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Abstract: Semiconductor devices are the essential building blocks in today’s information technology and society. Next - generation 

semiconductor devices such as FinFETs, GAA - FETs, and nanowires have been proposed to serve for high - performance and low - 

power applications in the deep - submicron technology nodes. However, with the rapid scaling of semiconductor technology nodes, 

traditional test generation methods face large runtime and memory footprint challenges to ensure efficient fault diagnosis and reliability 

screening. In this regard, machine learning (ML) has emerged as a new paradigm to address the above issues with great success. This 

paper presents recent advanced testing frameworks for next - generation semiconductor devices by enabling ML. Several successful 

demonstrations are covered, creating and exploiting novel ML models of various levels of complexities. At the device level, fast test 

generation methods using shallow ML models are presented, yielding significant improvement in runtime and memory efficiency 

compared to existing commercial tools. At the circuit level, the applicability of deep learning - based approaches for stuck - at fault 

identification and location is explored. Finally, a massive data generation and representation learning framework for deep neural network 

- based built - in self - test (BIST) generation is presented to improve the design robustness of the built - in test (BIT) architectures for 

large - scale applications. The basic concepts and implementations are first introduced, followed by successful demonstrations and 

industrial applications. This opens up questions on how advanced ML models can improve existing approaches, where they might fail, 

and how to mitigate the biases. Manual test development for semiconductor chips relies on designerś knowledge, experience & heuristics, 

requiring substantial time & effort. ML models representative of test - influencing factors and their likely trade - offs can be created 

directly from the available test data. Such auto - generated ML models can then be exploited for test generation or validation, or to estimate 

the test cost based on semiconductor models. A bottleneck in this approach is the time - consuming, complex, intensive operation of taking 

different process steps to generate quality physical or logical test data on the specific test chips. ML methods are exceptionally data - 

hungry, requiring a large volume to train and generalize successfully. However, there are many untapped sources of ample simulation 

data both from older chips and different fabrication processes. It is possible to create new problem representations, or simulation domains, 

that standardize/normalize all factors not relevant to a particular problem. Various progressive domain adaptation methods can then be 

used to adapt existing ML models from these pre - trained representations to the new problem domain. Once adapted, the production ML 

models can be used for fully automated test generation or engineering studies. 

 

Keywords:  machine learning in testing, semiconductor device reliability, automated test generation, deep neural networks, domain 

adaptation strategies 

 

1. Introduction 
 

As semiconductor device technologies advance based on 

novel architectures and new materials, the need for complex 

and advanced testing is anticipated to increase. Consequently, 

it is vital to develop appropriate testing techniques and tools 

that can effectively and efficiently test next - generation 

semiconductor devices. To date, enormous efforts have been 

made in testing methodologies and frameworks. Traditional 

testing techniques are insufficient for capturing important 

parameters. Consequently, researchers are focusing on 

integrating machine - learning with testing methodologies and 

frameworks introduction to enhance test quality.  

 

The context of this paper is on next - generation 

semiconductor devices, namely new types of FinFET Stress 

Test Structures, Gate - All - Around FET Logic Devices, and 

2D Materials for Future Semiconductor Applications. These 

types of devices involve complex structures and novel 

mechanisms, making advanced testing methodologies 

necessary. However, conventional testing methodologies do 

not consider the new characteristics presented by the devices. 

Various parameters must be analysed to ensure good 

performance, which significantly increases the complexity of 

test vector generation and design. Machine - learning methods 

are able to significantly reduce the complexity and enhance 

the quality of the generation while analysing the new 

characteristics of the devices.  

 

Machine - learning - based testing methodologies are still in 

the early stage of development. There has been a surge of 

interest in exploring the testing methodologies that leverage 

machine - learning techniques and frameworks. This paper 

provides a comprehensive survey of the major testing 

philosophies, procedures, and techniques, accompanied by 

illustrative selected applications, that bring machine learning 

into the physical assurance of semiconductor devices. To 

compare existing works based on different criteria, a 

taxonomy of machine - learning - based testing 

methodologies and frameworks is presented for the first time. 

Additionally, challenges and opportunities in testing next - 

generation semiconductor devices using machine - learning 

techniques and frameworks are further discussed to motivate 

future research. The growing interactions between testing and 

machine - learning domains hold enticing potential for 

contributing to the emergence of new methodologies and 

techniques, which will benefit the efficiency and reliability of 

semiconductor devices.  
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2. Overview of Semiconductor Devices 
 

Semiconductors have become a part of everyday life in 

different forms: TVs, laptops, game consoles, and cars, to 

name a few. All of these products require semiconductor 

devices inside to perform the different tasks. The workhorse 

of the semiconductor industry is a field - effect transistor 

known as the metal - oxide - semiconductor field - effect 

transistor (MOSFET). This device is typically 1–2 μm in size, 

and it is built using the semiconductor material, silicon (Si). 

There are some inherent properties of Si that make it a popular 

choice over the other materials. Most importantly, it 

facilitates the construction of Metal - Oxide - Semiconductor 

(MOS) structures which can be used for device fabrication. 

