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Abstract: The three dimensionless variables are used to obtain the exact analytical expressions for the complete current-voltage 

characteristics for the single injection current flow in amorphous semiconductors under non-constant mobility regime. The energy 

band model for linearly distributed states is considered for the dimensionless characteristics. It is shown that the complete current-

voltage characteristics are obtained in a large change in current for a small change in applied voltage. The effect of space-charge-

limited currents is understood in the complete span of current-voltage characteristics.  
 

1. Introduction 
 

The electrical transport mechanism in amorphous materials 

is contributed by trap limited band transport in which the 

distribution of localized states plays an important role to 

obtain the proper explanation of currents [1, 2, 7-11,13,15, 

16] 

 

The important studies of an disordered solids may be done 

in the presence of both non-constant mobility regime and 

trapping states. The presence of trapping states is obtained in 

the forms of conduction and high temperature mobility 

measurements [3, 7]. Such results are surveyed by Mott & 

Davis [7] which shows that trapping states lie close to the 

band edge. The model is proposed by Mott, Cohen, 

Fristzsche & Ovshinsky [MCFO Model] [5,6,8]. 

 

According to the work of Mott [4,5] , the localized 

electronic states in the tails of amorphous semiconductor are 

linearly distributed in energy characterized by the following 

distribution as,  

Nt(E) = 
𝑁(𝐸v )

∆
 (𝐸𝐵 − 𝐸)   (1) 

where Nt(E) is the density  of states in the valence band tail, 

N(Ev) is the value of Nt(E) at the mobility shoulders Ev, the 

energy range ∆ and energy level EB are shown in fig. (1) and 

E is energy value.  

 
Figure 1 

 

2. General Formulation of the Problem  
 

Let us consider an amorphous sample with linearly 

distributed localized states characterized by the distribution 

function given by the eqn.(1). It is considered that holes are 

injected at the anode x = o and exit at the cathode x = L, 

where L is the device length. The one dimensional planner 

current flow eqn. is given by [1,2]  

I = e 𝜇p p(x)F(x) = Constant.    (2) 

where I is the total current density independent of the 

position inside the amorphous material, e is the magnitude 

of electronic charge, 𝜇𝑝 is the nonconstant mobility  of holes, 

p(x) is the total free hole concentration, F(x) is the electric 

field strength at position x inside the amorphous 

semiconductor from anode.  

 

Paper ID: SR201214214026 DOI: 10.21275/SR201214214026 913 



International Journal of Science and Research (IJSR) 
ISSN: 2319-7064 

SJIF (2019): 7.583 

Volume 9 Issue 12, December 2020 

www.ijsr.net 
Licensed Under Creative Commons Attribution CC BY 

A non-constant mobility of the free carriers is considered as 

[11,12]  

𝜇𝑝  = H p(x),     (3) 

where 𝜇𝑝  is the nonconstant mobility of holes and H is a 

proportionality constant which depends on the electrical 

properties of the material. 

 

The eqns (2) and (3) are combined to give the modified 

current equation of the free carriers inside the amorphous 

material operating under nonconstant mobility regime as :  

I = eH [p(x)]
2
 F(x) = Constant    (4) 

 

The Poisson’s equation of the problem is given by [1,2,9-11]

    
∈

𝑒
 
𝑑𝐹(𝑥)

𝑑𝑥
= [𝑝 𝑥 − 𝑝𝑜] + 𝑝𝑖𝑡 (𝑥)   (5) 

where ∈ is the static dielectric constant of the material, 𝑝𝑜  is 

the thermal – equilibrium position dependent hole 

concentration, p(x) is the total free hole concentration and 

𝑝𝑖𝑡 (x) is the concentration of the trapped carriers under the 

hole injection condition. 

 

The localized distributed traps present in the valence band 

tail is given by [1, 2]  

𝑝𝑖𝑡 (x) ≈  Nt [𝜉𝑜 𝑥 , 𝜉𝑜 ] = Nt [𝜉𝑜 𝑥, Δ ] 

=  𝑁𝑡(𝐸)
𝜉(𝑥)

Δ
 𝑑𝐸 

= 
𝑁(0)

∆
 [Δ𝜉0 𝑥 − 

[𝜉0(𝑥)]2

2
− 

Δ2

2
]   (6) 

where the eqn. (1) is used, and 𝑁𝑡[𝜉0 𝑥 , 𝜉0]is the total trap 

concentration lies between the thermal – equilibrium 

position   of the Fermi level   and the mobility shoulder Ev is 

considered as the origin of the energy, so that  

N(Ev) = N(o) and EB = Δ. 

