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Abstract: We presented a computational procedure to maximize the production of a given agricultural crop with limited inputs (water-

nitrogen), and where a fixed cost (or expense) of the inputs is imposed. Theoretically, the procedure is based on the duality theory of 

quadratic programming and the logarithmic barrier method of nonlinear programming. We tested the procedure in three different 

numerical scenarios defined in the literature, for the cultures: Lettuce, Oats, Onion and Melon. In each agricultural scenario 

considered, we verified that the procedure is a reliable alternative in making agribusiness economic decisions. 
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1. Introduction 
 

The economic evaluation of agricultural production involves 

the quantification of productivity in response to the total of 

inputs applied. Water and nitrogen are essential for the 

development of agricultural crops, and when they are 

correlated with the production obtained, we obtain the 

function of production or water-nitrogen-culture response. 

 

The use of analytical functions of production and net 

revenue in the analysis of the results of agricultural 

experiments is widespread (MOUSINHO et al., 2003; 

FRIZZONE et al., 2005; MONTEIRO et al., 2006; SILVA 

et al., 2008; CARVALHO et al., 2009; DELGADO et al., 

2010 and TEODORO et al., 2013). 

 

If these functions were known with precision, it would be 

possible to precisely select the optimum level of water and 

nitrogen for a given situation. However, such functions are 

restricted to large variations, making predictions difficult. 

 

Climatic variations, physical attributes related to the soil, the 

plant, and many other factors, make it difficult to predict 

crop yields. In practice, linear and/or quadratic regressions 

are generated to represent “good approximations” of the 

response or agricultural production functions. The quality of 

the adjustment, which is the proportion of variation in the 

function, is indicated by a descriptive unit known as the 

coefficient of determination  𝑟2 . 
 

Bearing in mind that the rational management of inputs is 

imperative in maximizing agricultural production, in this 

work, we will consider that the actual values of inputs, water 

and nitrogen, are limited above and below. The resulting 

model presented is a nonlinear programming problem with 

linear constraints, considering that the objective is a 

quadratic function in two variables: water and nitrogen. 

 

In this way, a computational procedure resulting from the 

duality theory and the logarithmic barrier method 

(BERTSEKA, 2004) is developed, to determine the water 

depth and nitrogen dose that maximizes the production of a 

given culture with limited inputs and fixed expenditures on 

inputs. Some numerical tests with data known in the 

literature are performed, with the purpose of testing the 

effectiveness of the proposed procedure. 

 

2. Material and Methods 
 

Let 𝑦 𝑤, 𝑛  be the nonlinear analytical function of 

production or response of a given culture  𝑘𝑔. 𝑕𝑎−1 in 

relation to the water depth 𝑤 𝑚𝑚  and nitrogen dose 

𝑛(𝑘𝑔); 𝑤𝑙 , 𝑤𝑢 , 𝑛𝑙 , 𝑛𝑢 ≥ 0, lower and upper limits of 𝑤 and 𝑛 

respectively; 𝑐𝑤  the cost of a water depth (𝑅$.𝑚𝑚−1 . 𝑕𝑎−1) 

and 𝑐𝑛  the cost of a dose of nitrogen(𝑅$. 𝑘𝑔−1𝑕𝑎−1). 

Suppose that 𝑐0 represents a fixed cost (𝑅$. 𝑕𝑎−1) intended 

exclusively to cover expenditure on water-nitrogen inputs. 

 

The problem that maximizes agricultural production with 

limited inputs and spending on fixed inputs, can be written 

mathematically as the problem of nonlinear programming 

with linear constraints: 

(P)         Maximize   𝑦 𝑤, 𝑛             (1)  

Subject to: 𝑟 𝑤, 𝑛 = 𝑐𝑤𝑤 + 𝑐𝑛𝑛 = 𝑐0         (2) 

𝑤𝑙 ≤ 𝑤 ≤ 𝑤𝑢                    (3) 

𝑛𝑙   ≤ 𝑛 ≤ 𝑛𝑢 .                 (4) 

In what follows, 𝑦 𝑤, 𝑛 =  𝑎𝑤2 + 𝑏𝑛2 + 𝑐𝑤𝑛 + 𝑑𝑤 +
𝑒𝑛 + 𝑓 (quadratic form in variables 𝑤 and 𝑛); and where 

𝑎, 𝑏, 𝑐, 𝑑, 𝑒, 𝑓 ∈ ℝ with 𝑎 < 0   and  4𝑎𝑏 − 𝑐2 > 0. Thus 

𝑦 𝑤, 𝑛  is a strictly concave function and therefore reaches 

its maximum at the intersection of the two-dimensional box 
 𝑤𝑙 , 𝑤𝑢  × [𝑛𝑙 , 𝑛𝑢] and the plane 𝑟 𝑤, 𝑛 = 𝑐0. Note that (2) 

impose a constraint on expenditures on inputs 𝑤 and 𝑛, of 

𝑐0 − reais per hectare. 

