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Abstract: The banking industry is undergoing a significant digital transformation, leading to the introduction of new microservices and 

software for infrastructure services. Although these changes can increase the efficiency of a bank’s infrastructure, they can introduce 

new risks related to system operation. To mitigate risks effectively, an institution must properly monitor system operation and facilitate 

rapid troubleshooting. One key aspect of ensuring the high operability of banking infrastructure is managing the “invisible zone of 

uncertainty” that lies between operational monitoring and reliable failure detection, prioritization, and prediction. The growing 

microservice architecture in contemporary banking infrastructure systems leads to an exponential increase in number and complexity of 

the monitoring events being generated. Current approaches to predictive maintenance do not scale adequately. Serve Allocation Problem 

is an NP-hard one which attempts to allocate costs with a solution working in any kind of model, making it adaptable to any data format. 

Moreover, few of the applied approaches are focused on the context of banking services. Recent advances in the data-centric field of 

machine learning and natural language processing with Large Language Models has led to better contextualization of data, making it 

more understandable to humans. Aiming to mitigate the gap between operational monitoring and failure prediction, this study proposes 

the first data-centric approach to predictive maintenance on banking infrastructure services. In particular, a working proof-of-concept 

solution is presented that suggests mapping production monitoring events to predictive maintenance onboarding data using large language 

models to create and enrich monitoring data contextually. Three unsupervised approaches are implemented to identify false positive 

monitoring events at the second level of a three-level hierarchy on monitoring event criticality. These methods utilize clustering, 

dimensionality reduction visualization, and modelling with a probabilistic graphical model to achieve interpretability of “black box” 

algorithms and contrast false positives and true positives with an illustrative example. Ultimately, the human-centered nature of banking 

infrastructure development and operation is acknowledged. Further development paths are suggested in the latent area between the 

increasing demand for monitoring and deeper contextualization of the monitored systems through AI techniques. 
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1. Introduction  
 

The adoption of predictive maintenance is currently rapidly 

growing in various industries with a heavy investment on 

their IT infrastructure. The investment on such capital-

intensive equipment and systems should carefully be 

considered for each further acquisition and barely ever be 

dismissed [2]. On the other hand, like any machinery, 

computing infrastructure does experience failures – physical 

ones, like hardware negligence, and virtual ones, like 

malwares – that can badly interrupt banking services, prevent 

proper operation of ATMs or cause illegal transactions. The 

maintenance of this equipment architecture and firmware has 

been practiced and is essential for continuous operation of this 

crucial infrastructure and to protect banks from money loss. 

Existing data-driven maintenance practices on easy-to-

understand descriptive models or rule-of-thumb thresholds 

are interlinked with the domain expertise of maintenance 

engineers, however, along the life of any technology, the 

knowledge of the as is system gets increasingly hard to be 

transferred and interpreted from the engineers above to the 

ones below. This results in misinterpretation and wrong 

assessment of coherently escalated incidents, sometimes non-

coherent ones on system failures, and negligence of false 

alarms, along with an absent or unmaintainable knowledge 

transfer across maintenance tiers, from the top-tier senior 

engineers down to juniors, understudies and non-techs. These 

observations call for interpretable and responsible AI input on 

the maintenance service of banking infrastructure. 

 

Besides the core banking services, a rare and unseen theft 

investigation incident would also arise due to very long-term 

operation of ignorant equipment. The crucial and money-loss 

raising incidents on these infrastructures need interpretable 

AI assistance for wider interpretability on data streams, 

stronger maintenance recommendation on planned action, 

and climate-aware wrapping of monthly cleanliness requests. 

A data-centric approach for a new class of interpretability 

with both remark-explaining library, brand-o-functional 

equation counterparts, and drift-detection evaluation metric is 

introduced. 
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Figure 1: Predictive Maintenance Using Machine Learning 

and Data Mining 

 

1.1. Background and Significance 

 

The pressure for banks to reduce costs is expected to increase, 

which would necessitate a reduction in the quality of services 

offered. Bank and IT infrastructures are becoming 

increasingly critical to new operations and implementing 

banking sector strategy, requiring more sophistication, 

efforts, and understanding of processes. Various stresses on 

time, services, IT technical advances, continuous true records, 

move to centralized services, and outsourcing create great 

risks. 

 

Specifically, IT risks in any bank encompass Fixed Asset Cost 

monitoring, budgeting regular evaluations of services, pre-

and post-investment assessments, and investment estimations 

for specialized services versus a revenue for extra capacity. 

The question of how to avoid service degradation, lack of 

understanding of hide-adding risks of services, bank-specific 

service expertise and services all contribute risk. Investing 

into service breakdown and risk reporting suffices IT 

requirements, data shadowing on spare service, and data-

mining visio trends analysis help avoid a risk. 

 

Intelligent services separate resulted faulted notifications, 

simulation-board-user filtered warnings of actual deviations, 

or just focus on production specific services. Infrastructure 

services fault notifications are under auto-filtering and 

monitoring of only schedule violations on un-expected 

downtimes. For comparable systems, competitive service-

resources time analyses are mandatory, though many 

indicators are created according to operation unit limit states, 

with generalization points for all banks and services 

developments. 