 

The concentration of free holes in a material is given by,  

p(x) = Nv exp. (- 𝜉(𝑥)/𝑘𝑇)   (7) 

where Nv is the effective density of states in the valence 

band. The eqns. (6) and (7) give the following expression  

𝑝𝑖𝑡 (x) = 
𝑁(𝑜)

2Δ
 [Δ + 𝑘𝑇 log

𝑝(𝑥)

𝑁v
]2   (8) 

 

The equations (4), (5) and (8) are the general equations for 

the three unknowns p(x), 𝑝𝑖𝑡 (x) and F(x) for the given 

current density I. These equations are considered to obtain 

the final results.  

 

The above equations are subjected to as usual boundary 

condition for ohmic contact as,  

F(o) = 0 at  x = 0,     (9) 

which is generally employed in  single injection current 

theories [2,9-11,13,14]. The other boundary conditions for 

ohmic contact are given by,  

p(x) →  po as  x  →   ∞     (10) 

 

The amorphous sample is of small thickness, therefore the 

concentration 𝑝𝑜  appears inside the sample at low injection 

level of current.  

 

In this condition, the Poission’s eq. (5) becomes,  
𝜀

𝑒
 
𝑑𝐹(𝑥)

𝑑𝑥
 ≈ 𝑝𝑖𝑡  (𝑥)     (11) 

 

 

3. Solutions of the Problem and Three 

Dimensionless Variables  
 

The solutions of the complicated problem is obtained 

conveniently by assuming the following three dimensionless 

variables as [2,9-11,13,14]  

M(X) = 𝑝𝑜   
𝑒𝐻𝐹(𝑥)

𝐼
 ,  (12) 

X = 
𝑒𝑃0

2𝑥

𝜀
  

𝑒𝐻

𝐼𝐹(𝑥)
 ,   (13) 

𝒱(X) = 
𝑒2𝑃0

3𝐻𝑉(𝑥)

𝜀𝐼𝐹(𝑥)
,    (14) 

where M(X) is the value for dimensionless concentration, X 

is the dimensionless distance and 𝒱(X) is the dimensionless 

potential of the problem. The injection level of current is 

considered to be sufficiently high so that 

pit(x) > (p(x) – po) >> po .  (15) 

 

The dimensionless variables (12) – (14) give the following 

relation  
1

𝑀𝑐𝑋𝑐
=   

𝜀𝐼

𝑒2𝑝0
3𝐻𝐿

     (16) 

𝒱𝑐

𝑋𝑐
2 =  

𝜀𝑉(𝐿)

𝑒𝑝0𝐿2    (17) 

The equations (16) and (17) give the following 

proportionalities for dimensionless current-voltage 

characteristics as :  

I ∝  
1

𝑀𝑐𝑋𝑐
 and 

V ∝
𝒱𝑐

𝑋𝑐
2     (18) 

which shows that the current-voltage characteristics [I ∝ V] 

may be considered as : 
1

𝑀𝑐𝑋𝑐
 ∝ 

𝒱𝑐

𝑋𝑐
2 

which is known as the dimensionless current-voltage 

characteristics . 

 

The equations (8), (11) and (13) give the variation of 

dimensionless variable as  
𝑀𝑑𝑀

𝑑[𝑀𝑋]
=  

Γ

2
[𝐴 + 𝑙𝑔

1

𝑀
]2   (19) 

where Γ = 
𝑁(𝑜)(𝑘𝑇)2

2Δ𝑝𝑜
  and   (20) 

 A = 
Δ

𝑘𝑇
+  𝑙𝑔

𝑝𝑜

𝑁v
    (21) 

The eqn. (19) is solved under the boundary condition given 

at anode as   

F(o) = 0, M(X) = M(o)   at  X = 0 . 

The eqn. (19) is integrated as, 

 
𝑀𝑑𝑀

 𝐴+𝑙𝑔
1

𝑀
 
2

𝑀𝑐

𝑀(𝑜)
 = ΓMcXc    (23) 

which directly gives the solution in terms of exponential 

integral Ei as,  

1

[𝑀𝑐𝑋𝑐]
1
2

=  
Γ

1
2

(2)
1
2

[
𝑀𝑐

2

𝐴+𝑙𝑔
1

𝑀𝑐

+  2𝑒2𝐴𝐸𝑖{−2(A + 𝑙g
1

Mc
)}]−

1

2 (24) 

which satisfies the boundary condition M=o at X=o, and for 

M → 1 , the value of variable X → ∞. It shows that for all 

values of variable M less than unity, X is finite. 