This property can be exploited to fabricate thin oxide layers 

(∼1 nm) on the Si dielectrics, with the gate oxide influencing 

the device performance characteristics. The compact model 

describes the circuit or electrical behavior of the device based 

on the underlying physics of the device; hence, it is very 

useful for fast simulations and typical design scenarios in an 

industry  

 
Figure 1: Semiconductor Lithography Equipment 

 

In the recent past, there has been a significant amount of 

research in developing accurate compact models for the sub - 

100 nm technology nodes. The advent of machine learning 

(ML) has given rise to new generation models which can 

predict the device characteristics very fast; hence they are 

very useful for design iterations. Use of ML for modeling 

device characteristics is a classical nonlinear regression 

problem; hence different techniques can be applied. With the 

rapid advancement of the semiconductor industry, the number 

of processes involved in making one device has drastically 

increased. Semiconductor fabrication is an interdisciplinary 

field with a cumbersome process flow. The difficulty lies in 

the fact that there are many chemical reactions and 

multidisciplinary knowledge is necessary.  

 

With the rise of ML, it becomes more feasible to use ML 

algorithms to describe the complex relations between 

semiconductor processes: etching and deposition at the 

plasma level, oxidation and wafer cleaning at the fluid level, 

and lithography in 2D at the solid state. The efficacy of 

supervised learning is very high but comes with one major 

drawback: there is a requirement of a large amount of crucial 

labeled data. In the real manufacturing environment, data 

sparsity is a critical issue, as not all the sequences of processes 

are measured throughout the process. The best modeling 

technique for the semiconductor industry is to mix the idea of 

ideal physics, which gives the coherent insight into the 

physics of the problem, with the ML algorithms, which can 

learn the pattern and behavior from the data at the same time 

[3].  

 

3. Importance of Testing in Semiconductor 

Manufacturing 
 

Semiconductors are critical and indispensable key materials 

for the manufacture of modern electronic devices. Forward - 

looking technologies such as artificial intelligence (AI), 

quantum computing (QC), new energy vehicles (NEV), and 

HiGHTS —high performance, high energy density, high 

frequency, high temperature, high voltage, and high reliability 

—gas turbine engine, all face growing requirements for 

improved performance, efficiency, size, and costs. Continued 

progress in these advanced applications critically hinge upon 

the development of next - generation semiconductors, which 

require substantial reductions in size and improved 

performance, efficiency, and yield. Next - generation 

semiconductors include both new materials and new 

structures of the classical silicon devices that have been 

dominating the semiconductor industry for more than half a 

century since the invention of transistor. New materials are 

made of quantum dots or other two - dimensional materials, 

such as transition metal dichalcogenides (TMDs) MoS2, 

WSe2, etc. New structures of classical silicon devices include 

three - dimensional structures, such as gate - all - around field 

effect transistors (GAA FETs) and Fin field effect transistors 

(FinFETs). Such next - generation semiconductors pose 

multiple unique and unprecedented grand challenges in terms 

of practical realizability, fabrication, testing, and reliability, 

all of which must be addressed with innovations in materials 

and method development.  

 

Conventionally, a testing framework is composed of a 

number of oftentimes independently designed and 

implemented test patterns, instruments, and techniques in 

hardware and software. While a conventional testing 

framework is effective, it often suffers from difficulties in 

scalability, performance, and time. Specifically, as more and 

more next - generation semiconductor devices under test 

(DUTs) are introduced into the testing framework, the issue 

of the in scalabilities of test patterns, instruments, and 

techniques becomes particularly pronounced. On the 

efficiency side, testing throughput demands assistance by 

modern algorithms including both classical and emerging AI 

techniques. Finally, fixed hardware testers and software 

testers can incur high engineering costs and tedious time to 

design test patterns for new devices [4]. In addition, much of 

the existing test patterns are often underuse when modern 

devices change quite a bit. Here, ML may also help identify 

transferable test patterns across various next - generation 

semiconductor devices.  

 

4. Challenges in Traditional Testing Methods 
 

Semiconductor testing involves a set of operations associated 

with performing electrical tests on semiconductor dies, in 

particular on those that have been fabricated in the fabrication 

process. Semiconductor testing consists of two parts 

including Wafer - Test (Pre - bond test) and Final - Test (Post 
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- bond test). The wafer test serves as an early reliability and 

yield screening step in the semiconductor manufacturing 

flow, and therefore could significantly reduce the test cost if 

it is effective. Because dies are tested at the wafer level, there 

is also a chance to test a large number of pins simultaneously. 

The die, as such, has enhanced accessibility and fewer 

physical limitations [4]. However, it is also harder to find the 

parameters with respect to measure the test effectiveness due 

to the non - linearities of the die.  

 

 
Figure 2: Top Challenges in Automation Testing 

 

At the wafer level, a die that has got from the wafer probing 

test will have the pin assignments according to the layout 

design database since it flows to the Final - Test at the first 

time. A partitioning stage called translation is needed, which 

will determine the design pin assignments. The translation 

could affect the test effectiveness. Loss of signal propagation 

across the active silicon area can influence the test 

predictability and severity. A test - deck could be produced 

for the wafer probe test (WPT) using the translation data but 

there are infrastructure and coordination issues. The test could 

not be easily reusable and it wastes time to generate the test - 

deck for each wafer probing. This could also refer to the 

limited test replacement and difficulty in the generation of the 

site - specific insertion loss tests.  

 

With respect to the scanning architecture, there have 

previously focused on test access and scan architecture 

visualization. Masked testing is needed for the complete and 

necessary output fault simulation to perform full - 

semiconductor fault coverage fault simulation. Deep - 

learning based approaches to classify the test - data and test 

passes [3]. Integrated pattern compaction reduces the amount 

of test - data stored on - chip to ease the process of 

downloading to the chip during test mode while allowing 

more test - data to persist in the compactor output to achieve 

higher fault coverage.  

