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Abstract: In the presented work, a new three parameter continuous distribution with three parameter termed Poisson inverse NHE 

distribution using the Poisson-Generating family of distribution with the purpose of study of lifetime data. Relevant statistical as well 

mathematical properties pertaining to the distribution including Probability Density Function (PDF), Cumulative Distribution Function 

(CDF) have been described to build a clearer understanding of the proposed distribution. To estimate the model parameters of the 

distribution we have used well established Maximum Likelihood estimation (MLE) along with Cramer-Von-Mises estimation (CVME) 

and least-square estimation (LSE) methods. We have constructed the asymptotic confidence intervals and Fisher information matrix 

analytically to obtain the variance-covariance matrix for MLEs. These calculations are carried out in the platform of R software. The 

potentiality of the model that is introduced is judged by using some graphical methods and goodness-of-fit test by considering a real 

dataset. We have empirically proven that the proposed distribution provided a better fit and more flexible in comparison with some 

selected lifetime distributions. 
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1. Introduction 
 

Last few years, it has been observed that the many life-time 

models have been generated but the real data sets related to 

engineering, life sciences, biology, hydrology, , and risk 

analysis do not present a better fit in the models proposed. 

So, the generation of new modified distributions appears to 

be necessary to deal with the problems in these fields. The 

generalized, extended, and modified distributions are created 

with insertion of extra parameter or making some 

transformation to the baseline distribution with the purpose 

of achieving better fit for the data. 

 

Kus (2007) has presented the exponential Poisson (EP) 

distribution with two-parameter with exponential 

distribution compounded to zero truncated Poisson 

distribution with a decreasing failure rate [7]. The CDF of 

PE distribution is, 
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(1.1) 

While Barreto-Souza and Cribari-Neto (2009) have 

presented generalized EP distribution having the decreasing 

or increasing or upside-down bathtub shaped failure rate [3]. 

This is the generalization of the distribution as given by Kus 

(2007) adding a power parameter to this distribution [7].  

 

Following the same trend, Cancho (2011) has developed a 

novel family of distribution also centered on the exponential 

distribution with an increasing failure rate function known as 

Poisson exponential (PE) distribution [5]. The CDF of PE 

distribution is 
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(1.2) 

A Poisson-exponential with two-parameter showing 

increasing failure rate has been defined by (Louzada-Neto et 

al., 2011) by using the same approach as used by (Cancho, 

2011) under the Bayesian approach [5] and [10]. Alkarni 

and Oraby (2012) have given a new lifetime family of 

distribution with a decreasing failure rate which is obtained 

by compounding truncated Poisson distribution and a 

lifetime model [1]. The CDF of the Poisson-Generating 

family is given by,  
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Where  the parameter is space and  ,G y   is the CDF of 

any distribution. Using the similar approach the Weibull 

power series class of distributions with Poisson has 

presented by (Morais & Barreto-Souza, 2011) [12]. 

Mahmoudi and Sepahdar (2013) have defined a new four-

parameter distribution having a variety of shape of failure 

rate function which is named as the exponentiated Weibull–

Poisson (EWP) distribution which has acquired with 

exponentiated Weibull (EW) compounded with Poisson 

distributions [14]. Similarly, Lu and Shi (2012) have created 

the new compounding distribution named the Weibull–

Poisson distribution having the shape of decreasing, 

increasing, upside-down bathtub-shaped, or unimodal failure 

rate function [11]. Kaviyarasu and Fawaz (2017) have made 

an extensive study on Weibull–Poisson distribution through 

a reliability sampling plan [7]. Kyurkchiev et al. (2018) has 
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used the exponentiated exponential-Poisson as the software 

reliability model [9]. 

 

The NHE distribution was given by (Nadarajah & Haghighi, 

2011) [15]. Joshi and Kumar (2020) has introduced half-

logistic NHE distribution generated from half-logistic-G 

family using NHE as base distribution [6]. Using this NHE 

distribution the inverse NHE was introduced by (Tahir et al., 

2018) [21] with CDF and PDF as follows 
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This distribution is suitable to incorporate positive real data 

sets and the HRF can have decreasing and upside-down 

bathtub shaped for different values of shape parameter β. 

Hence we select this inverse NHE distribution as a baseline 

distribution for this study.The article shows following 

structure. In Section 2 we present Poisson inverse NHE and 

its relevant mathematical and statistical properties. To 

estimate the model parameters, we have comprehensively 

discussed some commonly used methods including 

Maximum likelihood estimation (MLE) also CVME and 

LSE in section 3 and then constructing asymptotic 

confidence intervals from observed information matrix for 

ML estimation, we present the estimated values of model 

parameter in section 4.Besides, we have illustrated the 

different test criteria to assess the goodness of fit of the 

proposed model. Some concluding remarks are presented in 

Section 5. 