 

The voltage applied across the sample is given by,  

V(x)  =  𝐹 𝑥 𝑑𝑥
𝑥

𝑜
    (25) 

 

From eqns. (11), (14) and (25), the dimensionless potential 

is obtained as  
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v(X) = 
1

𝑀2  𝑀2{𝑑[𝑀𝑋]}
𝑀X

𝑜
 

= 
2

𝑀2  
𝑀3𝑑𝑚

Γ[𝐴+𝑙𝑔
1

𝑀
]2

𝑀𝑐

𝑜
    (26) 

where the equation (19) is used. At cathode, the eqn (26) 

becomes, 

𝑣𝑐  = 
2

𝑀𝑐
 

𝑀3𝑑𝑚

Γ[𝐴+𝑙𝑔
1

𝑀
]2

𝑀𝑐

𝑜
 

= 
2

Γ𝑀𝑐
2  [

𝑀𝑐
4

𝐴+𝑙𝑔
1

𝑀𝑐

+  4𝑒4𝐴𝐸𝑖 {−4 (𝐴 + 𝑙𝑔
1

𝑀𝑐
)}]   (27) 

where Ei is the exponential integral function.  

 

The eqn. (24) gives the following dimensionless variable Xc 

as, 
1

𝑋𝑐
=  

𝑀𝑐

2
 Γ [

𝑀𝑐
2

𝐴+𝑙𝑔
1

𝑀𝑐

+  2𝑒2𝐴𝐸𝑖 {−2 (𝐴 + 𝑙𝑔
1

𝑀𝑐
)}]−1 (28) 

 

The equations (27) and (28) yield the dimensionless value at 

cathode as, 

𝑣𝑐

𝑋𝑐
2 =  

Γ

2
 

[
𝑀𝑐

4

𝐴+𝑙𝑔
1

𝑀𝑐

+ 4𝑒4𝐴𝐸𝑖 {−4 (𝐴+𝑙𝑔
1

𝑀𝑐
)}

[
𝑀𝑐

2

𝐴+𝑙𝑔
1

𝑀𝑐

+ 2𝑒2𝐴𝐸𝑖 {−2  𝐴+𝑙𝑔
1

𝑀𝑐
 }]2

 (29) 

 

Let us consider the new dimensionless variable y given by,  

y = A + 𝑙g 
1

𝑀𝑐
    (30) 

where y is the value of variable at cathode.  

 

The equations (29) and (30) give, 
𝒱𝑐

𝑋𝑐
2 =  

yΓ

2
  

𝑒4(𝐴−𝑦)+ 4𝑦𝑒4𝐴𝐸𝑖(−4𝑦)

[𝑒2(𝐴−𝑦)+ 2𝑦𝑒2𝐴𝐸𝑖(−2𝑦)]2   (31) 

 

For the variable values y>1, the exponential integral in eqn. 

(31) may be expanded as,  

Ei(-y) ≃ − 
𝑒−𝑦

𝑦
+

𝑒−𝑦

𝑦2 ≃  
𝑒−𝑦

𝑦
  (32) 

Ei(-2y) ≃ 
 1−2𝑦 𝑒−2𝑦

4𝑦2    (33) 

Ei(-4y) ≃ 
 1−4𝑦 𝑒−4𝑦

16𝑦2    (34) 

 

Substituting the exponential integral values from equations 

(33) and (34) into equation (31), the following equation is 

obtained as  
𝒱𝑐

𝑋𝑐
2 =  

Γ

4
𝑒2(𝐴−𝑦) =  

Γ

4
𝑀𝑐

2   (35) 

 

Similarly, the equations (28), (30) and (33) give the 

dimensionless value as,  

1

[𝑀𝑐𝑋𝑐]
1
2

=  
yΓ

1
2

𝑒 (𝐴−𝑦) =  
Γ

1
2[A + 𝑙g 

1

𝑀𝑐
]

𝑀𝑐
   (36) 

 

It is difficult to obtain a direct relationship between the 

current and applied voltage to get the current-voltage 

characteristics for the current injection in an amorphous 

semiconductor with linearly distributed localised states 

operating under nonconstant mobility regime. However, the 

dimensionless current – voltage characteristics is 

represented by 
1

[𝑀𝑐𝑋𝑐]
1
2

  versus 𝑣𝑐  / x𝑐
2 with the help of 

equations (35) and (36), respectively. These dimensionless 

values for the dimensionless characteristics may be 

evaluated by the tabulation of variables Xc and 𝑣𝑐  from 

equations (27) and (28), when the variable Mc varies from 0 

to 1.  