 

The time to repair trends of banking infrastructure services 

are expected to be reduced by 5-year reduction. Otherwise 

respectable organizations decrease service frequency or depth 

in general. Benchmarking on purpose on-off periods of 

resource time consumption is reasonably easy. Estimation of 

banking infrastructure IT service responsibilities from agreed 

service IDs and actual resources requires fixed and 

permanently updated algorithms, taking into account the 

greatest bank-specific anchorage time intervals spread 

projections, as well as unexpected service interworking times 

and many other hidden factors. 

 

Equ 1: Survival models, like Cox Proportional Hazards 

for time-to-failure 

 

 
 

2. Overview of Predictive Maintenance 
 

Predictive Maintenance (PdM) is one of the approaches used 

in maintenance, along with Corrective Maintenance (CM), 

Periodic Maintenance (PM), and Reliability-Centered 

Maintenance (RCM). The main goal of PdM is to increase the 

availability of the machine by minimizing unplanned 

maintenance caused by machine failures [3]. Providing 

accurate information about when and why a machine is going 

to fail offers many advantages. It allows maintenance to be 

planned better, stocks of spare parts to be managed better, and 

savings of money related to maintenance to be obtained. It can 

lead to increased productivity for factories that produce 

products, as the unavailability of a machine can have an effect 

downstream on production. Similarly, it can reduce downtime 

of machines for hospitals where failure of a machine that is 

performing a heart scan is critical for the patients that need 

care. 

 

Development of a Machine Learning (ML) algorithm for 

predictive maintenance is often viewed as the development of 

a predictive model. In the 3V framework, it refers to the 

development of a model where the volume of data to process 

is too big for the data scientists to work with it collectively. 

This is indeed a very common problem for big organizations. 

However, there are other reasons for working towards a data-

centric approach. A deadlock situation can also arise if the 

data are of bad quality: no valid rule can be identified 

regardless of the amount of time and resources that are 

devoted to the effort. In such situations, predictive analytics 

may benefit from executing a data-centric approach. 

 

In general, data-centric AI solutions utilize the data 

engineering phase of the data science process. Very often the 

innovation in such an approach will not be an ML algorithm 

but one or more data engineering algorithms. In recent years, 

there has been much attention and research in the area of data-

centric approach towards AI or data-centric AI. For instance, 

there is a need for automatic detection and repairing of bad 

quality data considering their contexts. Based on the data-

centric approach, much research is put forward in other 

domains, such as predictive maintenance in manufacturing. 

However, there has been limited research in a banking 

context. 
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3. Importance of Predictive Maintenance in 

Banking 
 

Maintenance may be defined as all technical actions aimed at 

keeping or restoring a machine or a resource in a state to 

perform its required functions. Maintenance actions can be 

classified into various types based on the time of execution, 

including corrective maintenance, scheduled maintenance, 

and preventive maintenance. Corrective maintenance 

includes actions performed after failed components without 

any prior knowledge regarding the component's failure. A 

scheduled maintenance activity can be defined as a 

maintenance action that must be performed irrespective of the 

actual condition or degradation of equipment. Fixed time 

maintenance is an example of this type of action. Preventive 

maintenance actions are taken based on a predetermined 

condition regarding the physical and functional status of a 

resource. One common example of this is condition-based 

maintenance, which may include a maintenance activity that 

should be implemented if the number of cycles of a pump 

exceeds a specific threshold. 

 

The goal of predictive maintenance is to increase machine 

availability by minimizing unplanned maintenance caused by 

machine failures. Predicting when and why a machine is 

going to fail offers many advantages for a company: a much 

better planning of maintenance actions, a minimum of spare 

parts kept in stock, and a minimum cost of the maintenance 

process. Predicting the failure of a machine is interesting for 

many applications. For example, in a hospital, knowing in 

advance when a machine is going to fail opens the door to 

planning the maintenance with no downtime of these critical 

machines. Also, it is clear that failure prediction for a surgical 

robot will be critical for patient health. 

 

In this setting, the prediction of failures is made on the basis 

of simplified or noisy logs. This log contains a lot of valuable 

information about the machine: the events which occurred 

just before the failure, the various diagnostics it has passed 

through at a given date, and the changes of the relevant 

features or values. All this information can then be used as a 

basis to improve the predictive power of the logs. 

 
Figure 2: Predictive Analytics in Banking 

 

 

4. Machine Learning Fundamentals 
 

In the last few decades, technology has entered a new era that 

has changed many aspects of everyday life. IoT devices, 

mobile phones, and social networks are only a few examples 

of the technology that has reshaped our lives. Machines with 

Artificial Intelligence (AI) and Machine Learning (ML) are 

making our lives easier. Many predictive applications using 

AI/ML algorithms are created in healthcare, manufacturing, 

market decisions, and many more sectors to increase 

customer happiness and cut costs. Machine Learning is a 

subfield of Artificial Intelligence that's primarily concerned 

with enabling machines to learn from data and make 

predictions or decisions based on that data, in short learning 

from experience. It involves developing algorithms that use 

statistical techniques to allow computers to learn patterns or 

relationships within a dataset, with the goal of making 

predictions on future data or classifying items. 