 

5. Introduction to Machine Learning 
 

Machine learning (ML) focuses on developing and evaluating 

computer programs that improve performance at some tasks 

with experience. The simplest form of ML is based on 

supervised learning approaches. In supervised learning, data 

sets with input - output pairs are provided, and the algorithm 

attempts to predict the output from the input. Unsupervised 

learning evaluates training scripts without a target outcome. 

The algorithm attempts to cluster input data with no target or 

a limited understanding of the value. Reinforcement learning 

techniques are provided with limited supervision, consisting 

of guidance that incorporates the desired outcome value 

within restriction boundaries. Often a reward history is 

processed to develop an evaluation outcome. The ML process 

consists of three main stages: data preparation, training, and 

evaluation. The data preparation phase transforms inputs into 

usable data. The training phase consists of providing the ML 

models with the prepared data enabling networks to identify 

relevant features. The evaluation phase uses other existing 

datasets to evaluate how well the trained model performs on 

new data [1].  

 

ML has been developing over recent decades but transitioned 

to faster development with emergent approaches and 

solutions. ML research is now presented with introductory 

principles and hands - on tutorials, resulting in academic 

courses and many fields where it can be applied. Many ML 

introduction packages are now in programming libraries, 

taking seconds to apply. With models and well - structured 

input data, surprising is often outputted. Generated ML 

algorithms’ complexity prevents a clear understanding of how 

inputs will be processed. Furthermore, testing the validity of 

such algorithms becomes hard for created ML models. It is 

unsure which eventualities and observations were considered 

in the testing loop during evaluation in the simplest libraries, 

while knowledge on input data is lost in reprocessing in 

complex models.  

 

6. Machine Learning Applications in Testing 
 

Machine Learning is one of the popular Artificial Intelligence 

(AI) approaches for developing early fault detection 

applications in semiconductors. ML techniques can analyze 

system data and identify potential problem patterns. Also, ML 

can optimize a systematic approach involving manual or semi 

- manual processes and development cycles [1]. A systematic 

approach prevents space exploration or mission drift and 

systematic testing. Avoid over - testing and under - testing test 

buttons and cycles. In infrastructures involving multiple 

components, ML can precisely identify and aid the 

verification of newly updated components.  

 

 
Figure 3: Machine Learning in Test Automation 

 

Some survey efforts summarize various uses and classes of 

ML approaches in verification and validation, listing potential 

applications in testing and design verification and constraint 

satisfiability. Many automatic testing or verification 

approaches, including different verification levels in different 

groups, involve manually crafted or semi - manual process 

resources. Finding the optimized input to perform system 
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signing without a specific model or coverage target is a 

challenge. Computed Static Analysis inputs static analysis 

into ML to enhance the fault detection coverage of the 

verification process and reduce runtime. Firm Sample 

Recovery exploits the temporal relationship between γ - 

universal and context - free regular expressions to synthesize 

initial compact samples and generate new and diverse test 

cases. Clustering applies a uniform - vector similarity 

comparison using multi - style learned vectors at abstraction 

levels to narrow the search space. To be efficient, most of 

these approaches require a large amount of design 

information such as event logs, signal traces, and Intent.  

 

7. Frameworks for Machine Learning in 

Semiconductor Testing 
 

New advanced technologies have been introduced, including 

a 5G high - speed ADC that can be tested with builtin testing 

methods, a high - speed SAR ADC with testing frameworks 

based on SL, and a multi - channel pressure sensor with digital 

background calibration. Interconnects, as a primary 

component of Integrated Circuits (ICs) for over four decades, 

show an increasing delay and cost, along with diminishing 

returns in circuitry [1]. By the year 2020, approximately 90% 

of the area in a standard cell IC is allocated to interconnects, 

and efforts to reduce delay via technology are restricted by 

the trade - offs in alternative costs, routing congestion, and 

the emphasis on longer channels. Despite incorporating new 

materials, there is no confidence that these approaches will 

permit excessively large chip sizes and connectably heavy 

systems on ICs [3].  

 

Machine learning is currently a major theme in scientific 

research, offering promise for a variety of applications, 

including failure detection in physical systems of ever - 

increasing complexity. It offers an opportunity for a complete 

reappraisal of test data metrics, as well as the development of 

new test metric generation and evaluation approaches at 

various testing stages. A framework is introduced that brings 

together various aspects of machine learning that may be of 

relevance in the context of semiconductor testing, including 

some practical applications. It outlines important 

requirements and offers many examples of the potential use 

of machine learning at testing stages, as well. However, it is 

clear that much work is needed to ensure that the approaches 

can lead to the desired outcomes in an economical manner.  

 

7.1 Data Collection and Preprocessing 

 

In semiconductor manufacturing, process and equipment 

monitoring are becoming increasingly complex due to 

generational technology advances from planar devices to fin 

field - effect transistors or gate - all - around field - effect 

transistors. Artificial Intelligence has evolved to become a 

powerful tool in this field for detecting and predicting wafer 

yield well before its fabrication stage. However, with an 

increasing number of wafer fabrication factories, process tool 

and recipe diversities, different concerns for yield 

degradation, and evolving sophisticated device structures, test 

information grows both more complex and massive, 

rendering value extraction increasingly elusive [3]. As the 

first step of any machine learning or deep learning 

methodologies, data collection and processing involve data 

selection, filtering, preparation, and transformation to render 

them suitable for input into models. In practice, this is realized 

in conjunction with data feature discovery and extraction, 

emphasizing efficiently capturing data distribution without 

losing valuable information. Recently, pre - trained data 

collection and transfer learning techniques have come into 

play. However, in this absence of pre - trained models, some 

issues have received less attention.  

 

When devising a novel methodology, novel tests are often 

performed corresponding to requirements not previously 

observed, in which cases data collection is performed afresh. 