 

4. Complete Dimensionless Current-Voltage 

Characteristics 
 

The complete characteristics is divided into three current-

voltage regimes as given below:  

Ohmic Regime (Mc  ≃ 1) : 

 

The complete dimensionless characteristics is started from 

the low injection level of current at which the injected 

current carriers are negligibly small. It gives ohmic regime 

where the current is carried by the free carriers distributed 

uniformly throughout the amorphous sample before the 

current injection for ohmic regime where Mc = 1.  

 

The equations (35) and (36) becomes,  
𝒱𝑐  

𝑋𝑐
2 =

Γ

4
   and   (37) 

 
1

[𝑀𝑐𝑋𝑐]
1
2

  = AΓ
1

2   (38) 

which directly gives the dimensionless current-voltage 

characteristics for ohmic regime as, 
𝒱𝑐

𝑋𝑐
2 = 

1

4𝐴2[𝑀𝑐𝑋𝑐]
   (39) 

 

Substituting the values of Mc, Xc and 𝑣𝑐  from equations (12) 

– (14) into (39), the current-voltage characteristic of  

amorphous semiconductor under Ohmic regime is obtained 

as   

I = 4eH𝑝0
2𝐴2(

𝑉

𝐿
)     (40) 

which is the linear power law for amorphous semiconductor 

operating under non-constant mobility regime. The ohmic 

region is terminated from the amorphous material when the 

injected space charge is sufficiently large. The change in the 

situation occurs rapidly because the amorphous sample is 

working under non-constant mobility regime.  

 

Trapped Charge Regime (MC < 1)  

 

At medium injection level of current, the concentration of 

injected current carriers is sufficient to compensate the 

linear current-voltage characteristic. Therefore, the trap-

limited space-charge regime is observed through the 

amorphous sample. The non-constant mobility is present in 

the sample. The current-voltage characteristics is dominated 

by the trapping effect. Therefore, it is a complex current-

voltage regime which is contributed by the ohmic, trapping 

and space charge regimes. The states are gradually filled 

with the current carriers and the value of dimensionless 

variable 𝑣𝑐  lies in the middle span. The exact form of 

dimensionless values is given by equations (24) and (29), 

and has to be used to obtain the exact dimensionless current-

voltage characteristics of this regime.  

 

Space Charge Regime (Mc << 1)  

 

The injection level of current is sufficiently high to 

overcome the ohmic and trap controlled current flow in 

amorphous semiconductor. The approximate expressions for 

the dimensionless current-voltage characteristics may be 
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derived from the eqns.  (24) and (29) by neglecting the 

parameter A as  

𝒱𝑐

𝑋𝑐
2 =   

Γ

2
[

𝑀𝑐
4

𝑙𝑔
1

𝑀𝑐

+ 4𝑒4𝐴𝐸𝑖 (−4 𝑙𝑔
1

𝑀𝑐
)]

[
𝑀𝑐

2

𝑙𝑔
1

𝑀𝑐

+ 2𝑒2𝐴𝐸𝑖 (−2 𝑙𝑔
1

𝑀𝑐
)]2

  (41) 

1

 𝑀𝑐𝑋𝑐 
1
2

= (
Γ

2
)

1

2  [
𝑀𝑐

2

𝑙𝑔
1

𝑀𝑐

+  2𝑒2𝐴𝐸𝑖 (−2 𝑙𝑔
1

𝑀𝑐
)]   (42) 

 

It is difficult to remove Mc from eqns. (41) and (42) to 

obtain the final current-voltage characteristics of a 

disordered solid due to complexity in these expressions. 

However, the different dimensionless values 
1

 𝑀𝑐𝑋𝑐 
1
2

 versus 

𝒱𝑐

𝑋𝑐
2 may be estimated for different values of Mc.  

 

5. Conclusions  
 

The complete dimensionless current-voltage characteristics 

is divided into three current-voltage regimes on the basis of 

the dimensionless variable Mc as described earlier. The 

complete mathematical procedure for the dimensionless 

current-voltage characteristics of disordered materials is 

sufficiently complicated to such an extent that no explicit 

expression is not possible to show the relation between the 

current and voltage. Therefore, the approximation of the 

dimensionless variable Mc has been considered in its 

complete range of variation from 0 to 1. Thus, the three 

dimensionless current-voltage regimes are obtained for the 

sample for three different values of the dimensionless 

variable Mc.  
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