integration of

security tools into GitLab CI/CD pipelines to automate static

analysis, dynamic testing, and dependency tracking. Semgrep

is an AST-based SAST tool that provides fast and

customizable pattern matching for identifying security

vulnerabilities in source code. Unlike traditional SAST tools

that generate excessive false positives, Semgrep enables rule-

based scanning to detect insecure coding patterns with

minimal overhead. The following snippet demonstrates how

to integrate Semgrep into a GitLab pipeline.

Figure 4: Integrating Semgrep in GitLab CI/CD

This implementation runs Semgrep within a dedicated

security stage, ensuring that code is analyzed for

vulnerabilities before proceeding to further build or

deployment steps.

Another critical component of security integration is OWASP

ZAP, a DAST tool that performs API fuzzing and runtime

security assessments. The tool scans web applications for

vulnerabilities, such as injection flaws and misconfigurations,

that might not be detectable through static analysis. The

following GitLab pipeline job configures OWASP ZAP to

perform automated security scans.

Paper ID: SR20127082903 DOI: https://dx.doi.org/10.21275/SR20127082903 1896

www.ijsr.net
http://creativecommons.org/licenses/by/4.0/

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

SJIF (2019): 7.583

Volume 9 Issue 12, December 2020

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

Figure 5: OWASP ZAP DAST Integration in GitLab CI/CD

This configuration ensures that web applications undergo

DAST scanning as part of the pipeline, generating

vulnerability reports for review.

Software Bill of Materials (SBOM) generation is also critical

for tracking third-party dependencies and identifying security

flaws in open-source libraries. Dependency-Check, an

OWASP tool, is integrated to detect known vulnerabilities in

project dependencies based on NVD (National Vulnerability

Database) feeds.

Figure 6: Dependency-Check SBOM Generation in GitLab CI/CD

By implementing Dependency-Check, the pipeline

continuously monitors dependency risks and prevents the use

of outdated or vulnerable libraries.

4.2 Enhancing Security with SLSA Scorecards

To strengthen software supply chain security, SLSA (Supply

Chain Levels for Software Artifacts) scorecards provide an

automated way to assess the security posture of software

artifacts. Scorecard checks analyze code repositories,

verifying security best practices such as branch protection,

signed commits, and dependency tracking.

Automating SLSA Scorecard checks within GitLab CI/CD

pipelines ensures that security policies are continuously

enforced without manual intervention. These checks evaluate

critical security metrics such as signed commits, dependency

freshness, and branch protection. The following table

summarizes key security checks performed by SLSA

scorecards.

Table 3: SLSA Scorecard Security Checks
Security Check Purpose

Signed Commits Verifies authenticity of commits

Dependency Updates Ensures third-party libraries are up-to-date

Branch Protection
Prevents unauthorized changes to critical

code

Code Review Policies
Enforces multi-party code review before

merges

4.3 Kubernetes Admission Controllers for Security

Enforcement

Even with SAST, DAST, and dependency scanning, insecure

builds may still reach production. Kubernetes admission

controllers act as a policy enforcement layer, preventing the

deployment of non-compliant or vulnerable applications.

Admission controllers evaluate security policies before

allowing workloads to be scheduled. Policies can be defined

to block deployments based on detected vulnerabilities,

missing SBOM metadata, or the presence of secrets in

container images.

By integrating admission controllers with GitLab CI/CD, any

image that fails security scanning is denied execution. The

Paper ID: SR20127082903 DOI: https://dx.doi.org/10.21275/SR20127082903 1897

www.ijsr.net
http://creativecommons.org/licenses/by/4.0/

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

SJIF (2019): 7.583

Volume 9 Issue 12, December 2020

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

following Kubernetes policy, for example, prevents the

deployment of containers with critical CVEs.

Figure 7: Kubernetes Admission Policy for Security

Enforcement

This policy ensures that containers are deployed with

restricted privileges, reducing the risk of exploitation in

production environments.

By integrating SAST, DAST, SBOM tracking, SLSA

scorecards, and Kubernetes admission controls, this

framework automates end-to-end security enforcement in

GitLab CI/CD pipelines. These measures collectively reduce

vulnerabilities, improve compliance, and enhance the overall

security of software development processes.

5. Conclusion

This paper explored the integration of SAST, DAST, and

SBOM tracking within GitLab CI/CD pipelines to automate

security enforcement. The proposed framework leverages

Semgrep for static analysis, OWASP ZAP for dynamic

security testing, and Dependency-Check for tracking

vulnerabilities in third-party dependencies. Additionally,

SLSA scorecards assess the security posture of software

artifacts, while Kubernetes admission controllers enforce

deployment security policies. These combined approaches

ensure that security is embedded throughout the development

lifecycle, reducing the risks associated with insecure code,

outdated dependencies, and misconfigurations.

Automating security enforcement in CI/CD pipelines offers

significant benefits, including early vulnerability detection,

reduced manual effort, and improved compliance with

security best practices. By integrating security tools into the

development workflow, organizations can minimize security

risks without disrupting development speed. The use of

policy-based enforcement mechanisms, such as Kubernetes

admission controllers, further strengthens security by

preventing the deployment of non-compliant applications.

Future work could focus on enhancing automation through

AI-driven vulnerability detection, refining false-positive

reduction techniques in SAST tools, and expanding security

policies for cloud-native environments. Additionally,

integrating threat intelligence feeds into GitLab CI/CD could

improve the real-time detection of emerging vulnerabilities.

As DevSecOps practices continue to evolve, further research

is needed to optimize security automation while maintaining

development agility.

References

[1] Schicchi, M., Vallittu, K., Crispo, B., Sainio, P., &

Virtanen, S. (Oct, 2020). Security in DevOps:

understanding the most efficient way to integrate security

in the agile software development process

[2] Ahmed, Z., & Francis, S.C. (2019). Integrating Security

with DevSecOps: Techniques and Challenges. 2019

International Conference on Digitization (ICD), 178-

182.

[3] Thulin, P. (2015). Evaluation of the applicability of

security testing techniques in continuous integration

environments (Dissertation). Retrieved from

https://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-

113753

[4] Multistakeholder, N. (Dec, 2019). Framing Software

Component Transparency: Establishing a Common

Software Bill of Material (SBOM).

[5] Koopman, M. (2019). A framework for detecting and

preventing security vulnerabilities in continuous

integration/continuous delivery pipelines.

[6] Benthall, S. (2017). Assessing software supply chain risk

using public data. 2017 IEEE 28th Annual Software

Technology Conference (STC), 1-5.

[7] Islam Shamim, Md. S., Ahamed Bhuiyan, F., & Rahman,

A. (September, 2020). Xi commandments of Kubernetes

Security: A systematization of knowledge related to

Kubernetes Security Practices. 2020 IEEE Secure

Development (SecDev), 58–64.

[8] Herrera, J.A., & Camargo, J.E. (2019). A Survey on

Machine Learning Applications for Software Defined

Network Security. ACNS Workshops.

[9] Rahul, B., Kharvi, P., & Manu, M. (2019).

Implementation of DevSecOps using Open-Source tools.

International Journal of Advance Research, Ideas and

Innovations in Technology, 5, 1050-1051.

Paper ID: SR20127082903 DOI: https://dx.doi.org/10.21275/SR20127082903 1898

www.ijsr.net
http://creativecommons.org/licenses/by/4.0/

