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Abstract: Exponential regression is used to model situations in which growth begins slowly and then accelerates rapidly without 

bound, or where decay begins rapidly and then slows down to get closer and closer to zero. Sometimes linear regression can be used 

with relationships which are not inherently linear, but can be made to be linear after a transformation. Exponential problems can be 

lineaized by Stochastic Gradient Descent as well as optimization in cost function. 
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1. Introduction 
 

Big data refer to technologies and initiatives that tackle 

diverse, massive data to address the traditional technologies, 

skills, and infrastructure efficiently. The volume, velocity, 

and variety of data are greatly high. Big Data is not a single 

technology or initiative, but it depends on several domains of 

business and technology. Usually, machine learning 

algorithms label the incoming data and recognize patterns in 

it. Then, the ML model translates patterns into insights for 

business operations. ML algorithms are also used to 

automate certain aspects of the decision-making process. The 

probability for a continuous random variable can be 

summarized with a continuous probability distribution. 

Continuous probability distributions are encountered in 

machine learning, most notably in the distribution of 

numerical input and output variables for models and in the 

distribution of errors made by models. Knowledge of the 

normal continuous probability distribution is also required 

more generally in the density and parameter estimation 

performed by many machine learning models. As such, 

continuous probability distributions play an important role in 

applied machine learning.  
 

2. Exponential Distribution 
 

The exponential distribution is a continuous probability 

distribution where a few outcomes are the most likely with a 

rapid decrease in probability to all other outcomes. It is often 

used to model the time elapsed between events. 

 

Some examples of domains that have exponential 

distribution events include: 

 The time between clicks on a Geiger counter. 

 The time until the failure of a part. 

 The time until the default of a loan. 
 

This paper considers the use of various Lagrange multiplier 

tests in testing linearity of univariate time series models 

against non-linear alternatives. It is assumed that there is not 

enough theory available for selecting the correct type of non-

linearity if the true model is non-linear. The LM tests may 

then be regarded as linearity tests against incorrect non-

linear models. In particular, we consider the following 

exponential model: 

 
Taking the natural of both sides of the equation, we have the 

following equivalent equation: 

 
This equation has the form of a linear regression model 

(where I have added an error term ε): 

 
Common trend in continuous data patterns is exponential 

growth, which is also commonly seen as exponential 

decay. In exponential growth, a future value is 

proportionally related to the current value. The general 

formula for this type of growth can be written as:  

y = y0 (1 + r) x 

Where y0 is the quantity's initial value (when x = 0), 

and r is the growth rate of the quantity. 

Let us prepare test data and create two related variables x,y, 

where y is equal to x elevated to an exponent e, plus some 

Gaussian noise. For convenience we have set the Gaussian 

noise variance dependent to the exponent too. 

#test data setting 

e=2.465 #exp 

x=np.arange(0,25,0,01) 

y=xe +np.random.normal(0,10e,x.shape) 

If we plot the data with a seaborn regression plot, we can 

easily spot a non-linear relation. 
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     Figure 1: seaborn regression plot 

 

3. Stochastic Gradient Descent (SGD) Method 
 

First, we propose a new Stochastic Gradient Descent (SGD) 

method for optimizing the sum of   a finite set of smooth 

functions, where the sum is strongly convex. While standard 

stochastic gradient methods   converge at sub-linear rates 

for this problem, the proposed method incorporates a 

memory of previous gradient values in order to achieve a 

linear convergence rate. In a machine learning context, 

numerical experiments indicate that the new algorithm can 

dramatically outperform standard algorithms, both in terms 

of optimizing the training error and reducing the test error 

quickly. 

 

3.1 Finite sum problems 

 

Consider minimizing an average functions 

 

Where we have dataset of m points yi , and each fi is an     

error function evaluated at the i
th

 data point. 

As  fi(x), gradient descent updates 

are as follows 

x
(k)

=x
(k-1)

-tk   fi(x
k-1) 

,k=1,2,3…. 

3.2 Stochastic Gradient Descent  

 

When m is large in the above update rule, computing all 

the gradient for all i becomes costly, so SGD updates are 

made the following way 

x
(k)

= x
(k-1)

-tk fi(x
(k-1)

),  k=1,2,3…. 

Where ik   

The figure shows the behavior of full (batch) gradient 

descent compared to stochastic gradient descent where 

n=10, p=2. 

 
Figure 2: Blue:batch steps, O(np),Red: Stochastic steps,  

O(p) 

 

Far from the optimum, SGD moves faster where as when 

we close to optimum, Gradient Descent converges quickly 

and GSD struggles. 

 

At this point, we would like to perform an experiment: an 

iterative process that linearizes my data by minimizing a 

cost function. 

 

3.3 The Cost Function and Optimization 

 

The cost function is a measure of the ‘goodness’ of the 

linear relation that we want to maximize. A good indicator is 

the Pearson product-moment correlation coefficient r, 

which identifies the strength of the linear correlation between 

two variables. Pearson r has values  between -1 and 1, where 

1 is a perfect 1 and 1, where 1 is a perfect positive linear 

correlation, 0 is no linear correlation, and −1 reveals a 

perfect negative linear correlation; it means that r =1.Thus to 

use Pearson r properly, we will take its absolute value and 

negate it ,because scipy optimize function functions search 

for minima, whereas we want its maximum. 

 

Let us define the cost function: 

#define cost function 

def cost_function(e): 

#y and x are already defined 

=np.corrcoef(y,x
e
) # returns correlation matrix 

#print each iteration 

print(‘r value: {:0.4f} exp:{:.4f}’.format(r[0][1],e) 

return –abs(r[0][1]) 

 

At this point, we have to call one of the Scipy methods. 

Suitable choice could be the minimize_scalar method since 

our cost function is a scalar function. The algorithm behind 

this package is Brent’s method, a root finding algorithm 

without gradient estimation. 

 

We can also set a search range, avoiding the 0 value for the 

exponent which implies the Pearson r to return an invalid 

value, even if numpy.corrcoeff can handle it. The 

coefficient is, in fact, defined as: 
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If x is elevated to 0 the standard deviation is 0, and the ratio 

returns an invalid value. To perform a bounded search let us 

call: 

minimize_scalar(cost_function,bounds=(0.1,10),method='bo

unded') 

 

The resulting exponent found, in just 12 iterations, is 2.482, 

really close to the exponent we have used to generate the 

data that is 2.465. 

 

The voice fun shows the value of the negative absolute value 

of Pearson r, which seems to be quite high. Let us plot 

again y and x applying the exponent found on x, we will 

notice a strong linear relationship: 

 

 
Figure 3: Transformation of exponential to Linear 

 

4. Conclusion 
 

To conclude, it is somewhat possible to transform our 

exponential problems to linear problems to an extend with 

the SGD as well as cost function and Optimization method. 
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