 

Note that the problem (P) can be written as the quadratic 

program: 

 

(QP)  Minimize  
1

2
(𝑤, 𝑛) 𝑄  

𝑤
𝑛
 + (−𝑑,−𝑒)  

𝑤
𝑛
 − 𝑓  (5) 

Subject to:        𝐴  
𝑤
𝑛
 ≤ 𝜌,              (6)                      

 

where 𝑄 =  
−2𝑎 −𝑐
−𝑐 −2𝑏

  is a symmetric positive-definite 

2 × 2 matrix, and where 
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𝐴 =

 

  
 

𝑐𝑤 𝑐𝑛
     −𝑐𝑤 −𝑐𝑛

1      0
−1       0
0       1
 0    −1  

  
 

 e  𝜌 =

 

  
 

𝑐0

−𝑐0

−𝑤𝑙
𝑤𝑢

−𝑛𝑙
𝑛𝑢  

  
 

. 

As in DELGADO, et al., (2020), the dual problem 

associated with (QP) is given by: 

 

where 𝐻 = 𝐴𝑄−1𝐴𝑇  is symmetric positive-definite, 𝜎 =

𝐴𝑄−1  
𝑑
𝑒
 − 𝜌, 𝑔 =

1

2
 𝑑, 𝑒 𝑄−1  

𝑑
𝑒
 . Following the 

logarithmic barrier methodology applied to the dual problem 

(DQ), we associate with each 𝜇 > 0 the function 𝜑𝜇  𝑢 =
1

2
𝑢𝑇𝐻𝑢 − 𝜎𝑇𝑢 + (𝑔 + 𝑓) + 𝜇  𝐿𝑛(6

𝑗=1 𝑢𝑗 ), and then we 

solve the unconstrained nonlinear programming problem: 

 
Furthermore, 𝑢 solves the unconstrained problem for each 

𝜇 > 0, if and only if: 

∇𝜑𝜇  𝑢 = 0. 

Thus, we seek, (𝑢, 𝑧) > 0, such that: 

𝐻𝑢 − 𝜎 + 𝑧 = 0, 

where 𝑧 ∈ ℝ6 is such that𝑧𝑗 = 𝜇/𝑢𝑗 . Then 𝑧𝑗𝑢𝑗 = 𝜇, and 

now we try to solve the system of non-linear equations: 

 
 

Applying Newton's method for the resolution of the non-

linear system (7)-(8), a direction is sought: 

∆𝑢 =  ∆𝑢1 , ∆𝑢2, ∆𝑢3, ∆𝑢4, ∆𝑢5, ∆𝑢6 ∈ ℝ6 and ∆𝑧 =
(∆𝑧1 , ∆𝑧2 , ∆𝑧3, ∆𝑧4, ∆𝑧5, ∆𝑧6) ∈ ℝ6 such that: 

 
 

Then: 

 
Next, we present the computational procedure to solve the 

problem (1)-(4). 

 

Procedure 

 

DATA:𝑎, 𝑏, 𝑐, 𝑑, 𝑒, 𝑓 ∈ ℝ; 𝑎 < 0 and 4𝑎𝑏 − 𝑐2 > 0, 

𝑤𝑙 , 𝑤𝑢 , 𝑛𝑙 ,𝑛𝑢 ≥ 0; 𝑤𝑢 ≥ 𝑤𝑙  and 𝑛𝑢 ≥ 𝑛𝑙 , 𝜀, 𝜉 𝜖(0,1), 𝜇0 >
0, 𝑢 ∈ ℝ++

6  , that is, 𝑢 > 0. 

