
International Journal of Science and Research (IJSR)
ISSN: 2319-7064

SJIF (2019): 7.583

Volume 9 Issue 12, December 2020

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

Mutation Testing Techniques in Software Testing:

A Review

Dushyant Singh
1
, Parulpreet Singh

2

1Research Scholar, Baddi University of Emerging Sciences and Technology, Baddi, India

2Assistant Professor, Baddi University of Emerging Sciences and Technology, Baddi, India

Abstract: Mutation testing is regarded as a dominant scheme to quantify the quality of test suite. There are two stages for executing

mutation testing. The initial stage includes the alteration of code into various instances known as mutants. The compilation of these

mutants is done later on. A mutation engine or manual way is utilized to produce and compile the mutation in automatic manner. The

various schemes which are based on the mutation testing are reviewed in this paper.

Keywords: Mutation Testing, Genetic Algorithm, Manual Testing

1. Introduction

Software testing is a fundamental way to assess the qualities

of software products. The testing of software must be done

carefully. However, testing is very difficult task and error-

prone activity and it is not considered more amusing than

creative activities like programming. It is seized for

practitioners and in higher education at which testing is not

much popular. The reason behind less adoption of latest

testing schemes including mutation testing is that testing has

not attained much attention regardless of having a capability

of enhancing efficiency to detect the faults of testing

activities. Mutation testing is very challenging to be

executed for dealing with computational problems and its

application in practice [1]. The software faults are simulated

in a program through MT for computing the potential of

state-of art test suite for detecting fault. Minor changes are

carried out in the original code in systematic manner for

generating various modified versions. Every modified

version is known as a mutant and it is in correspondence

with the application of one particular mutation operator that

is pre-defined. A mutation operator is assisted in

categorizing the change’s kind that is adaptable for a

program in impersonating typical syntactic errors

programmers make.

Generally, mutation testing is regarded as a dominant

scheme to quantify the quality of test suite. There are two

stages for executing mutation testing. The initial stage

includes the alteration of code into various instances known

as mutants. The compilation of these mutants is done later

on. A mutation engine or manual way is utilized to produce

and compile the mutation in automatic manner. Every

mutant is a replica of original problem excluding one atomic

change. The atomic change is made based upon a

specification embodied in a mutation operator [2]. The

atomic change is accomplished on the basis of the

specification embodied in a mutation operator. There are

two main assumptions on which execution of atomic

changes under mutation testing is relied. It is defined in the

Competent Programmer Hypothesis that developers are

often liable for developing a program that is close to be

correct. In coupling effect, it is assumed that test cases

distinguishing programs with slight changes are so sensitive

that may differentiate programs with further complicated

differences. The language constructs generated to alter

classify mutation. In the past, the range of operators was

restricted to statements within the structure of a solo

procedure. This type of operators is generally termed as

traditional, or method-level, mutants. For instance, a single

traditional mutation operator alters1 binary operator (e.g.

&&) to another (e.g. ||) in a try to generate a fault variant of

the program. Nowadays, operators that test at the object

level, or class-level operators have been devised. For

example, some specific class-level operators in the Java

programming language substitute method calls within source

code with a same call to a dissimilar method. Class-level

operators make use of the object-oriented traits of a provided

language [3]. The range of possible mutation for adding

specifications for a given class and inter-class execution are

expanded using these features. The second part of mutation

testing executes a test suite against a mutant and records

pass/fail results. The mutant is said to be killed when the test

results of a mutant differ than the original’s test result. This

implies that at least one test to catch the mutations was

satisfactory. The test results of a mutant similar to the

original let the mutant to be alive or alive. This indicates that

the transformation given by the mutant has survived the test

cases. The mutants that are impossible to be killed because

of logical equivalence with the original code or because of

language constructs are called Stubborn mutants [4]. The

number of killed mutants is divided by the total number of

mutants to calculate a mutation score. A mutation score of

100% indicates about the adequacy of the test suite.

