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Abstract: Natural state modelling of a geothermal system is the process of adjusting uncertain reservoir parameters until an acceptable 

match with the measured field data is achieved. Complexity and insufficient knowledge of reservoir characteristics make this process 

time-consuming with a high computational cost. This study aims to examine the application of Artificial Intelligence (AI) to improve the 

time and efforts required for completing a successful natural state modelling. A synthetic 2D model of a vapor-dominated geothermal 

system is built using TOUGH2-EOS1, and was used as the subject and ground truth of natural state matching. An AI model was created 

to perform natural state modelling, and play a role as a prototype for full-field reservoir simulation that runs in a few seconds.  
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1. Introduction 
 

The natural state of a geothermal system represents the 

conditions where the system has not been exploited. A 

natural state model of a geothermal system then refers to the 

mathematical representation of the physical behavior of the 

system before exploitation [1]. In the mathematical 

representation, we set up a computer model that 

approximately the permeability structure, heat inputs that 

represent magma chambers underlying the reservoir at 

correct locations, and fluid inputs of a real reservoir. 

 

A successful computer model is the one that will nearly 

duplicate the behavior of the geothermal system before 

exploitation. The model should account for all significant 

physical processes that take place in the system. Some of the 

processes include mass transport, conductive and convective 

heat transfer, boiling, and condensation [2]. The objectives 

of natural state modelling are: (i) to develop a conceptual 

model, (ii) to measure the natural mass and heat moving in 

the system, and (iii) to serve as a basis for modelling studies 

of the system when it is being exploited. 

 

The purpose of the work described here was to examine the 

application of Artificial Intelligence (AI) to improve the 

time and efforts required for completing a successful natural 

state modelling for a geothermal system.  

 

A synthetic 2D model of a vapor-dominated geothermal 

system is built using TOUGH2-EOS1 [3] and was used as 

the subject and ground truth of natural state matching. Then, 

natural state modelling was carried out using an AI model 

that was developed in Python. The AI model plays a role as 

a prototype for full-field reservoir simulation that runs in a 

few seconds. 

 

2. Methodology 
 

Simulation Model 

A synthetic 2D model of a vapor-dominated geothermal 

system is constructed using TOUGH2-EOS1 which has 

dimensions of 5000 m × 50 m with a 2000 m depth. This 

model was built is a typical vapor-dominated system, since 

the reservoir is governed by impermeable rocks [4]. The 

model domain is divided into 25 grids in the x-direction and 

one grid in the y-direction with 25 layers, as shown in Figure 

1. The grid size is 200 m × 50 m × 80 m for all grid blocks.  

 
Figure 1: Two-dimensional model of a vapor-dominated 

geothermal system. 

 

Seven types of rock material were assigned in the model as 

summarized in Table 1. The properties of rock type are 

based on the Darajat geothermal field (Indonesia) because it 

is a typical vapor-dominated geothermal system [5]. These 

rock materials represent atmosphere layer, caprock, 

reservoir, impermeable boundary, and basement rock. 

 

For all rock types, the rock density of 2650 kg/m
3
 and the 

specific heat of 1000 J/(kg K) are used. The capillary 

pressure effect is neglected. The porous medium approach is 

utilized in the whole domain. Relative permeability of 

Grant's curves [6] is used with residual liquid saturation (Slr) 

and residual gas saturation (Sgr) of 0.3 and 0.05, 

respectively.  

 

The thickness of reservoir domain is 1200 m which lay 

down at depth between 320 m to 520 m. It consists of a 

shallow reservoir (320 m to 960 m) and deep reservoir (960 

m to 1520 m). The caprock layer overlies the reservoir with 

240 m thick. The atmospheric condition of 1 bar and 20 °C 

is specified at the top layer. Conductive heat flux of 0.5 
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W/m
2
 is given at the bottom of the model. High-temperature 

water of 270 °C at a flow rate of 1 kg/s recharges the 

reservoir from two locations at the bottom layer.  

 

To maintain a hydrostatic condition at the lateral boundary, 

we assigned an infinitely large volume (volume factor of 1 × 

10
50

) in some grids at the lateral boundary of the reservoir 

(grids within the red boxes in Figure 1). After setting up the 

model, it was run for one million years to reach a reasonable 

steady state. This long simulation time is required to achieve 

a natural state condition of a geothermal system. 