 

Beginning 

DO  

 

𝜎 = 𝐴𝑄−1  
𝑑
𝑒
 − 𝜌, 𝑄−1 =

1

𝑐2−4𝑎𝑏
 

2𝑏 −𝑐
−𝑐 2𝑎

 , 𝐻 =

𝐴𝑄−1𝐴𝑇 , 𝑧 = 𝜇𝑢−1 
 

𝜃 = 𝜎 − 𝐻𝑢 − 𝑧,  𝜏𝑗
𝜇

= 𝜇 − 𝑧𝑗𝑢𝑗  ;      𝑗 = 1,2, … ,6;     𝜏𝜇 =

 𝜏𝑗
𝜇
 
𝑗 =1,2,…,6

 

 

WHILEMax   𝜃 ,  𝜏𝜇  > 𝜀 

 

FIND∆𝑢 =  ∆𝑢1, ∆𝑢2, ∆𝑢3 , ∆𝑢4, ∆𝑢5, ∆𝑢6 , ∆𝑧 =
 ∆𝑧1 , ∆𝑧2 , ∆𝑧3, ∆𝑧4, ∆𝑧5, ∆𝑧6  such that: 

 
𝐻∆𝑢 + ∆𝑧 = 𝜃
𝑧𝑗∆𝑢𝑗 + 𝑢𝑗∆𝑧𝑗 = 𝜏𝑗

𝜇
( 𝑗 = 1,2,3,4,5,6)

  

  DO         𝛼 = min  
 𝑢 

 ∆𝑢 
,
 𝑧 

 ∆𝑧 
  

𝑢 = 𝑢 + 0.999𝛼∆𝑢 

𝑧 = 𝑧 + 0.999𝛼∆𝑧 

𝜇 = 𝜉𝜇 

 

REEVALUATE   𝜃, 𝜏𝜇  

DO 
𝑤
𝑛
 = 𝑄−1   

𝑑
𝑒
 − 𝐴𝑇𝑢  

 

End 

To test the presented procedure, several numerical tests were 

performed using information known in the literature. Table 1 

presents analytically the responses or production functions 

of the cultures: Lettuce (SILVA et al., 2008), Oats 

(FRIZZONE et al., 1995), Onion (BAPTESTINI, JCM, 

1982) and Melon (MONTEIRO et al., 2006). According to 

the data provided by the bibliographic sources, for each crop 

(Lettuce, Oats, Onion and Melon) it is possible to determine 

lower and upper limit of the water depth; the lower ones 

between 100 𝑚𝑚 and 600 𝑚𝑚 and the upper ones between 

400 𝑚𝑚 and 600 𝑚𝑚. 

 

For the nitrogen input, a ceiling of 300 𝑘𝑔. 𝑕𝑎−1 was fixed, 

and considering that the most common in the literature for 

these cultures is a minimum dose of 75 𝑘𝑔. 𝑕𝑎−1, three 

numerical tests defined by the two-dimensional boxes were 

performed:  100,500 ×  0,300 ;  100,400 ×  75,300  and 
 100,600 ×  75,300 . 

 

Table 1: Responses or production functions in quadratic 

forms in variables 𝑤 and 𝑛 for crops: Lettuce, Oats, Onion 

and Melon 
Cultures Production Function or Response(𝑘𝑔. 𝑕𝑎−1) 

Lettuce 
𝑦 𝑤, 𝑛 = −1.042 𝑤2 − 0.04563 𝑛2 + 0.1564 𝑤𝑛

+ 388.1𝑤 − 6.02 𝑛 − 12,490 

Oats 
𝑦 𝑤, 𝑛 = −5.6 ∙ 10−5 𝑤2 − 5.1 ∙ 10−5𝑛2 + 3.6

∙ 10−2𝑤 + 1.6 ∙ 10−2 𝑛 

Onion 
𝑦 𝑤, 𝑛 =  −2.00 ∙ 10−4𝑤2 − 2.00 ∙ 10−4𝑛2

+ 3.28 ∙ 10−1𝑤 + 9.07 ∙ 10−2 𝑛 

Melon 
𝑦 𝑤, 𝑛 = −0.05781 𝑤2 − 0.07612 𝑛2

+ 70.77509𝑤 + 34.16737 𝑛 

 

It is important to emphasize that the proper management of 

the water depth (𝑤) is fundamental, considering that the 

agricultural sector is the largest consumer of water, and that 

water resources are essential and strategic in the 

development of agriculture. Also, considering that currently 
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the costs of nitrogen fertilization, specifically nitrogen (𝑛), 

are increasingly variable, and that the demand in Brazil 

grows every day, it is necessary to respect the environmental 

and soil preservation issues, as a fundamental part for 

sustainable agriculture. Table 2 shows the costs of a water 

depth (𝑐𝑤) and a dose of nitrogen (𝑐𝑛), for each agricultural 

crop. 

 

Table 2: Water cost  𝑐𝑤  and nitrogen cost (𝑐𝑛) for each 

crop considered. 

Cultures 
cw  

(R$. mm−1. ha−1) 

cn  

(R$. kg−1 . ha−1) 

Lettuce 0.44 2.09 

Oats 0.08 0.42 

Onion 0.025 1.20 

Melon 0.134 2.33 

 

3. Results and Discussion 
 

Tables 3, 4, and 5 show the results obtained for each 

numerical test implemented. 