As test information is in the form of time signals or curves, it 

possesses the inherent dimension of time. Taking this into 

account, this section reviews signal feature extraction 

methods suited to the investigation of novel requirements. 

Detecting the considerable amount of process data 24/7 in a 

foundry is challenging. Since achieving complete fault 

coverage with a finite number of tests is infeasible, tests need 

to be prioritized to ensure maximum fault detection 

capabilities [5]. Due to the size of the search space, heuristic 

search algorithms are often applied for test prioritization. 

With equipment becoming increasingly complex and 

automated, mass logs are generated beyond human capability 

to analyze manually. Patterns representing equipment health 

status and abnormalities need to be automatically discovered 

from these logs. Similarity between test conditions is a 

prerequisite for using an existing test to qualify new devices. 

When transferring a Neural Network, the lower the similarity, 

the more retargeting is needed. Feature extraction methods 

are reviewed for data collection in various situations, and how 

a particular type of data collection could suffer from its own 

failings when evaluated a posteriori.  

 

7.2 Model Selection and Training 

 

The deep learning frameworks, including deep neural 

networks, convolutional neural networks, and recurrent 

neural networks, with various structures and hyperparameters 

can be used to ascertain machine learning architectures for 

target applications. It is essential to choose the right structure 

and hyperparameters that can enhance the efficiency, 

robustness, and accuracy of analysis. Hence, a sub - optimal 

model can lead to poor combinations that may waste the 

training time and deteriorate the test performance. The 

selection of the model structure can have exaggerated 

repercussions for complex problems. Therefore, the model 

architecture recommendation is necessary for each task and 

dataset.  
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Figure 4: Machine Learning Model Selection and Parameter 

Tuning 

An in - depth survey for the related works is performed that 

provide automated methods for architecture searches. Many 

approaches focus on heuristics that typically use fixed - length 

encoding. A poor search strategy is often employed for 

optimization algorithms. Only a handful of works leverage 

recent advances in optimization. The neural architecture 

search with reinforcement learning can easily obtain results, 

but their training times are too long. The genetic 

programming - based methods can be effective but require 

more customization of the prior knowledge and framework. 

Besides these, a framework that handles hyperparameter, 

architecture search, and training with a more user - friendly 

way is developed. For the end - user, it is proposed to 

automatically tune the hyperparameters, architecture search, 

and training simultaneously.  

 

The preliminary results can find highly competitive 

architectures within hours of running on the end - user PC, 

and the plug - and - play experience is nice. Though 

techniques have never been introduced to advance deep 

learning architecture search, the required experts are quite 

needed to tune the hyperparameters which can take hours or 

days. Nevertheless, this framework can benefit this testing 

machine learning community. Surprisingly, it has been 

scarcely studied for computer vision tasks even though its 

performance well above the set standard. The existing 

frameworks do not include natural ways for experts to inject 

prior knowledge.  

 

8. Case Studies of Machine Learning in 

Semiconductor Testing 
 

Machine learning algorithms have been researched to 

enhance the functional verification process. These algorithms 

were applied to the coverage directed test generation, 

coverage driven verification, and runtime optimization of 

constrained random verification. The clustering approach was 

used for coverage - driven verification of the communication 

core. In addition, clustering based approaches were used to 

debug test failures in UVM - based tests at both the RTL and 

gate level. Coverage driven test generation is mostly model - 

based, thus more limited in application scope  

 

Primarily, this paper describes the machine learning 

algorithms suitable for improving the coverage directed test 

generation process either by steering or altering the conditions 

of the test generation engines or by tuning the test generation 

proofs. Meanwhile, promising future directions and areas of 

research are outlined. It is presented that coverage - driven 

test generation is proactive in generating potentially valid 

tests, while test - selection from generated test cases is 

reactive. Therefore, machine learning algorithms can be 

applied to the test generation and test selection processes. As 

a follow - up, the challenges and some initial ideas of applying 

machine learning algorithms in automated coverage - driven 

test generation are discussed. 

 
Figure 5: AI in Semiconductors Industry 

 

Big data and machine learning rapidly change life styles, and 

they can potentially change semiconductor research and 

development. Despite substantial advancements, the industry 

still struggles with electro - migration and stress void, fin - 

cycle - time - variation, hardware security, and new device 

architecture. The industry faces challenges in analyzing 

coverage holes in verification patents, accelerating qualitative 

error understanding, and analyzing performance - drift defects 

in post - silicon physical characterization [3].  

 

This paper showcases some of the successful achievements of 

applying big data and machine learning for semiconductor 

failure analysis. Several remaining challenges are also 

summarized for future research efforts. Semiconductor 

devices are fashionable applications of hardware - oriented 

machine learning. Modern semiconductor devices have 

nanoscale dimensions and increased complexity, which 

makes them difficult to manufacture and test. As device 

dimensions shrink, testing is increasingly reliant on 

electromagnetic simulation models and less test hardware. 

Simulation models need to be verified for precision, which is 

complex and time - consuming.  

 

8.1 Case Study 1: Predictive Maintenance 

 

This case study presents a recently developed approach for 

predictive maintenance based on measurement and prognosis 

of logical failure mechanisms. The approach consists of a 

Tangible Digital Twin which predicts the time - to - failure of 

a product, reasoning about its Condition Indicator and Failure 

Avoidance actions at the same time. It actively operates with 

real measurements and simulated failures in a changing 

environment, with learning capabilities to continuously refine 

its models with new data. The proposed method is grounded 

on qualitative change points, which project the high 

dimensionality of raw time series data onto unsupervised, 

lower size, interpretable, and actionable qualitative variables. 