 

2. Poisson Inverse NHE distribution (PINHE) 
 

Consider ( , )G y   and ( , )g y   be the baseline CDF and 

PDF respectively then the CDF and PDF of Poisson-G 

family (Alkarni & Oraby, 2012) [1] may be defined as, 

 

 
 

  
1

; , 1 1 exp 1 ( , ) ; 0, 0
1

F x G y x
e 

  


          


 (2.1) 

 
 

  
1

; , ( , )exp 1 ( , ) ; 0, 0
1

f x g y G y x
e 

   


       


 (2.2) 

Where  is the parameter space of base distribution. Using 

(1.4) and (1.5) as a baseline distribution, we can define a 

new distribution called Poisson inverse NHE (PINHE). The 

random variable  , ,X PINHE    if its CDF and 

PDF respectively is 
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The Reliability/Survival function of PINHE is 
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Hazard function is 
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And its quantile function is 

exp[- exp{1-(1+ / ) }]-p.exp(- )=1-p ; 0< 1x p     

 

Random deviation generation 

exp[- exp{1-(1+ / ) }]-u.exp(- )=1-u ; 0<u 1x      

 

Skewness and Kurtosis of PNHE distribution  

The coefficient of skewness and kurtosis are important 

measures of dispersion in descriptive statistics. These 

measures are used mostly in analysis of data for studying the 

shape of the distribution or data set. The Bowley’s 

coefficient of skewness based on quartiles is, 
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(Moors, 1988) [13] gave the Coefficient of kurtosis based on 

octiles which is 
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Graphsfor probability density function and hazard rate 

function of PNHE(α,β,λ) with different values of parameters 

are presented in Figure 1. 
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Figure 1: For fixed α and different values of β and λ, Graphs of hazard function (left side) and PDF (right side) 

 

3. Methods of Parameter Estimation 
 

The established estimations methods which we discuss are 

a) Cramer-Von-Mises 

b) Least square 

c) Maximum likelihood  

 

3.1. Maximum Likelihood Estimation (MLE) method 

 

Consider  1  , , nx x x   be a random sample of size ‘n’ 

from PINHE(α, β, λ) then the log likelihood function l (α, β, 

λ/ x̠) is, 

 
With the differentiation of (3.1.1) with respect to unknown 

parameters α, β and λ, we obtain 
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After equating these non-linear equations to zero and solving 

for the unknown parameters (α, β, λ) we will obtain the ML 

estimators of the PG distribution. Manually, it is difficult to 

solve hence by add of appropriate computer software one 

can solve these equations. Consider the parameter vector by 

( , , )    and the corresponding MLE of   as

ˆ ˆˆ ˆ( , , )    , then the asymptotic normality results in, 
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In practice, we don’t know   hence it is useless that the 

MLE has an asymptotic variance   
1

D
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 . Hence we 

approximate the asymptotic variance by plugging in the 

estimated value of the parameters. The observed fisher 

information matrix ˆ( )O   is used as an estimate of the 

information matrix  D   given by 

 
where H is the Hessian matrix. 

 

The Newton-Raphson algorithm to maximize the likelihood 

produces the observed information matrix. Therefore, the 

variance-covariance matrix is given by, 
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(3.1.3) 

 

Hence from the asymptotic normality of MLEs, approximate 

100(1-α) % confidence intervals for α, β and θ can be 

constructed as, 
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where /2Z is the upper percentile of standard normal 

variate. 

 

3.2. Least-Square Estimation (LSE) Method 

 

Here weighted least square estimators and ordinary least 

square estimators as given by Swain et. al. (1988) for 

estimating Beta distribution's parameters [20]. With 

minimization of equation (3.2.1) with respect to unknown 

parameters α, β and λ, we can get least square estimators of 

parameters taken of the PHNE distribution which is given 

by,  
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(3.2.2) with respect to the unknown parameter  α, β and λ, 

we can get respective least-square estimators ˆ ˆˆ , , and   .  

 

 
 

 
 

2

1

1 exp exp{1 (1 ) }
; , , 1  ; 0, , , 0.

11

n i

i

x i
B X x

ne





 
     




    
     
 
  

 (3.2.2) 

 

With respect to α, β and λ, differentiation of (3.2.2) we get, 
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With minimization of following equation with respect to α, β 

and λ, we can get weighted LSE 
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With minimization of equation (3.2.3) with respect to α, β 

and λ we can obtain weighted least square estimators of the 

following parameters 
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3.3. Method of Cramer-Von-Mises estimation (CVME) 

 

With minimization of the following equation, the Cramer-

Von-Mises estimators of α, β and λ are obtained. 