 

Machine Learning incorporates various fields of computer 

science and statistics, such as data mining, optimization, and 

statistics. Industrial and temporal data require storage systems 

that enable high-performance data access and low-latency 

queries. The analysis of such data needs suitable algorithms 

and distributed processing systems to provide timely results. 

Also, decision support systems (DSS) are needed to help 

teams tackle complex real-world decision problems where 

human reasoning must combine with intelligent system 

reasoning. DSS tools benefit from visualization techniques 

such as dashboards, which display various data dimensions 

and trends. Predictive models of complex systems use 

statistical and machine learning methods to extract hidden 

relationships between clearly defined inputs and outputs, 

modelling their behavior. 

 

4.1 Supervised Learning                                           

 

Predictive maintenance consists of systematically analyzing 

data to build statistical models that can predict when a 

component will start to fail. Predictive maintenance focuses 

on detecting or predicting machinery failings by means of 

monitoring. The uptime of an asset depends on two 

complementary perspectives: the equipment’s health and the 

operations’ effectiveness. Predictive maintenance identifies 

fault patterns, failure modes, and wear rates for machinery 

and then designs a risk-based maintenance strategy. 

 

Maintenance and asset management are fields of application 

for which machine learning techniques are assumed to have 

significant potential for improvement. Predictive 

maintenance can use many approaches like first principle 

mathematics, heuristics, and machine learning. A method is 

proposed that builds a data-driven predictive maintenance 

model from a historical maintenance database. Such an 

approach usually follows three steps: data preprocessing, 

model development, and model application. 

 

The first step is to prepare predictive maintenance models. 

Usually, historical maintenance and production data are 

considered. The data are preprocessed, which may involve 

filtering the observations, cleaning erroneous measurements, 

aggregating certain characteristics, creating derived features 
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and combining several sources of data, encoding and splitting 

the data into training, validation, and test sets. 

 

The key step in predictive maintenance is to develop 

predictive models that describe the desired maintenance 

behavior in terms of the operational data. The models are 

usually either discrete or continuous. Discrete models 

describe the probability of a future event such as a failure. 

Continuous models describe the future trajectory of a variable 

like degradation. In a prediction hazard model, the expected 

time of an event such as a failure is forecasted. 

 

When applied to real data, the predictive maintenance models 

need to be validated and potentially improved. Usually, this 

can consist of three steps: assessing the model performance, 

interpreting the model, and possibly reengineering the model. 

 

 
Figure 3: Supervised Learning Overview 

 

4.2. Unsupervised Learning 

 

When a model is expected to regularly predict new events 

without the requirement of human intervention or guidance, 

it is said to be in Unsupervised Learning mode. In addition, 

there are inherent data descriptions on the bank’s new 

incident tickets, such as which were not part of models trained 

in the supervised setting. If the ticket description data is 

natively in a different format than the description data before, 

then models that had just been trained would also receive no 

guidance in training or subsequently providing any 

consequence. 

 

Recently, pretrained, self-supervised Transformer-based 

models have become state-of-the-art feature extractors for 

sequential data. In addition, using self-supervised pre training 

on similar data has been shown to outperform a wider variety 

of self-supervised pretext tasks. Furthermore, the bank has 

access to an extensive ticket catalog, which contains around 

fifty thousand recent classified incident tickets and ticket 

descriptions and has similar data. Therefore, the self-

supervised exploratory data analysis task will be considered. 

 

In the pretext task, inputs are categorized into two classes: 

normal and out-of-distribution. For an input to be in the 

normal class, its similarity score with respect to clusters 

generated on a larger dataset needs to stand out among 

multiple reference clusters. On the other hand, an input is 

assigned as out-of-distribution if it is classified as normal with 

respect to its in-dataset, in which an unsupervised 

representation boost is employed to help maintain 

discriminatory power. 

 

4.3. Reinforcement Learning  

 

Reinforcement learning (RL) has been widely researched and 

applied for various decision-making problems such as games, 

robots, and investment portfolios. One area of RL research is 

predictive maintenance (PM). Efficient PM policies have a 

significant impact on resource allocation and capital 

management for companies, particularly for large-scale 

industries with a huge number of monitored assets. Most 

existing studies focused on building and improving a model 

for either health monitoring or PM policy learning. Overall, a 

model-free RL method is usually considered a black box that 

learns a highly non-linear policy given a state and action 

representation. Thus, it is unclear what generic knowledge the 

RL agent learned, hence, lacking transparency in explaining 

the maintenance decision-making process. This suggests that 

what was learned by the agent cannot be reused on a similar 

system within a different industry. 