In the last decades, predictive maintenance applications have 

become one of the most impactful Artificial Intelligence and 

Machine Learning areas, with successful industry 

implementations reducing costs and failures rates 

significantly [5].  

 

A wide variety of data - driven methodologies for product 

condition monitoring and prognosis have been proposed, 

supporting on ‘offline’ exploratory analytics or/and ‘online’ 

decision making. They significantly differ in accuracy, 

interpretability, and tractability, but all these methods are 
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using a ‘Digital Twin’, large datasets with simulations or 

historical measurements of condition changes and an 

expensive trustable simulator to forecast the evolution of 

products and systems. The methods for real - time 

applications usually sacrifice the product simulator. An 

alternative enabling the breathing digital twin concept is 

currently being addressed by fundamentally different Boolean 

- state modelling and analysis methods which do not require 

simulation of the conditional behaviour, but directly operate 

by encoding measurements and business rules in Boolean 

states and rules. Such methods have numerous advantages 

over digital twins: a very small state space, fully interpretable 

model structures, expressive visualisations and analyses, and 

direct coupling with mathematical programming, simulation 

and statistical learning.  

 

8.2 Case Study 2: Quality Assurance 

 

In semiconductor manufacturing, despite a lot of efforts on 

manufacturing and design improvement of advanced 

technology nodes, technology is becoming more complicated 

and defect density is being reduced. However, increasing 

design complexity, device performance, and manufacturing 

process variations can still lead to larger variability and 

defects [3]. In an attempt to capture these changes, 

qualification testing approaches are challenged to efficiently 

and effectively plan characterization at - worst - case (AWC) 

corner settings. Although running a lot of dummy tests at 

AWC corners can ensure the correctness of a design, it 

increases time - to - market and testing costs. To address this, 

a novel data analytics approach to characterize the test cost 

and effectiveness of all test conditions is proposed.  

 

In general, a large amount of collected data from past 

technology nodes may not be reused due to the obstinately 

increasing difficulty in predicting defects. In an attempt to 

solve this, a data - augmented optimization approach is 

proposed to select AWC corners. Note that even with current 

designs having a similar structure, design - flavors can be so 

diverse that narrowing down the corner settings can be 

ambiguous. Fortunately, the most widely exploited timing 

delay defects in static timing analysis can be predictable by 

constructing rejection region models. Instead of finding the 

exact test corner settings, the target test conditions can be 

narrowed down to rejection regions [5].  

 

Based on that, selective data - augmented optimization 

targeting at the design - specific situation is carried out 

repeatedly and thus competitors can be analyzed, enabling the 

selection of corner settings. The experimental results, using 

different cases ranging from dual/multiple supply voltage 

designs, are also investigated. Numerous potential test 

settings involving a lot of process corner variations, different 

parameters are tested and assessed in terms of their cost and 

effectiveness on the timing path faults are provided.  

 

9. Evaluation Metrics for Testing Frameworks 
 

The proposed testing framework incorporates ML techniques, 

but its reliability depends on the availability of reliable and 

robust datasets. In addition, the following evaluation metrics 

are proposed for comprehensive DEDs testing framework 

evaluation:  

 
Figure 6: 4 Essential Testing Metrics for Measuring Quality 

Assurance Success 

 

ML model performance evaluation metric: This metric 

includes several common performance metrics generally used 

to evaluate ML model performance, including confusion 

matrix representation, accuracy, precision, recall, F1 score, 

ROC, and AUC. The input is an ML model, DEDs dataset for 

testing, and performance metric option. The output is the 

desired performance metric values. The recommended metric 

usage is based on whether the dataset is imbalanced or 

balanced. The confusion matrix (true positive (TP), true 

negative (TN), false positive (FP), and false negative (FN)) 

are used if the dataset is imbalanced, while accuracy, 

precision, recall, and F1 are mainly utilized if there are several 

classes (K>2), otherwise accuracy, precision, and recall are 

sufficient (K=2). ROC and AUC are also recommended if 

there is class imbalance.  

 

Testing framework robustness evaluation metric: This metric 

includes several robustness metrics to evaluate the testing 

framework’s robustness by determining the robustness of 

individual classifiers. The input is a DEDs dataset and the 

generated performance metrics values (using the above 

testing framework robustness evaluation metric). The output 

is a score used to evaluate the robustness of the testing 

framework. This metric demonstrates the robustness of 

individual classifiers based on the robustness postulates, and 

if they are not strictly followed, the classifiers might be 

sensitive, especially to testing data variation. The estimated 

score can be utilized to evaluate individual classifier 

robustness. Therefore, the robustness analysis of the testing 

framework can be done based on the robustness evaluation 

scores of individual classifiers.  

 

Testing framework consensus evaluation metric: This metric 

incorporates the proposed consensus function to evaluate the 

effectiveness of the consensus function. This metric is 

introduced since the final classification decision of the testing 

frameworks is determined using consensus functions. 

Additionally, scoring rules are also utilized in decision fusion 

than consensus functions, so equivalent metrics are also 

incorporated for scoring rules. The input is a DEDs testing 

dataset, individual classifiers, and final decision using a 

consensus function (both centering and scoring rule 

functions). The output is the evaluation metric value. The 

consensus metrics’ value must not be zero [6]; else, the 

classifiers do not agree on the final decision. Therefore, these 

metrics are used to evaluate the effectiveness of the consensus 

function in a testing framework.  
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10. Integration of Machine Learning with 

Existing Testing Protocols 
 

There are several prominent testing protocols used for next - 

generation semiconductor devices that are integrated into 

machine learning - based approaches starting from machine 

learning - based circuit design for a reliable post - fabrication 

testing mechanism to data processing modules for registration 

- based electrical test data specifications to hardware - in - the 

- loop methods for extraction and simplification of complex 

testing specifications, among many others presented in 

literature. These protocols and applications can be analyzed 

based on a machine - learning - based approach’s data 

requirements for training reliable models based on both the 

data content and the utilized pre - processing steps for 

improved model performance.  