However, a mutation score of 100% may not be achieved

due to the inevitability of stubborn mutants. Practically,

mutation analysis generates a test set that kills all mutants

that can be killed (i.e., are not stubborn).Mutation testing is

generally considered to be a costly testing method in regard

to computation. But this consideration is partially relying on

the obsolete hypothesis that each mutant in the traditional

Mothra set must be taken into account. A number of cost

reduction methods have been presented by so far to turn

Mutation Testing into a real-time testing method. Cost

reduction techniques are generally divided into two types,

namely Mutant Reduction Techniques, Execution Cost

Reduction Techniques. A main source of computational cost

in Mutation Testing involves the inherent running cost in

Paper ID: SR201217181141 DOI: 10.21275/SR201217181141 1334

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

SJIF (2019): 7.583

Volume 9 Issue 12, December 2020

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

executing many mutants against the test set [5]. Due to this,

reduction in the number of created mutants without

noteworthy loss of test efficiency has turned out to be a hot

research issue. Mutant Sampling, and Mutant Clustering are

the two most popular approaches, that are used for reducing

the number of mutants. Mutant Sampling is a easy to use

method. In this method, a small subset of mutants is selected

randomly from the overall set. This approach firstly

generates all possible mutants just like in traditional

Mutation Testing. Afterwards, this approach randomly

selects x% of these mutants for mutation analysis, while

rejects the rest. In Mutant Clustering, a subset of mutants is

selected by clustering algorithms rather than choosing

mutants randomly. Mutation Clustering initially generates

all mutants of first order. Subsequently, the first order

mutants are classified into different clusters depending on

the killable test cases by applying a clustering algorithm [6].

A similar set of test suites guarantees the killing of every

mutant in the similar cluster. Merely few mutants are chosen

from every cluster to be employed in Mutation Testing, the

rest mutants are rejected. Execution Cost Reduction

Techniques not only reduces the number of created mutants,

but also reduces the computational cost by making the

mutant execution process optimized. Run-time Optimization

Techniques represents an Interpreter-Based Technique. This

technique is employed in the first generation of Mutation

Testing tools [7].The most commonly used technique for

achieving program mutation is Compiler-Based Technique.

This technique starts by compiling every mutant into an

executable program. After this, a number of test cases are

used for executing the complied mutant. In comparison to

source code interpretation methods, this approach is too fast

as compiled binary code is executed in less time than

interpretation. Nevertheless, a speed limitation called

compilation bottleneck occurs because of the high

compilation cost for programs whose execution time is

much greater as compared to the compilation/link time.

2. Literature Review

Nishtha Jatana, et.al (2020) suggested PSO-MT to generate

the test data [8]. This approach was implemented on larger

programs from SIR in order to strengthen it. Same working

qualities were found from Particle Swarm Optimization as

those of GA that was employed to compute the test data with

mutation testing. The comparative analysis of suggested

approach was done with GA-MT to generate the test data.

The outcomes demonstrated that a superior efficiency had

obtained using the suggested approach together with

Mutation Testing for most of the benchmark programs in

comparison with the GA-MT. The obtained outcomes were

analyzed in statistical manner by carrying out Statistical test.

Pablo C. Cañizares, et.al (2018) intended a mutation testing

model to detect the errors in distributed applications whose

deployment was done in simulated environments [9].The

test suite was implemented against the set of mutated models

for determining the efficiency of intended model to detect

diverse errors. Mu Tom Vo was employed to exploit this

proposal. There were 3 applications of different distributed

systems had utilized to perform a case study so that viability

of the proposal was sustained.

Yunqi Du, et.al (2019)a mutation operator selection strategy

was designed on the basis of Selective Mutation for

alleviating the number of mutants [10]. There were five

mutation operators chosen out of 19 operators of Mujava for

attaining a subset. This subset was employed in test cases

that provided the average variation score above 95% on the

variants of the whole set. Afterward, a test case generation

technique was recommended in which MT was integrated

with GA. This assisted in redefining various operators of test

cases and optimizing those test cases. At last, a set of test

cases that included better coverage and greater mutation

score had acquired after the comparison of recommended

strategy with some algorithms and tools.

Lingchao Chen, et.al (2018) analyzed that the MT was the

effective scheme for computing the quality of test suites

[11].Regression Testing Selection tools were employed for

boosting mutation testing of advanced software systems.

Thus, first extensive study was carried out in order to

evaluate the efficacy and efficiency of several Regression

Testing Selection schemes that had utilized for the

maximization of mutation testing. The outcomes of study

exhibited that file-level static and dynamic RTS were

capable of providing mutation testing accurately and

effectively and they also offered practical guidelines for

developers.