 

   
2

:

1

1 2 1
| , ,

12 2

n

i n

i

i
A X F x

n n
  



 
   

 
  

 
 

2

1

1 exp exp{1 (1 ) }1 2 1
1

12 21

n i

i

x i

n ne





 




         
 
  

 (3.3.1) 

With differentiation of (3.3.1) with respect to α, β and λ we obtain 
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1 exp2 2 1
1 exp (1 )
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n i
i i i i

i

K xA i
x K x K x x

ne e



 


 





 


 
       

   
  
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Where   exp{1 (1 ) }i iK x x     

By solving = 0, = 0  0
A A A

and
  

  


  
  

simultaneously we obtain CVM estimators. 

 

4. Application with a real dataset 
 

For the analysis of applicability and adequacy of the PINHE 

distribution we are considering an actual dataset used by 

former researchers. The data set is originally considered by 

(Bader & Priest, 1982) [2] represent the strength measured 

in GPA for single carbon fibers of 10mm in gauge lengths 

with sample size 63 and they are as follows: 

 

1.901, 2.132, 2.203, 2.228, 2.257, 2.350, 2.361, 2.396, 

2.397, 2.445, 2.454, 2.474, 2.518, 2.522, 2.525, 2.532, 

2.575, 2.614, 2.616, 2.618, 2.624, 2.659, 2.675, 2.738, 

2.740, 2.856, 2.917, 2.928, 2.937, 2.937, 2.977, 2.996, 

3.030, 3.125, 3.139, 3.145, 3.220, 3.223, 3.235, 3.243, 

3.264, 3.272, 3.294, 3.332, 3.346, 3.377, 3.408, 3.435, 

3.493, 3.501, 3.537, 3.554, 3.562, 3.628, 3.852, 3.871, 

3.886, 3.971, 4.024, 4.027, 4.225, 4.395, 5.020 

 

The maximum likelihood estimates are calculated directly 

by using optim() function in  R software (R Core Team, 

2020) and (Schmuller, 2017) with maximization of 

likelihood function (3.1) [17]- [18]. In Table 1 we have 

demonstrated the MLE’s and standard errors (SE) and 95% 

confidence interval for α, β and λ. 

 

Table 1: MLE’s and standard errors (SE) for α, β and λ 

Parameter MLE SE 

alpha 1.0174      0.9706    

beta 5.1414      4.1413    

lambda 23.3476      4.2268 

 

The plots of profile log-likelihood function for the 

parameters α, β and λ have been displayed in Figure 2 and 

noticed that the ML estimates can be uniquely determined. 

 

 

 
Figure 2: Graph of Profile log-likelihood function for the parameters α, β and λ. 

 

In Figure 3 we have plotted the Q-Q plot and P-P plot and it 

is seen that the proposed distribution fits the data very well.  

 

 
Figure 3: The P-P plot (left side) and Q-Q plot (right side) of the PINHE distribution 
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In Table 2 we have presented the estimated value of the 

parameters of PINHE distribution using MLE, LSE and 

CVE method and their corresponding negative log-

likelihood, and AIC criterion.  

 

Table 2: Estimated parameters, log-likelihood, and AIC 
Method of 

Estimation ̂  ̂  ̂  -LL AIC 

MLE 1.0174 5.1414 23.3476 -56.4111 118.8222 

LSE 0.9253 5.3264 17.3502 -57.1056 120.2113 

CVE 1.3812 3.9023 20.9784 -56.8154 119.6307 

 

In Table 3 we have presented The KS, W and A
2
 statistics 

with their corresponding p-value of MLE, LSE and CVE 

estimates. 

 

Table 3: The KS, W and A
2
 statistics with a p-value 

Method of 

Estimation 
KS(p-value) W(p-value) A2(p-value) 

MLE 0.0821(0.7894) 0.0648(0.7859) 0.3447(0.9009) 

LSE 0.0658(0.9479) 0.0506(0.8743) 0.3640(0.8831) 

CVE 0.0670(0.9399) 0.0482(0.8886) 0.3214(0.9210) 

 

 
Figure 4: The Histogram and the density function of fitted distributions of estimation methods MLE, LSE and CVM (left 

panel) and KS plot of PNHE distribution (right panel) 

 

In this section, we have presented the applicability of 

Poisson inverse NHE distribution using a real dataset used 

by earlier researchers. To compare the potentiality of the 

proposed model, we have considered the following 

distributions. 