 

Eqn 1: Conceptual Equation for ML Integration in 

Testing 

 

 
 

Models trained on testing data generated with specific 

protocols can be reused towards the testing of other devices 

designed with a similar architecture. By only adjusting the 

sampling rate of the input signals such models can produce 

almost identical testing procedures for other devices of the 

same family, while more comprehensive test specifications 

remain needed to derive functional tests from scratch for 

completely different designs. Perfectly conditionally - 

independent electrothermal data sets can be trained with no 

cost, if at least one test chain circuitry is available in each chip 

design family, towards the generalization of test 

specifications among all devices from the same family [1]. 

There are no hardware requirements besides DFT logic; 

however, the runtime is longer than that of ML approaches. 

The former must have kernel approximation during the entire 

chip testing, while the latter is only needed during model 

training.  

 

11. Future Trends in Semiconductor Testing 
 

In the last four decades, due to shrinking geometries, the 

semiconductor industry has observed increasingly 

multifaceted integrated circuits (ICs). These ICs pose testing 

challenges that are far ahead of traditional methodologies. 

Following a time of total focus on problems arising due to 

Technology Scaling (TS), the focus has now shifted to 

Integrated Device Manufacturing (IDM) and System on Chip 

processes (SoC) [7]. Process variability and new 

manufacturing technologies bring in a new host of challenges, 

many of which overlap with performance variation challenges 

and incursions in test methodology. Along with these 

changes, a new phenomena Baker’s Dozen has emerged. Due 

to riding the Learning Curve, Electro - migration, Frequency 

Drifting, and so forth, early silicon death is a real cause to 

worry and is extremely difficult to catch at the design stage.  

A rising pattern for SoCs or IPs is to protoboard. As Soon as 

Possible in silicon prototyping, either to cut first silicon 

timing, power and area, or to have some proper working die 

to validate algorithm vs hardware. Aspects like grouping 

embedded memory snapshots to sampling rates, start up 

signals, frequency changes, etc. have to be dealt with at design 

- time as they serve as major break - points to concurrent 

testing. Moreover, given the host of test challenges, and to 

prevent a cat and mouse game, designing dedicated hardware 

test circuitry to assist normal chip use seems a befitting 

solution.  

 

With the advent of Artificial Intelligence (AI) (especially 

Machine Learning (ML)), a new arsenal is available to test 

engineers. Use of ML in testing includes screening of test 

patterns, fault detection and classification, and automating 

test - circuit synthesis and rehearsal. ML is at the heart of new 

- age automatic test equipment. Highlights AI/ML’s effect on 

VLSI design & test are also presented by domain.  

 

11.1 Automated Testing Solutions 

 

The semiconductor industry is rewarding, but it is facing new 

opportunities and challenges. Technologies such as artificial 

intelligence, 5G, and the internet of things are taking center 

stage in computing and communications systems. 

Applications like autonomous vehicles and smart cities will 

bring new opportunities for high - quality chips with reduced 

size, power, and cost. Extensive verification of next - 

generation chips is necessary to keep up with aggressive 

scaling of technologies. Novel methods using machine 

learning are needed to keep up with the rapid growth of the 

design space.  

 

Testing is a fundamental and essential task for every chip at 

every level of abstraction, design phase, and application. 

Production testing is crucial to find silicons that do not 

conform to the specification before deploying them to the 

customer. Each defect has its own physical manifestation on 

the chip and causes a corresponding unexpected response. 

There are generally two types of production tests: unit tests, 

which determine whether a device is good or fail, and 

enhanced tests, which aim to specify the failing defect. As the 

chips grow more complicated, many of them can no longer be 

tested exhaustively. As a result, an effective test generation 

algorithm that guarantees quality or even correctness and a 

robust and efficient infrastructure for its integration into the 

design environment and yielding into a usable testcase and 

testprogram are essential.  

 

Eqn 2: Automated Testing Solutions  
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Tests are generated in parallel, with a variety of constraints. 

Some biases of the initial pseudo - random/testbench 

sequences could be filtered out at the input levels, thus 

gaining high coverage. Fixing this issue and generating 

efficient tests in a probabilistic manner can be done using 

genetic algorithms, which manipulate the input states and the 

procedure program as chromosomes. An average of over 80% 

stuck - at or delay fault coverage was achieved. To ensure that 

no relevant testbenches were missed in the design 

environment, some contextual constraints could be 

circumvented; algorithms were developed to generate input 

programs from multi - granularity ones that still retained the 

behavior of interest.  

 

11.2. Real - Time Data Analysis 

 

With the technological advancement of semiconductor chips, 

the integration densities of devices in a single semiconductor 

chip is rapidly increasing. The ever - evolving structure and 

additional complex components in semiconductor devices 

greatly enhance their performance but make it increasingly 

difficult to detect defects or defects. Conventionally, using 

machine learning (ML) to perform analysis on semiconductor 

failures is to train a model in batch mode. Most of the time 

the data is flushed to other analytics hardware, and ML guided 

failure analysis is conducted after a set of chips are processed. 