Do Van Nho, et.al (2019) described that Mutation testing in

general and higher order mutation were methods employed

for computing the quality of test data which classified that

the test data was capable of uncovering the errors or not

[12]. But, higher order mutation was quite expensive due to

the enormous number of produced mutants. The main

purpose of this work was to mitigate the cost of higher order

MT. Several strategies were suggested for incorporating

mutants of first order so that less number of higher order

mutants had generated for a program under testing

preserving the quality of generated mutants. A set of

different programs were utilized to experiment the presented

strategies. The outcomes validated that the presented method

with respect to the number of mutants and mutation score

which had produced.

Francisco Gomes de Oliveira Neto, et.al (2020) stated that

the mutation testing was carried out for quantifying the

behavioural diversity [13]. In order to achieve this, the set of

test cases was executed on different mutated versions of the

SUT. There were 2 specific b-div measures introduced and

their comparison was done with a-div to prioritize the test

suites included in six different open-source projects. The

outcomes represented that the b-div measures performed

better as compared to a-div and random selection in all of

the studied projects. The APFD was enhanced from19% to

31% on the basis of subset’s size of prioritized tests.

Farah Hariri, et.al (2019) emphasized on employing a MT

tool known as SRCIROR in which the same mutation

operators were exploited at both levels [14].The automated

methods were utilized for justifying equivalent and

replicated mutants and also for classifying the mutants as

minimal and surface. The study was conducted using fifteen

programs taken from the Core utils library. It was evaluated

that the MT was superior at SRC level as it was not costly

Paper ID: SR201217181141 DOI: 10.21275/SR201217181141 1335

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

SJIF (2019): 7.583

Volume 9 Issue 12, December 2020

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

and generated less mutants. A case study was also conducted

using Space program for computing the level at which

mutation score correlated with the actual capability of

detecting faults of test suites sampled was higher. It was

revealed that the mutation score at both levels was not much

correlated with the actual fault-detection capability of test

suites.

Author Year Description Outcomes

Nishtha

Jatana
2020

This approach was implemented on larger programs from SIR

in order to strengthen it. Same working qualities were found

from Particle Swarm Optimization as those of GA that was

employed to compute the test data with mutation testing.

The outcomes demonstrated that a superior efficiency

had obtained using the suggested approach together

with Mutation Testing for most of the benchmark

programs in comparison with the GA-MT.

Pablo C.

Cañizares
2018

The test suite was implemented against the set of mutated

models for determining the efficiency of intended model to

detect diverse errors. Mu Tom Vo was employed to exploit this

proposal.

There were 3 applications of different distributed

systems had utilized to perform a case study so that

viability of the proposal was sustained.

Yunqi Du,

et.al
2019

Regression Testing Selection tools were employed for boosting

mutation testing of advanced software systems. Thus, first

extensive study was carried out in order to evaluate the

efficacy and efficiency of several Regression Testing Selection

At last, a set of test cases that included better coverage

and greater mutation score had acquired after the

comparison of recommended strategy with some

algorithms and tools.

Lingchao

Chen
2018

The MT was the effective scheme for computing the quality of

test suites. Regression Testing Selection tools were employed

for boosting mutation testing of advanced software systems.

The outcomes of study exhibited that file-level static

and dynamic RTS were capable of providing mutation

testing accurately and effectively and they also offered

practical guidelines for developers

Do Van

Nho
2019

Mutation testing in general and higher order mutation were

methods employed for computing the quality of test data which

classified that the test data was capable of uncovering the

errors or not

The outcomes validated that the presented method with

respect to the number of mutants and mutation score

which had produced.

Francisco

Gomes
2020

In order to achieve this, the set of test cases was executed on

different mutated versions of the SUT. There were 2 specific b-

div measures introduced and their comparison was done with

a-div to prioritize the test suites included in six different open-

source projects.

The outcomes represented that the b-div measures

performed better as compared to a-div and random

selection in all of the studied projects. The APFD was

enhanced from19% to 31% on the basis of subset’s

size of prioritized tests.

Farah

Hariri
2019

The automated methods were utilized for justifying equivalent

and replicated mutants and also for classifying the mutants as

minimal and surface. The study was conducted using fifteen

programs taken from the Core utils library.