 

 

 

 

 

 

 

 

 

 

 

Table 3: Optimal solution  𝑤∗, 𝑛∗  and optimal value of the 

production 𝑦(𝑤∗, 𝑛∗) of (P), in the two-dimensional box 
 100,500 ×  0,300 . 

Cultures 𝑤∗ 

(𝑚𝑚) 

𝑛∗ 
(𝑘𝑔) 

𝑦 𝑤∗, 𝑛∗  
(𝑘𝑔. 𝑕𝑎−1) 

c0 

(R$. ha−1) 

Lettuce 200.389436 197.046950 39,133.883962 500 

Oats 333.140852 174.639948 7,016817 100 

Onion 490.609563 156.445630 122.074960 200 

Melon 497.189178 185.998562 24,619.474627 500 

 

Table 3 reports that in the two-dimensional scenario 
 100,500 ×  0,300  and for a fixed cost of inputs, water-

nitrogen (𝑐0) of R$ 500, Lettuce reaches its maximum 

production at the point 

 𝑤∗, 𝑛∗ = (220.389436, 197.046950), Oats for a fixed 

input cost of R$ 100, at the point 

 𝑤∗, 𝑛∗ = (333.140852, 174.639948), Onion for a fixed 

input cost of R $ 200, at the point 

 𝑤∗, 𝑛∗ = (490.609563, 156.445630) and Melon for a 

fixed input cost of R $ 500, at the point  𝑤∗, 𝑛∗ =
(497.189178, 185.998562).It is possible to graphically 

show the trajectory of points generated by the implemented 

procedure, converging to the optimal solution of the 

problem, for each culture considered. Figure 1, for example, 

shows for the Oats culture, the sequence of interior points in 

the two-dimensional box  100,500 ×  0,300 generated by 

the implemented procedure, and converging to the optimal 

solution  333.140852, 174.639948 . Note that this optimal 

solution satisfies the plane equation: 𝑟 𝑤, 𝑛 = 0.08 𝑤 +
0.42 𝑛 = 100. 

 

 
Figure 1: Sequence of points generated by the procedure in the two-dimensional box  100,500 ×  0,300  for Oats, 

converging to the point (333.140852, 174.639948). 

 

Table 4 shows the results obtained in the two-dimensional 

box  100,400 ×  75,300 . 
 

 

 

 

 

 

 

Table 4: Optimal solution  𝑤∗, 𝑛∗  and optimal value of the 

production 𝑦(𝑤∗, 𝑛∗) of (P), in the two-dimensional 

box 100,400 ×  75,300 . 
 

Cultures 
𝑤∗ 

(𝑚𝑚) 

𝑛∗ 
(𝑘𝑔) 

𝑦 𝑤∗, 𝑛∗  
(𝑘𝑔. ℎ𝑎−1) 

c0 

(R$. ha−1) 

Lettuce 200.225177 197.081757 39,133.895712 500 

Oats 317.590353 177.601837 7,017856 100 

Onion 360.198429 159.162527 101.566002 200 

Melon 398.854799 191.653847 22,784.233597 500 
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Table 4 informs that in the two-dimensional scenario 
 100,400 ×  75,300  and for a fixed input cost of R$ 500, 

Lettuce reaches its maximum production at the point 
 𝑤∗, 𝑛∗ = (200.225177 , 197.081757), Oats for a fixed 

input cost of R$ 100, at point 

 𝑤∗, 𝑛∗ = (317.590353 , 177.601837), Onion for a fixed 

input cost of R$ 200, at point 
 𝑤∗, 𝑛∗ = (360.198429 , 159.162527) and Melon for a 

fixed cost of inputs of R$ 500, at the point  𝑤∗, 𝑛∗ =

(398.854799 , 191.653847).Figure 2 shows for the Onion 

crop, the sequence of interior points in the two-dimensional 

box  100,400 ×  75,300  generated by the implemented 

procedure, and converging to the optimal solution 

(360.198429 , 159.162527). Note that this optimal 

solution satisfies the plane equation: 𝑟 𝑤, 𝑛 = 0.025 𝑤 +
1.20 𝑛 = 200. 

 

 
Figure 2: Sequence of points generated by the procedure in the two-dimensional box  100,400 ×  75,300  for Onion, 

converging to the point (360.198429 , 159.162527) 

 

Comparing the results obtained in the first scenario 
 100,500 ×  0,300  (Table 1) with those obtained in the 

second scenario  100,400 ×  75,300  (Table 2), we can 

observe that the Lettuce culture, for the same fixed cost 

𝑐0 = 500 𝑅$. 𝑕𝑎−1, does not show much difference in 

relation to water depth, nitrogen dose and productivity.  