However, when the chips are being manufactured in a 

semiautomatic set of processes, a new type of failure occurs. 

The ML model that is previously trained can only detect the 

types of failures it has seen. Recently some ML techniques 

have been proposed to retrain the model online, as additional 

data points come in the early failure detection becomes more 

urgent. But how to adapt models designed for large batch data 

to a single - pass online fashion on semiconductor failure 

analysis is more challenging and more meaningful [3].  

 

This work discusses novel quantile online learning to detect 

semiconductor failures online in a single batch. Classical 

regression is designed for a fixed distribution and can’t deal 

with unseen data distributions. The novelty of this method is 

to take advantage of quantile regression which builds quantile 

functions adaptively on the observations for each identically 

distributed random variable. To handle the ambiguity 

problem with data that is not labeled, as many commonly used 

performance metrics are based on quantile models, this paper 

combines quantile regression with online learning. By taking 

advantage of binary encoding fashions of quantile prediction 

functions proposed previously, it is shown this combination 

generalizes classical quantile regression learning from batch 

mode to online fashion.  

 

The proposed method is on a family of semiconductor device 

- level defects. They are FinFET bridge defect, GAA - FET 

bridge defect, GAA - FET dislocation defect. The first three 

device - level defects are thermally triggered hotspots. 

Conventional test sockets break during wafer probing 

considering the excellent electrical performance of devices in 

scenarios matching corners. The SEM imaging of a micro - 

bump in Chip 3 was also shared for this family of device - 

level defects. Further abnormal gates are shown to distribute 

more in Chip 3. Evaluation of multi - channels and scales of 

control are present for a public database: SECOM. To test the 

robustness and applicability of the proposed quantile online 

learning method, this work is on a public metallization defects 

problem: SECOM, which is used widely to evaluate different 

ML techniques.  

 

12. Ethical Considerations in Machine Learning 

Applications 
 

There is an inherent tension in the process of how things get 

constructed in the world of automated computer systems 

where machine learning makes their own decisions to classify 

things and carry out actions in response to them. On the one 

hand, automated action and a large measure of autonomy is 

what makes machine learning - based systems useful and 

powerful. As more sophisticated machine learning techniques 

are adopted in various industries and domains, concern 

regarding the ethical implications of their deployment and 

usages intensifies. Based on a scoping literature review on the 

notion of ethics in the study of automated computer systems, 

offers a machine learning - inspired understanding of the 

ethics of machine learning. While using this crudely 

articulated notion of machine learning ethics as a basis, 

analysis notes that much work remains to be done to advance 

a more incisive understanding of machine learning ethics [8].  

By singing the praises of machine learning as a concept tool 

that allows organizations to anticipate the future and act on 

predictions in a preemptive manner, a jubilant response to and 

reinforcement of the celebratory discourse has been offered. 

However, this overly positive appraisal begs the question of 

whom machine learning ‘serves’. Such pushback provides a 

more complex account of who is accountable for precision 

medicine and related conceptually derivative technologies. In 

addition, a convincing case is made about how to think 

critically about society scanning citizens faces well informed 

by machine learning.  

 

Eqn 3: Ethical Considerations in Machine Learning 

Applications 

 
Machine learning classifiers are central decision makers in 

large measure, if not entirely, automated computer systems. 

As such, understanding machine learning and the underlying 

mathematics, engineering principles, and their implications 

has been an academic pursuit for years. Regardless of the 

technology underlying them, decisions taken in the world of 

machine learning inherently have a lacking of human agency 

and ethical accountability.  

 

13. Regulatory Implications for Semiconductor 

Testing 
 

The advanced GDT system is compatible with other TSK - 

based predictive tests. For example, one can define a TSK 

model per DTM yield or product confidence metric, and both 

types of models could be managed by the same GDT system. 

One can also digest the results of TSK Pareto prediction on 
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process parameters per sort. Not leading to design changes, 

but either process improvements or alternative mitigation 

plans. Finally, engaging Fault Classification (FC) on those 

tests, so that different and real time responses can be 

triggered, whether the anomaly produces a fail or is processed 

for Possible Failing Products (PFP) analysis.  

 

The TSK approach to modelling advanced IC test 

measurements and responses has shown appealing results. 

Given the complex nature of modern devices, no 

exhaustiveness can be justified on the number of tests or the 

characteristics of the metrics. Tests remain state - of - the - art 

when defined by a TSK technique at a given frequency, as one 

needs the MDA state robust under fabrication and packaging 

variations and to engage the fault classification on such cases 

[5]. These tests could evolve to some sort of deep learning 

methodology in the future.  

 

Another candidate for future improvement is the GDT 

system, the main results of which show that in some situations 

good operating points of the DTM models exist when not 

controlling the problematic chip class percentages. Other 

predictive models could be defined per DTM metric: relevant 

test selections could be anticipated by engaging the DTM 

prediction methodology. Yet the positive results concerning 

the non - compromised safety net show the high capacity and 

level of automation of the GDT system. Extreme 2D metal 

triplets gating and added procedure on the damaged devices 

would lead to a different supervised learning modelling 

approach, such as the one used for using statistical attributes 

and regression trees at wafer - level data [3]. The major focus 

for immediate deployment in current manufacturing would be 

in advanced gates new operation points, with models tending 

less to chronic chip classification and (80%) while leading 

surgeries capable of changing or replacing many gate in run.  