It was revealed that the mutation score at both levels

was not much correlated with the actual fault-detection

capability of test suites.

3. Conclusion

In this work, it is concluded that mutations testing is the

efficient testing scheme which detect errors efficient from

the software’s. The various mutations testing schemes are

reviewed in this paper which for the defect prediction. It is

analyzed that schemes which are based on the genetic

algorithm are efficient for the mutation testing.

References

[1] Zainab Nayyar, Nazish Rafique, Nousheen Hashmi,

Nadia Rashid, Saba Awan, “Analyzing test case quality

with mutation testing approach”, 2015, Science and

Information Conference (SAI)

[2] Vasundhara Bhatia, Abhishek Singhal, “Design of a

Fuzzy model to detect equivalent mutants for weak and

strong mutation testing”, 2016, International

Conference on Information Technology (InCITe) - The

Next Generation IT Summit on the Theme - Internet of

Things: Connect your Worlds

[3] Tomohiko Takagi, Takuya Arao, “Overview of a

place/transition net-based mutation testing framework

to obtain test cases effective for concurrent software”,

2015, IEEE/ACIS 16th International Conference on

Software Engineering, Artificial Intelligence,

Networking and Parallel/Distributed Computing

(SNPD)

[4] Liping Li, Honghao Gao, “Test suite reduction for

mutation testing based on formal concept analysis”,

2015, IEEE/ACIS 16th International Conference on

Software Engineering, Artificial Intelligence,

Networking and Parallel/Distributed Computing

(SNPD)

[5] Pedro Reales, Macario Polo, José Luis Fernández-

Alemán, Ambrosio Toval, Mario Piattini, “Mutation

Testing”, 2014, IEEE Software, Volume: 31, Issue: 3

[6] Shabnam Mirshokraie, Ali Mesbah, Karthik

Pattabiraman, “Guided Mutation Testing for JavaScript

Web Applications”, 2015, IEEE Transactions on

Software Engineering, Volume: 41, Issue: 5

[7] Panya Boonyakulsrirung, TaratipSuwannasart, “A weak

mutation testing framework for WS-BPEL”, 2011,

Eighth International Joint Conference on Computer

Science and Software Engineering (JCSSE)

[8] NishthaJatana, Bharti Suri, “Particle Swarm and

Genetic Algorithm applied to mutation testing for test

data generation: A comparative evaluation”, 2020,

Journal of King Saud University - Computer and

Information Sciences

[9] Pablo C. Cañizares, Alberto Núñez, Mercedes G.

Merayo, “Mutomvo: Mutation testing framework for

simulated cloud and HPC environments”, 2018, Journal

of Systems and Software

[10] Yunqi Du, Ya Pan, Haiyang Ao, NimakoOttinah

Alexander, Yong Fan, “Automatic Test Case

Generation and Optimization Based on Mutation

Testing”, 2019, IEEE 19th International Conference on

Paper ID: SR201217181141 DOI: 10.21275/SR201217181141 1336

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

SJIF (2019): 7.583

Volume 9 Issue 12, December 2020

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

Software Quality, Reliability and Security Companion

(QRS-C)

[11] Lingchao Chen, Lingming Zhang, “Speeding up

Mutation Testing via Regression Test Selection: An

Extensive Study”, 2018, IEEE 11th International

Conference on Software Testing, Verification and

Validation (ICST)

[12] Do Van Nho, Nguyen Quang Vu, Nguyen Thanh Binh,

“A Solution For Improving The Effectiveness of Higher

Order Mutation Testing”, 2019, IEEE-RIVF

International Conference on Computing and

Communication Technologies (RIVF)

[13] Francisco Gomes de Oliveira Neto, Felix Dobslaw,

Robert Feldt, “Using mutation testing to measure

behavioural test diversity”, 2020, IEEE International

Conference on Software Testing, Verification and

Validation Workshops (ICSTW)

[14] Farah Hariri, August Shi, Vimuth Fernando, Suleman

Mahmood, Darko Marinov, “Comparing Mutation

Testing at the Levels of Source Code and Compiler

Intermediate Representation”, 2019, 12th IEEE

Conference on Software Testing, Validation and

Verification (ICST)

Paper ID: SR201217181141 DOI: 10.21275/SR201217181141 1337