 

Recent RL studies are hypothesized to share a similar learning 

paradigm. The agent with enough exploration experiences 

learns a better policy. However, it is hard to consider using 

RL from a practical point of view. Industrial PM problems 

suffer from limitations in exploration. A gradual availability 

of historical data across the fleet is more common due to cost-

effectiveness. Additionally, poorly engineered states may 

lead to catastrophic decisions, especially in safety-critical 

systems. Furthermore, estimation of rewards is often 

complicated and ill-defined. Given these limitations, 

compliance with the learning paradigm cannot be guaranteed. 

An RL solution would not be desirable until the exploration 

limitations are overcome. 

 

An opportunity was identified that the RL problem can be re-

formulated as a supervised learning task using the backward 

learning algorithm. Such a mapping can fit input desired 

rewards and observations to output actions. For a 

maintenance agent, the desired reward can be defined either 

externally as target values with a direct representation of costs 

and profits or internally from a model that computes potential 

values. The observations can be any state representation that 

holds the same semantics regardless of the quality. These 

could include, but are not limited to, the asset monitoring 

signals such as health status, RUL, and discrete functioning 

modes. The actions need to be selected from a finite set of 

choices. Knowledge of the reward structure or system 

dynamics is not required, and any decisions made outside the 

availability of model assumptions can be accommodated. 

 

This supervised RL approach is suitable for efficient pre-

training of any initial agent with exploration restrictions on 

historical data from a fleet of homogeneous assets. This can 

be validated using a simulation case study of an assembling 

line with multiple degradation processes. A distribution of 

operational profiles to emulate historical explore-exploit data 

and synthetic data generation methods are established. Pre-

training state-action mappings based on data from the lower 

percentile of explored policies outperform conventional 

sector reward shaping by a large margin during fine-tuning 

over the whole state-action space. 
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Equ 2: Predictive Model (Binary Classifier or Regression) 

 

 
 

5. Data-Centric Approach 
 

The goal of this research is to investigate the utilization of 

machine learning techniques for predictive maintenance in 

banking I&O services. As a first step, a data-centric approach 

is adopted to create a well-structured dataset from many 

different heterogeneous data sources. Traditionally, the 

unstructured data lake formed from all sources has been used 

at a high level, employing machine learning techniques to 

check whether service incidents predictively describe any 

anomalous behavior in the I&O systems. This research 

focuses on a data-centric approach starting from the 

architecture to discover and construct new structured datasets. 

Feature engineering is a crucial component in achieving the 

goal, wherein techniques such as named entity recognition 

and classification models are used to derive new features, one 

of the most well-known techniques in data-centric AI. 

 

Since historically many millions of service incident tickets are 

stored in the database, it is challenging to discover I&O 

relevant features. Furthermore, a novel pipeline to combine 

the textual feature representations with the available 

canonical features is constructed. Extensive experimental 

evaluations demonstrate that the enhanced structured datasets 

outperform the previously generated datasets in predictive 

maintenance applications. These advanced structured datasets 

are made available for other research. Additionally, a 

framework to measure performance improvements of the 

structured datasets that can be more broadly applied to other 

research is proposed. With the data-centric focus, this 

research investigates how to gather new features from 

incident tickets, indicative of the I&O system behavior and 

more relevant for predictive maintenance, to enhance and 

complement the existing structured datasets. The findings 

contribute to feature engineering, which is one of the most 

essential aspects in data-centric AI and machine learning. 

Besides, the evolved datasets are able to outperform the 

earlier dataset in predictive maintenance use cases on incident 

prediction tasks, which is valuable to industry practice. 

 

 
Figure 4: Data-centric architecture 

 

5.1 Data Collection 

 

Infrastructure services use critical middleware products such 

as databases, ETLs, processes, queues, and caches. They 

essentially manage transactions so that data input to 

transactional databases is clean, consistent, complete, and 

correct. Any downtime impacts business continuity, data 

quality, and availability of the service for end-users on 

transactions. Data regarding infra product type, deployment 

and decommissioning date, infrastructure owner, infra status 

(active/inactive), uptime metrics (Scheduled and 

unscheduled), and consumption are collected and stored in a 

data lake consistent with the data model. The preprocessing 

pipeline runs daily for the data lake to derive metrics like 

usage statistics for the past 1 month, SLA summary for the 

past month, transaction type statistics, database query 

statistics, and capacity freshness stats. Old records (older than 

2 years) are cleaned and archived in the data warehouse based 

on office policies. Besides these, business analysts also 

actively use the data lake queries to investigate one-off 

business issues. The first stage is data extraction, which 

involves extracting structured and semi-structured data from 

databases, nested architectures, flat files, spreadsheets, and 

emails using jobs. Data on the customer's infrastructure 

products is also extracted from the sales team's owned cloud 

setup with the help of engineering teams. Data pipelines are 

run on a two-week schedule to extract new data, post which a 

query can be run to pull the data for use cases. The second 

stage is data transformation, which involves making the data 

analysis-ready by performing multiple operations such as 

applying transformations (for preprocessing, calculating 

average metrics, etc.), limiting data (due to performance 

issues), or replacing specific characters. Data that is 

preprocessed, but still not analysis-ready, is dumped in an 

inactive tables database for audit purposes as to why it was 

ignored. Finally, the third stage is the loading of the data to 

the reporting databases. A similar technique is also used to 

load data for other data warehouses. 