 

a) Exponentiated Exponential Poisson (EEP): 

The probability density function of EEP (Ristić & 

Nadarajah, 2014) [16] can be expressed as 

 
 

   
1

1 exp 1 ; 0, 0, 0
1

x x xf x e e e x
e

 
  




  


  



 
       

 

 

 

b) Weibull extension (WE) distribution 

The PDF of Weibull extension (WE) distribution (Tang et 

al., 2003) [22] with three parameters  , ,     is 

1

( ; , , ) exp exp exp 1 ; 0WE
x x x

f x x

  

    
  

         
                   

 

0, 0 and 0    
 

 

c) Lindley-Exponential (LE)s distribution: 

The PDF of LE (Bhati, 2015) [4]is 

    
2

1

( ) 1 1 ln 1 ; , >0, 0
1

x x x

LEf x e e e x


  
  




   

     
   

 

d) Poisson–exponential distribution (PE) 

The PDF of PE (Louzada-Neto et al., 2011) [10] is 

 
 ( ) exp ;   0, 0, 0

1

x xf x e e x
e

 




   


    


 

 

e) Exponential power (EP) distribution 

 

The PDF of EP distribution (Smith & Bain, 1975) [19] is 

   1( ) exp 1 ; ( , ) 0, 0
x x

EPf x x e e x
 

       
    

 

. 

where α and λ are the shape and scale parameters 

respectively.  

 

For the assessment of the potentiality of the proposed model, 

we have calculated the Akaike information criterion (AIC), 

Bayesian information criterion (BIC), Corrected Akaike 

information criterion (CAIC), and Hannan-Quinn 

information criterion (HQIC) which are presented in Table 

4.  

 

Table 4: Log-likelihood (LL), AIC, BIC, CAIC and HQIC 
Model -LL AIC BIC CAIC HQIC 

PINHE 56.4111 118.8222 125.2516 119.2290 121.3509 

EEP 57.0630 120.1261 126.5555 120.5328 122.6548 

PE 57.2052 118.4105 122.6967 118.6105 120.0963 

LE 57.9964 119.9929 124.2792 120.1929 121.6787 

WE 61.9865 129.9731 136.4025 130.3798 132.5018 

EP 69.3299 142.6598 146.9461 142.8533 144.3456 

 

Figure 5 shows the comparision between different 

distributions. 
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Figure 4. The Histogram and the density function of fitted distributions (left panel) and Empirical distribution function with 

estimated distribution function (right panel) 

 

In Table 5, to compare the goodness-of-fit of the PNHE 

distribution among various distribution we have shown the 

value of KS, W and A
2
 statistics. It is observed that the 

distribution of PINHE has higher p-value and test statistic 

showing minimum value thus we can derive the conclusion 

that the PINHE distribution shows more consistency with 

results with higher reliability also showing better fit for the 

data  from others taken for comparison. 

 

Table 5: The goodness-of-fit statistics and their 

corresponding p-value 
Model KS(p-value) AD(p-value) CVM(p-value) 

PINHE 0.0682(0.7406) 0.0740(0.7285) 0.4184(0.8300) 

EEP 0.0607(0.8542) 0.0635(0.7932) 0.4212(0.8268) 

PE 0.0838(0.4836) 0.1225(0.4860) 0.7042(0.5549) 

LE 0.0993(0.2771) 0.1861(0.2963) 1.3081(0.2297) 

WE 0.1078(0.1959) 0.2293(0.2174) 1.2250(0.2581) 

EP 0.0962(0.3129) 0.2280(0.2193) 1.7537(0.1261) 

 

5. Concluding Remarks 
 

In this work, we put forward Poisson inverse NHE 

distribution having three parameter. A study of relevant 

statistical along with mathematical properties of the 

proposed distribution including the derivation of explicit 

expressions for its reliability function, survival function, 

hazard function, the quantile function which is useful for 

calculating partition values and skewness and kurtosis, 

skewness and kurtosis, and simulation of random numbers 

from the proposed distribution. Using a real data set we have 

employed established estimation methods including MLE, 

LSE and CVME. The graph of the PDF of the proposed 

distribution has shown that its shape is the skewed model 

and flexible for modeling real-life data. Also, the graph of 

the hazard function is monotonically decreasing or 

increasing according to the value of the model parameters. 

The performance of the introduced distribution has been 

evaluated by considering a real-life dataset and the results 

showed that the proposed distribution is much flexible as in 

contrast to some selected distributions. 
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