 

14. Industry Collaborations and Partnerships 
 

In various industries, collaboration between semiconductor 

manufacturers, technology suppliers, and research institutions 

is crucial. The semiconductor industry in Taiwan boasts 

several leading semiconductor companies and an advanced 

supply chain for semiconductor equipment, materials, and 

design. Thus, the industry is an appropriate work area for case 

studies on AI applications. Given that the semiconductor 

industry is rapidly transforming through the introduction of 

AI solutions, there are many opportunities for further 

research. Most semiconductor manufacturers and related 

vendors are seeking AI - related personnel, showing that the 

market for this topic is hot. Research in this area is highly 

datacentric and can employ various data science 

methodologies. In addition, case studies can be pursued on 

multiple levels, including the entire industry, organizations, 

systems, and processes. All these aspects contribute to 

increasing both theoretical and practical relevance in this 

research topic [9].  

 

The diversity of both the participating actors and data sources 

offers many interesting research opportunities. Interestingly, 

there is no coherent theoretical framework to understand the 

ecosystem of AI applications in the semiconductor 

manufacturing context. Most prior research has focused on 

only one dimension or industry actor. For example, some 

research has addressed different AI application areas in 

semiconductor processes and value chains. Others have 

elaborated on issues related to AI in one area of the industry, 

such as investment in AI or its value creation potential [2]. In 

sum, there has been little exploration of how semiconductor 

manufacturers interact with consulting firms, software 

providers, universities, and R&D centers regarding AI 

applications. Importantly, no empirical research exists to 

investigate if such collaboration leads to systemic success. 

How data is created, shared, and processed is significant in 

understanding this multi - actor ecosystem for AI 

applications.  

 

15. Economic Impact of Advanced Testing 

Frameworks 
 

Implicitly towards reducing the risks associated with failure 

of newly qualified devices, there is further examination of the 

entire testing process, including the information and cost - 

effectiveness of the approach adopted. The extent of the 

intelligent scheduling of preferred methodologies to use in 

new environments is substantial, but other areas for progress 

should be expected. The overall cost of testing would be 

reduced if it was possible to predict failure before a large 

amount of expenditure was incurred. The risk of an expensive 

failure is a target here. The approach is very general and not 

tied to a single personality. The techniques mentioned are 

used only to illustrate the point made. Teams of engineers 

become very adept at running through knock - down tests and 

following established procedures, taking no account of 

passing evidence or device history [5]. For any candidate test, 

an appropriate and sufficient amount of data passed, and 

failed distributions are examined and passed to the data 

conversion stage. Discussion of the distribution shapes 

assumed is presented. The conversion relies on estimates of 

common parameters for both pass and fail populations, and 

the score needs to be modified to accommodate this for tests 

showing different population shapes. Assuming a preliminary 

defined target cost per loss of persuading a rejection, 

decisions are made on what to suck to meet the cost. In FLEX, 

Planning is Complete, but sometimes uncertain [1]. Testing 

decisions generally sit within the Operations Environment. 

They target part costs, production release/holding periods, 

and reworking constraints. The simplest options are economic 

policies compliant with the analytical model, but greater 

savings must be gained by more computationally intensive 

mining of huge associated distribution data sets in real time. 

Such processes follow acceleratory coding of loss tolerance, 

including devising additional economic costs for suspected 

unit performance. In this dull scenario of daily costly 

computation, outcomes of pure analyst fiction must better 

predicted than hindsight, for earlier production returns, 

disposable reserves, and routine monitoring of performance 

trends. Progress, initially at least, must fully capitalize on the 

extensive expertise and enforced control elsewhere in 

Operations.  

 

16. Conclusion 
 

VLSI technology is a highly challenging field in which to 

develop and test advanced IC devices, due to the extreme 

reliability requirements of next - generation devices, 
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aggressive scaling, and the multi - faceted nature of device 

technologies. Current testing frameworks are dominated by 

tools that perform sampling, which are necessary to achieve 

the needed test quality, and by coupled physical/simulation 

tools that provide device - in - the - loop circuit test scenarios. 

A key challenge is the exhaustiveness of testing, which in 

general cannot be achieved. Additionally, first - order testing 

frameworks cascade multiple tests for stress and excursions. 

A need exists for a comprehensive, end - to - end testing 

framework that can integrate machine learning into device 

testing to overcome these existing limitations. Nevertheless, 

current machine learning methods could not be adapted 

directly to IC testing due to the difficulty of defining reward 

functions. Extensive research is needed to provide high - 

fidelity device models that are amenable to an adaptable, 

automated, physics - guided testing and design - for - 

manufacturing methodology.  

 

The objectives of the testing frameworks include the 

following goals. (1) To use machine learning to cast the most 

difficult testing challenges into a framework, where a 

heuristic obtain - a - device for a given scenario is defined in 

terms of a simulation tool, while the simulator itself is fixed. 

The outputs of a simulation tool are fed to a simulation engine 

that selects which excitation to assess. This engine allows for 

adaptation by feeding a single value under conditions that 

differ from those used to compile sampled tests. (2) To apply 

machine learning to predict regions in the testing criteria 

space where sensor - testing events are possible. (3) To apply 

machine learning to extend the capability of conventional 

tests to enable control over greater portions of the 

manufactured devices.  

 

Extensive computational and theoretical work details the 

machine learning approach for testing. Anticipating that the 

most difficult aspects of modeling the testing scenario to be 

addressed will be the selection of exciting devices, initial 

efforts are focused on integration with multi - level static 

analysis tools and accomplished testing methods. While 

preliminary tests reveal promise, extensive theoretical 

modeling is still needed before these can be applied to 

avionics IC devices. In conjunction with this is exploratory 

computation to implement a basic, monolithic 

simulation/intelligence framework for devices that can run 

instability tests.  
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