 

5.2 Data Preprocessing 

 

One of the objectives of this research is to describe a data-

centric framework which can be utilized by institutions that 

generate big banking infrastructure services data and possess 

forecasting needs. In order to make the experimentation 

process easier, this framework is imagined in a modular way. 

In this chapter, the general configuration of the framework is 

presented and each module is discussed in detail. Data-centric 

is a new approach proposed by Google AI. In this vision, it is 

stated that a great potential can be unleashed by prioritizing 

data quality in the modality of data-centric artificial 

intelligence. In this research, this vision is modified according 

to the domain and objectives and adapted to the banking 

infrastructure services domain, specifically considering 

predictive maintenance use cases. In addition to the modular 

framework, AI algorithms aiming to forecast, classify and 

analyze banking infrastructure services data utilizing 

extracted ML-ready features are proposed. A benchmarking 

experiment performed on a synthetic dataset is presented in 

detail, displaying the obtained forecasting and classification 

performances of these AI algorithms. Applications of the 

framework are outlined and discussions are presented with 

future research suggestions. 

 

The dataset used in this study is accessible to additional 

research for reproducibility purposes. Similarly to the most 

recent works tackling predictive maintenance tasks utilizing 

logs as main data source, the dataset to be used is derived from 

a real-world or process log dataset and it is considered 
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deemed valuable. However, it should be noted that the raw 

dataset applied in the experiments of this thesis work is not 

publicly accessible. Although it is not possible to share the 

logs due to data privacy concerns, approaches to create 

synthetic datasets similar to the used dataset are described. A 

dataset consisting of simulated telemetry logs generated from 

a home-brewed Monte Carlo event log generator built upon 

the specifications of the original natural logs will be shared as 

synthetic dataset instead. More importantly, in a resource-

constrained context where the simulation parameters are 

unknown, the generalized case without a concrete simulation 

model will also be discussed. 

 

5.3 Data Quality Assessment 

 

While the machine learning project successfully identified 

and pre-emptively notified a specific failure that would occur 

around 5500 hours into unit operation, testing on additional 

datasets frequently failed to replicate the same or similar 

outcomes. Several reasons for this are investigated here, 

focusing on machine and environmental variability, and the 

quality of the datasets used in the predictions. Even filter 

changes can affect the accuracy of the models, meaning the 

provenance of the data should be understood upfront. Due to 

this, and the need for a better understanding of failure modes, 

a data quality assessment study was conducted on the diverse 

pool of laboratory, commercial testing, distribution, and field 

datasets created by collaborators. A few different techniques 

for diagnosing the complexity of time-series datasets were 

trialed independently of the machine learning processes, 

targeted at identifying potentially anomalous time-series data 

that may better inform the training of accurate machine 

learning models. This work has resulted in balanced cut-off 

algorithms to distinguish valid linear data for analysis from 

invalid and invalidated data. 

 
With the early work highlighting datasets from field data, 

commercial testing, and lab testing as more complicated than 

a simple sinusoidal plot, the data comparison for regression 

analysis is facilitated in terms of reconstructing notional 

component fault frequencies. Longer testing and operation 

durations lead to more complicated signal representations, 

while discrepancies across datasets were found related to 

compensation and filter exhaust state definitions. For the 

purpose of this study, these considerations allow guideposts 

for practitioners looking to assess dataset complexity and 

predictability prior to analysis and modeling efforts. It would 

be valuable to incorporate additional complexity analysis 

related to power consumption and speeds to validate the 

effectiveness of the quality assessment algorithms. Current 

thoughts are to bring quality assessment capabilities directly 

into future iterations of the by-product, allowing users to 

ensure a minimum quality grading for the data they wish to 

input for predictive maintenance modeling efforts. 

 
As engineering systems grow more complex, with an ever-

expanding pool of flexible and low-cost data collection 

methods and sensors, predictive maintenance becomes more 

feasible but also more difficult. The machine learning 

processes performed without clean and representative 

datasets may be nontrivial to reproduce, and relevant pre-

analysis decisions will almost certainly be required. In this 

effort, a comprehensive analysis is performed on the quality 

of multiple diverse time-series datasets from the testbed [8]. 

The complexity of each time series is quantified to provide an 

initial metric whereby questionable time series can be 

distinguished prior to modeling or analysis efforts. 

 

6. Feature Engineering 
 

In order to improve devotion of time to model tuning, one of 

the objectives was to describe a data-centric feature 

engineering methodology for sieve data preparation across 

multiple monitoring levels. The main outcome was a detailed 

methodology for automated sieve failure prediction, tailored 

to requirements of aggregate level monitoring. However, due 

to limited accuracy, 957 failures remained unpredicted. The 

proposed method achieved good performance at pre-filtering, 

identifying 723 candidates for manual assessment. A template 

is proposed to guide the evaluation of pre-filtering candidates 

and for them to fit into existing processes, which aim to 

authenticate data and account for known issues. 

