
International Journal of Science and Research (IJSR)
ISSN: 2319-7064

SJIF (2019): 7.583

Volume 9 Issue 12, December 2020

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

Exponential Regression via Linear Modeling using

Stochastic Gradient Descent and Optimization

Jogimol Joseph
1
, Dr. K. Mathew

2

1Assistant Professor, Mount Zion College Of Engineering, Kadammanitta, India

Jogimolb[at]gmail.com

2Principal, Mount Zion College Of Engineering, Kadammanitta, India

Abstract: Exponential regression is used to model situations in which growth begins slowly and then accelerates rapidly without

bound, or where decay begins rapidly and then slows down to get closer and closer to zero. Sometimes linear regression can be used

with relationships which are not inherently linear, but can be made to be linear after a transformation. Exponential problems can be

lineaized by Stochastic Gradient Descent as well as optimization in cost function.

Keywords: Exponential Regression, Stochastic Gradient Descent, Optimization, cost function

1. Introduction

Big data refer to technologies and initiatives that tackle

diverse, massive data to address the traditional technologies,

skills, and infrastructure efficiently. The volume, velocity,

and variety of data are greatly high. Big Data is not a single

technology or initiative, but it depends on several domains of

business and technology. Usually, machine learning

algorithms label the incoming data and recognize patterns in

it. Then, the ML model translates patterns into insights for

business operations. ML algorithms are also used to

automate certain aspects of the decision-making process. The

probability for a continuous random variable can be

summarized with a continuous probability distribution.

Continuous probability distributions are encountered in

machine learning, most notably in the distribution of

numerical input and output variables for models and in the

distribution of errors made by models. Knowledge of the

normal continuous probability distribution is also required

more generally in the density and parameter estimation

performed by many machine learning models. As such,

continuous probability distributions play an important role in

applied machine learning.

2. Exponential Distribution

The exponential distribution is a continuous probability

distribution where a few outcomes are the most likely with a

rapid decrease in probability to all other outcomes. It is often

used to model the time elapsed between events.

Some examples of domains that have exponential

distribution events include:

 The time between clicks on a Geiger counter.

 The time until the failure of a part.

 The time until the default of a loan.

This paper considers the use of various Lagrange multiplier

tests in testing linearity of univariate time series models

against non-linear alternatives. It is assumed that there is not

enough theory available for selecting the correct type of non-

linearity if the true model is non-linear. The LM tests may

then be regarded as linearity tests against incorrect non-

linear models. In particular, we consider the following

exponential model:

Taking the natural of both sides of the equation, we have the

following equivalent equation:

This equation has the form of a linear regression model

(where I have added an error term ε):

Common trend in continuous data patterns is exponential

growth, which is also commonly seen as exponential

decay. In exponential growth, a future value is

proportionally related to the current value. The general

formula for this type of growth can be written as:

y = y0 (1 + r) x

Where y0 is the quantity's initial value (when x = 0),

and r is the growth rate of the quantity.

Let us prepare test data and create two related variables x,y,

where y is equal to x elevated to an exponent e, plus some

Gaussian noise. For convenience we have set the Gaussian

noise variance dependent to the exponent too.

#test data setting

e=2.465 #exp

x=np.arange(0,25,0,01)

y=xe +np.random.normal(0,10e,x.shape)

If we plot the data with a seaborn regression plot, we can

easily spot a non-linear relation.

Paper ID: SR201128192743 DOI: 10.21275/SR201128192743 9

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

SJIF (2019): 7.583

Volume 9 Issue 12, December 2020

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

 Figure 1: seaborn regression plot

3. Stochastic Gradient Descent (SGD) Method

First, we propose a new Stochastic Gradient Descent (SGD)

method for optimizing the sum of  a finite set of smooth

functions, where the sum is strongly convex. While standard

stochastic gradient methods  converge at sub-linear rates

for this problem, the proposed method incorporates a

memory of previous gradient values in order to achieve a

linear convergence rate. In a machine learning context,

numerical experiments indicate that the new algorithm can

dramatically outperform standard algorithms, both in terms

of optimizing the training error and reducing the test error

quickly.