Table 1: Rock properties assigned for the 2D model 
Material name Color 𝜙 (-) 𝑘 (m2) 𝐶 (W/m K) 

Atmosphere  0.9 1×10-12 2.5 

Caprock  0.05 8×10-18 0.2 

Shallow reservoir  0.1 5×10-14 2.5 

Deep reservoir  0.1 1×10-14 2.5 

Basement rock 1  0.06 1×10-15 2.5 

Basement rock 2  0.03 5×10-16 2.5 

Outer boundary  0.01 5×10-17 2.5 

 

Artificial Neural Network 

Artificial Neural Network (ANN) is an algorithm that was 

originally motivated by the goal of having machines that can 

mimic the brain [7]. Figure 2 illustrates the input, hidden and 

output layers and their connections in the Artificial Neural 

Network (ANN) algorithm. 

 

The results from the simulation were then used to generate a 

spatio-temporal database that involves static and dynamic 

reservoir characteristics. Static data refers to the reservoir 

properties that are not changing through time, such as 

permeability and porosity. Dynamic data refer to variable 

parameters that are altering over time, such as the 

distribution of pressure, temperature, and vapor saturation.  

 

 
Figure 2: A scheme of an artificial neural network 

 

3. Results and Discussion 
 

The simulation was assumed reach natural state condition 

for natural state modeling in 50,000 years. The highest 

pressure is found in the grid just above the mass recharge 

point, see Figure 3. This makes the fluid flowing upward 

from the recharge point to the reservoir domain. The 

resulting pressure in the steady-state is about 200 bar at the 

bottom layer. 

 

 
Figure 3: Pressure distribution undernatural state 

 

The high-temperature zone is formed in the center of the 

bottom layer, see Figure 4. The temperature at the margin of 

the lateral boundary of the upper part of the reservoir seems 

to be constant because we set an infinitely large volume. If a 

well is allocated at 500 m from the center of the model (see 

A in Figure 4), there is a decrease of temperature at a depth 

between 600 m to 900 m and then an increase again with 

depth.  

 
Figure 4: Temperature distribution undernatural state 

 

A thin vapor-dominated zone is formed at depths from 300 

m to 350 m in the shallow zone of the reservoir (Figure 5), 

just below the caprock. The vapor saturation in that zone is 

in the range of 0.6 to 0.8. On the other hand, liquid water 

occupies most of the other zones in the model domain. 

 
Figure 5: Vapor saturation distribution undernatural state 

 

Then, we generate a dataset by running a series of 

simulation with changing reservoir parameter, i.e., heat 

influx, porosity, and permeability to obtain the simulation 

output, namely, temperature and vapor saturation. Figure 6 
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shows the design of ANN architecture with 3 inputs (heat 

influx, porosity, and permeability), 3 neurons, and 2 outputs 

(temperature and vapor saturation). 

 

 
Figure 6: ANN architecture with 3 inputs, 3 neurons, and 

2 outputs 

 

Table 2 shows that the results have a relatively good 

agreement for the temperature prediction. However, the 

vapor saturation prediction has a poor prediction, with 

relative squared errors of 0.642. This means the ANN 

architecture should be modified, for example by adding 

neurons and normalizing the input data before training. 

Table 2:Results metric from the ANN model 
Output rmse rse mae 

Temperature 13.178 0.893 9.607 

Vapor Saturation 0.281 0.642 0.216 

 

4. Conclusion 
 

A synthetic 2D model of a vapor-dominated geothermal 

system has been constructed using TOUGH2-EOS1. The 

simulation results show that a thin vapor-dominated zone, in 

the range of 0.6 – 0.8, is formed at depths from 300 m to 350 

m, whereas the liquid water occupies most of the other zones 

in the model domain. The ANN model is generated by 

involving three different processes, i.e., training, calibration, 

and testing, by using the database generated from the 

simulation results. The elapsed time to perform those 

processes is negligible compared to the reservoir simulation 

run-time. 

 

The ANN can predict the temperature distribution quite 

well, yet, poor in predicting the vapor saturation. To 

improve its performance, the ANN architecture should 

redesign, such as, adding the inputs and neurons or 

normalize the input before training. In addition, the other 

ANN models for time series modeling should be considered, 

such as, radial basis function (RBF), Recurrent Neural 

Network (RNN), and Convolutional Neural Network (CNN). 

 

This study recommends to include more reservoir 

parameters as inputs and implement other types of neural 

networks, e.g., radial basis function (RBF), Recurrent Neural 

Network (RNN), and Convolutional Neural Network (CNN). 
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