 

Recordings of feature engineering implementation are 

archived and accessible via internal Jira. The presentation 

slides or separate walkthrough video have been requested, in 

order to support career development and knowledge sharing 

opportunities with peers. Future research topics include 

overcoming short-term data unavailability, automating 

components of threshold definition, classification selection, 

as well as investigating compact encoding of daily views. 

 

The aim of this study was to build a comprehensive data-

centric machine learning strategy for predictive maintenance 

of sieve working at WEG, focusing on the transport reliability 

of waste treatment. The first research question identified the 

requirements of machine learning based predictive 

maintenance, with a focus on the infrastructure service 

domain. The second research question identified and 

developed a detailed feature engineering methodology for 

preprocessing sieve monitoring time series data in order to 

adopt classification models. The data preparation strategy 

resulted in sieve maintenance needing 60–80% of the time 

compared to 75–90% before implementation. First 

observations indicate that model tuning can be improved by 

participating in a model benchmark challenge. 

 

 
Figure 5: Feature Engineering 

 

6.1 Feature Selection 

 

Feature selection enables a reduction of the dimensionality of 

the dataset by filtering the set of input features to only retain 

the most relevant ones for prediction and other tasks, such as 

visualization, etc. In principle, any data transformation 

modifies the input feature space. However, we will focus on 
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the selection of existing features, with the caveat that the 

newly generated variables or data histogram distributions are 

preserved either in their raw form or denormalized back to the 

input range of the raw features. As such, all transformed 

variables will be excluded from the analysis. This section 

details the approach taken for feature selection and how the 

tool used for this task was configured and operated to yield 

maximum performance. Datasets that combine information 

from the alarms, sensors, and prior maintenance actions and 

failures will be covered and stakeholders that participated in 

the data transformation process will be mentioned. 

 

Feature ranking was deemed the most effective method to 

select a proper set of features, as the model-free and 

performance-independent means of priors. As a side effect, it 

does allow one to see how important each feature is to the task 

and thus potentially add a meaningful piece of information 

into the model. It is sufficient to know that a feature 

contributes to prediction with some amount of relevance or 

out, rather than detailing in which combinations and 

conditions they do so. This information sufficiency is paired 

with the computational expense since ranking can be done in 

less than an hour on a data set containing tens of thousands of 

samples, while pairwise methods scale quadratically and 

rigidly require careful filtering and all-variable cross-

combinations to contain tens of features. Hence, they were not 

used in practical analyses. Recursive feature elimination and 

other recursive ranking methods were also impossible to use 

on larger data sets, as they applied recursive feature 

elimination using cross-validation and could take a handful of 

hours, raises the other cross-validation layer therefore, and 

iteratively fitted and refitted the entire predictive model a 

dozen of times. 

 
Algorithm and parameter selection were applied directly on 

the data set containing alarms and sensors to cover the full 

extent of the transform without crunching the data anew, to 

generate the most consistent and general results. Three 

gradient-boosting based gradients were chosen and a handful 

of other, mainly tree ensemble, alternatives backed by 

narrowed-down hyperparameter grids were employed prior to 

the two engines. Whereas other well-known methods 

performed well, none approached the predictive and 

performance quality of gradient boosting trees. 

 

6.2 Feature Transformation 

 

To extract informative features from raw data which can be 

time-consuming and an elaborate task, diverse types of 

empirical features were experimented with to gain valuable 

insights from historical data. The process of transforming and 

merging five diverse data streams is featured along with 

feature engineering. Selection of data streams like the sensor's 

position, the threshold to detect changes in calculations, and 

multiseries smoothing allocates recent values more weight, 

while older values diminish their influence on the 

calculations. By employing a few straightforward commands 

in Python, transposed 25 algorithmically interesting statistics 

were computed and added as features to the original input data 

set, in addition to those asserted as the most informative. 

Different timesteps were explored for implementing the 

feature transformations, mostly for the 24 h data series 

produced by the daily trigger for the predictive maintenance 

task. 

 

Cumulative and average counts for outliers and common 

sensor limits were calculated on diverse time windows. 

Lagged operational states concatenation was included, 

extending the time series input data from the most recent 48h 

to the preceding 48h. Similar characteristics of the predictive 

maintenance process, while diverse domains had a large 

advantage when identifying anomalies prior to engine 

failures, so variable window sizing was also studied with a 

notch for the upper time limit of 168h. Selection included 

generating five position features and 18 common alterations, 

as a few more errors appeared in the prediction. Moreover, as 

displayed in Fig. 14 steps for further feature engineering 

steps, it was assessed how the two error types in machine 

cycle times altered the prediction rate decrease across the 

various time faux claims upper limits [9]. Overall, the 

investigated features paint a picture of how engine work 

conditions. In addition, redundant, and non-informative 

features were dropped on a brute-force basis, prompting 

model studies on input dimensions under 60. This tiered 

analysis aided the understanding of anomalies prior to failures 

and produced factors for proactive preventive maintenance 

use. 