3.1 Finite sum problems

Consider minimizing an average functions

Where we have dataset of m points yi , and each fi is an

error function evaluated at the i
th

 data point.

As fi(x), gradient descent updates

are as follows

x
(k)

=x
(k-1)

-tk fi(x
k-1)

,k=1,2,3….

3.2 Stochastic Gradient Descent

When m is large in the above update rule, computing all

the gradient for all i becomes costly, so SGD updates are

made the following way

x
(k)

= x
(k-1)

-tk fi(x
(k-1)

), k=1,2,3….

Where ik

The figure shows the behavior of full (batch) gradient

descent compared to stochastic gradient descent where

n=10, p=2.

Figure 2: Blue:batch steps, O(np),Red: Stochastic steps,

O(p)

Far from the optimum, SGD moves faster where as when

we close to optimum, Gradient Descent converges quickly

and GSD struggles.

At this point, we would like to perform an experiment: an

iterative process that linearizes my data by minimizing a

cost function.

3.3 The Cost Function and Optimization

The cost function is a measure of the ‘goodness’ of the

linear relation that we want to maximize. A good indicator is

the Pearson product-moment correlation coefficient r,

which identifies the strength of the linear correlation between

two variables. Pearson r has values between -1 and 1, where

1 is a perfect 1 and 1, where 1 is a perfect positive linear

correlation, 0 is no linear correlation, and −1 reveals a

perfect negative linear correlation; it means that r =1.Thus to

use Pearson r properly, we will take its absolute value and

negate it ,because scipy optimize function functions search

for minima, whereas we want its maximum.

Let us define the cost function:

#define cost function

def cost_function(e):

#y and x are already defined

=np.corrcoef(y,x
e
) # returns correlation matrix

#print each iteration

print(‘r value: {:0.4f} exp:{:.4f}’.format(r[0][1],e)

return –abs(r[0][1])

At this point, we have to call one of the Scipy methods.

Suitable choice could be the minimize_scalar method since

our cost function is a scalar function. The algorithm behind

this package is Brent’s method, a root finding algorithm

without gradient estimation.

We can also set a search range, avoiding the 0 value for the

exponent which implies the Pearson r to return an invalid

value, even if numpy.corrcoeff can handle it. The

coefficient is, in fact, defined as:

Paper ID: SR201128192743 DOI: 10.21275/SR201128192743 10

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

SJIF (2019): 7.583

Volume 9 Issue 12, December 2020

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

r =

If x is elevated to 0 the standard deviation is 0, and the ratio

returns an invalid value. To perform a bounded search let us

call:

minimize_scalar(cost_function,bounds=(0.1,10),method='bo

unded')

The resulting exponent found, in just 12 iterations, is 2.482,

really close to the exponent we have used to generate the

data that is 2.465.

The voice fun shows the value of the negative absolute value

of Pearson r, which seems to be quite high. Let us plot

again y and x applying the exponent found on x, we will

notice a strong linear relationship:

Figure 3: Transformation of exponential to Linear

4. Conclusion

To conclude, it is somewhat possible to transform our

exponential problems to linear problems to an extend with

the SGD as well as cost function and Optimization method.

References

[1] [NJLS09] A. Nemirovski and A. Juditsky and G. Lan

and A. Shapiro (2009), “Robust stochasti optimization

approach to stochastic programming

[2] Introduction to Linear Regression Analysis(Wiley Series

in probability and statistics) by Douglas C.

Montgomery, Elizabeth A Peck and G. Geoferry Vining

2012

[3] Regression Estimators-A comparative study 2E,Marvin

H J Gruber

[4] Applied Regression Analysis,Norman R Draper

[5] Data Analysis Using Regression and

Multilevel/Hierarchical Models (Analytical Methods for

Social Research) – 18 December 2006,Andrew Gelman

Paper ID: SR201128192743 DOI: 10.21275/SR201128192743 11