 

Regarding the Oats, on the other hand, for the same fixed 

cost 𝑐0 = 100 𝑅$. 𝑕𝑎−1, in the second scenario, a small 

reduction in relation to the water depth of 15.55 𝑚𝑚 can be 

noted, and a small increase 2.9 𝑘𝑔 in relation to the nitrogen 

dose. However, productivity is practically the same. 

 

As for the Onion crop, for the same fixed cost 𝑐0 =
200 𝑅$. 𝑕𝑎−1, it can be noted that in the second scenario 

(Table 2), there was a reduction of 130.41𝑚𝑚 in relation to 

the water depth, a slight increase of 2.71 𝑘𝑔 in relation to 

the nitrogen dose, and a drop in productivity of 

20.51 𝑘𝑔. 𝑕𝑎−1. 

 

In the case of Melon, for the same fixed cost 𝑐0 =
500 𝑅$. 𝑕𝑎−1, we obtained a drop of 98.33 𝑚𝑚 in relation 

to the water depth, an increase of 5.655281 𝑘𝑔 in relation to 

the nitrogen dose, and a significant drop in productivity of 

1,835.24 𝑘𝑔. 𝑕𝑎−1. 

 

Finally, Table 5 presents the results obtained for the third 

scenario performed in the two-dimensional box  100,600 ×
 75,300 . 
 

Table 5: Optimal solution 𝑤∗, 𝑛∗  and optimal value of the 

production 𝑦(𝑤∗, 𝑛∗) of (P), in the two-dimensional box 
 100,600 ×  75,300  

Cultures 𝑤∗ 

(𝑚𝑚) 

𝑛∗ 
(𝑘𝑔) 

𝑦 𝑤∗, 𝑛∗  
(𝑘𝑔. 𝑕𝑎−1) 

c0 

(R$. ha−1) 

Lettuce 200.005960 197.127783 39,133.817733 500 

Oats 318.218870 177.464264 7.018394 100 

Onion 595.698057 154.256266 133.649772 200 

Melon 596.983192 180.259360 25,333.957910 500 

 

In this numerical scenario, again for a fixed input cost of R$ 

500, Lettuce remains almost invariant in relation to the first 

two scenarios. In the case of Oats and for a fixed cost of 

inputs of R$ 100, the optimum water depth found 

(318.218870 mm) is limited below by the optimum water 

content in the second scenario and above by the optimum 

water content in the first scenario. The values of the nitrogen 

dose and the productively optimum found were practically 

the same as in the previous scenario. 

 

For Onion, as in the previous scenarios, for a fixed cost of 

inputs of R$ 100, we achieved the highest productivity 

(133.649772 kg. ha−1) and the lowest nitrogen dose 

(154.256266 kg), among the three numerical scenarios 

considered. 

 

Finally, in relation to Melon, and for a fixed cost of inputs of 

R$ 500, we achieved the highest productivity 

(25,333.957910 kg. ha−1) and the lowest nitrogen dose 

(180.259360 kg), among the three numerical scenarios 

considered. Figure 3 shows for the Melon culture, the 
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sequence of interior points in the two-dimensional box 
 100,600 ×  75,300  generated by the implemented 

procedure, and converging to the optimal solution 

(596.983192 , 180.259360). Note that this optimal 

solution satisfies the plane equation: 𝑟 𝑤, 𝑛 = 0.134 𝑤 +
2.33 𝑛 = 500. 
 

 
Figure 3: Sequence of points generated by the procedure in the two-dimensional box  100,600 ×  75,300  for the Melon, 

converging to the point (596.983192 , 180.259360) 

 

4. Conclusions 
 

 We presented a computational procedure based on the 

duality theory of quadratic programming and the 

logarithmic barrier method, which maximizes the 

production of a certain agricultural crop with limited 

inputs (water-nitrogen), and a fixed cost (or expense) of 

the inputs. 

 For each agricultural scenario considered, it was possible 

to confirm that all the optimal solutions of (P) generated 

by the procedure, satisfy the imposed constraints. 

 In the three numerical scenarios presented, Lettuce and 

Oats were the only agricultural crops considered to have 

remained almost invariant in relation to the water depth, 

nitrogen dose and productivity. 

 Finally, when making agricultural production decisions 

(agribusiness), it is important to deal with problems where 

it is desirable to maximize the production of a given 

agricultural crop with limited inputs (water-nitrogen), and 

where there must be a fixed cost for input expenses. 
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