 

Equ 3:  Feature Engineering (Data-Centric Layer) 

 
 

 
 

7. Model Selection and Evaluation 
 

Before performance evaluation and selection, it is necessary 

to split the available data into 3 subsets: training, validation, 

and testing subset. A good balanced size is to vary from 

60/20/20 to 70/15/15 [6]. Generally, all methods are to be 

trained in the training set and tuned in the validation subset. 

The selected best model is finally tested in the bottom testing 

dataset, which was not exposed to training and tuning. A 

proper scoring function is also defined, along with the 

respective fair scoring metrics. This considers the dominance 

of nominal behavior, deciding on base model parameters, 

selecting performance evaluation metrics, and setting the 

scoring scheme for cascading multiple models. 

 

Feature selection was thus grounded more on finding 

appropriately aggregated modeling metrics. Two procedures 

of creating new combined features with 1-minute-averaged 5-

minute value peers from distributed sensors were examined: 

(1) concatenate; (2) linear regression. The former fared better, 

and was thus set to create 14 combined features on the studied 

monthly task. Another target was thus devised to present 

whether certain 20-minute intervals covering the prediction 

horizon would reach a median of 1 for selected five 

combinations. Such modeling tasks were adapted daily to 

predict hourly ahead target intervals. 100 New predictive 

variables were then generated and selected to best candidates. 
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To highlight outliers for modeling better as well, other 27 

agreed factors were generated with traditional mean and 

standard deviations for each sensor and two different time 

lags. Ultimately, feature selection involved generating 14 

combined features, two time frames for four aggregation 

measures, one additional for regressing on another monthly 

offsets, and 27 basic ones mentioned above. 

 
Figure 6: A machine learning-based approach for product 

maintenance 

 

7.1. Model Types 

 

Even though unsupervised or semi-supervised approaches 

could be used to tackle the proposed problem, the presence of 

labeled data often enables the formulation of the predictive 

maintenance problem as a binary classification task, 

addressed with a fully supervised approach. Machine 

Learning (ML) and Deep Learning (DL) are two families of 

methods that are, nowadays, widespread for tackling 

predictive maintenance tasks. Properly choosing the model 

type is crucial: For a given task, some models will be able 

only to predict limited cases or require unrealistic amounts of 

time or data to deliver satisfying performances. Clearly 

defining the characteristics of the ML/DL approaches that are 

suitable for a context in which predictive maintenance tasks 

must be solved on a fleet-wide scale is the goal of this section. 

For interpretability purposes, it could be useful to identify a 

wide range of binary classifier model types. Models are 

chosen that rely on the same methodology but consider 

different implementations or architectures (and possibly 

hyper parameterizations). On the one hand, this would make 

it possible to perform a more interesting and enlightening 

analysis, i.e., to study how similar model architectures with 

different depths or complexities affect performances and the 

trade-off between performance and training time. On the 

other hand, there are well-known models that belong to the 

same family of methods, and undesirable incompatibilities 

have been detected. Therefore, it is also interesting and 

relevant to identify a good range of strict model types, with 

enough diversity to allow general conclusions to be drawn 

and sufficient homogeneity to limit unwanted (and non-

controllable) discrepancies. The applicability of ML/DL 

approaches will be evaluated on end-users represented by 

manufacturers of different sizes and industries. 

 

By stressing and analyzing critical implementation issues 

such as data representation, model input preprocessing, and 

performance evaluation metrics, it will be highlighted how 

such facets have a big impact on the ultimate applicability of 

ML and how they deserve special attention when tackling 

predictive maintenance tasks on a fleet-wide scale. By 

analyzing benchmarking results on real-world predictive 

maintenance challenges, it will be stressed how the maturity 

of the field is outstripped by the ability to extract and analyze 

ML-compatible data from machines and processes. 

Moreover, the means and opportunities to fill the industry-

academic gap will be discussed. Finally, a list of 

recommendations based on published knowledge will be 

provided to help predictive maintenance practitioners 

implement proper models and set up compliant 

infrastructures. 

 

7.2 Performance Metrics 

 

Scores are reported as a weighted average of individual 

measures. The edge case errors often dominate the scores, 

making them less interpretable and risky to pursue aggressive 

edge case robustness enhancement over accuracy. A set of 

metrics are reported that exhibit the same business impact as 

the metrics in use, while avoiding excessive complexity. For 

binary aspects, the metrics consist of the positive predictive 

value (PPV), which is the same as precision. Meanwhile for 

metric pairs, the reported metric consists of a robust 

combination of false positive and false negatives to avoid 

threshold tuning artifacts. The weights are designed to not 

favor any one metric but to balance all metrics by relative 

business impact. This business knowledge is encoded in a 

simple way that is easy to evolve and communicate. 

 

As mentioned above, for the purposes of generating 

submission data, a single value estimator is needed. If the bag 

well provides a pre-processed output based on personal best 

performance metrics against which submissions can be 

evaluated and ranked, some aggregation strategy can be 

combined with a stochastic or derivative-free optimizer to 

produce tuned scores with any desired robustness guarantees. 

In the meantime, it may be helpful to release studded example 

bags that have been made to induce high performance on pre-

designed public metrics with known sensitivities. It’s also 

necessary to provide analogous bags tuned against these 

continuous score nuisance parameters, for productions with 

the substitution model. 

 

By the time a minimally adaptive solution is in hand, the 

maximum performance potential with the broadest impact 

should still be present. Using aggressive augmentation, 

training sample ratios in-line with validation samples, and 

error focus and filters to smooth edge emissions is essential. 

It may be more beneficial to start small and then scale, rather 

than starting with a large marginally productive aggregation 

that becomes too time consuming to analyze in detail. 

 

8. Implementation of Machine Learning 

Models 
 

A data-centric approach is adopted to build more accurate 

models, focusing on data collection and feature engineering, 

including inflow and outflow data from Core Banking System 

(CBS) databases and enabling real-time predictions. Feature 

engineering comprises data sampling, cleansing, and 

transforming raw data, and obtaining additional features, 

facilitating model robustness against outlier data points and 

seasonality. After thorough examination and selection, the 

engineered features are more than five times the number of 

initial features. A mathematical model based on the Poisson 

distribution can achieve an Nearly Perfect Forecast (APF) 
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accuracy with a small number of features, providing insight 

into the applicability of ML for various use cases. The 

classification models are built with this baseline mathematical 

model using the fraud-detection problem. 

 

A series of robust experiments evaluated existing classifiers 

for this purpose. In scope, gradient-boosted tree and tree-

based ensembles dominate other categories, including shared 

best score and similar runs, yet possess weak generalization, 

and improper hyperparameter tuning tends to overfit. LSTMs 

achieve superior performance relative to most classifiers, 

effectively preventing objective information loss through 

representation learning. PKHMs outperform all other 

classifiers regarding the MAP@k metric. Interpretations of 

time-series models using timestamps, features, or aggregate 

forecasts analyze model predictions by observing varied 

cyclomatic wording and form paths of interest in predictive 

maintenance. They produce a counterfactual of historical 

timestamps that best fit predictive times using shaded 

observations. 

 

8.1 Training Processes 

 

The model was trained with the preprocessed input files, 

following the aforementioned processes and architecture in 

two different scenarios where only the first 5 minutes and the 

first 10 minutes of sensor data were provided respectively. 

1000 decision trees were used for training the Random Forest 

Regressor alongside Hyper Parameters tuning to find the 

optimum hyper parameters. Several regression metrics were 

calculated and plotted to visualize the performance of the 

models built. These metrics mainly include the Mean 

Absolute Error, the Mean Squared Error, and the R-squared 

error. The variance of the predicted output can also be 

visualized by plotting it against the true output on a scatter 

plot. 

 

The random forests with a maximum depth of 4 were able to 

predict the value of maintenance with a Mean Squared Error 

between 1.7 and 2.2 days. Variance in prediction of around 

0.5 days was also found. Maintaining regular contact with AI 

teams and business experts is very crucial as the 

understanding of the domain is very important for the success 

of the predictive maintenance projects. Another important 

factor is the retraining of the models in a regulated period of 

time, which can ensure an advanced capability for the models 

to understand the business changes. 

 

The modeling processes were easy and straightforward due to 

the entire coding flexibility and ease of use offered by the 

python programming language. Several useful Python 

libraries such as Pandas, Numpy, Tsfresh, Scikit-Learn, and 

Matplotlib were utilized to properly implement, utilize and 

visualize all the prepositions and models described in the 

previous sections. Based on the pre-processing framework 

hereby made available, pre-processing data in their format as 

used in the case study is no longer a 1000-man-hour process. 

Instead, proper pre-processing scripts can now be executed in 

an hour or even less. 

 

However, several advice and findings may help other 

practitioners and researchers interested to use the modeling 

processes and framework. First, data errors and cleansing may 

take notable time and effort. Several key problems in this 

regard have been pointed out in the postmortem report, which 

may also be useful for different cases. Second, and based on 

the postmortem report and experience a proper selection of 

input variables can drastically reduce the time required to 

build the models in terms of number of training days. 

 

8.2 Validation Techniques 

 

The significance of preventive and predictive audit systems 

has well been noted in various industries. They provide an 

opportunity to increase efficiency, cut costs, and augment 

reliability. Failure prevention prediction involves the 

monitoring of leading indicators of possible failures. In 

industrial contexts, these indicators often reference pumping, 

energy, and pressure data from sensors on physical assets. In 

any real-world situation, action can only be taken on a small 

target group of assets with consideration of costs and relative 

effect on wider operations. Broad-spectrum machine learning 

methods are sought to address the issue by forecasting the 

distribution of a key performance indicator relevant to failure 

on a global grouping of assets based on much broader data 

streams. The aim is to identify at-scale and at-early time 

instances of potential failures. 

 

The NHS is one of the largest publicly funded health services 

in the world. Data from community and mental health settings 

and data science-led innovation and engagement with hard-

to-reach groups are under-represented. In terms of immediate 

pre-pandemic preparations, practices already had experience 

in balancing service and activity recovery post-

implementation of new NHS directives, before the pandemic 

brought unprecedented challenges. Future focus must be on 

optimising shared system-level operational efficiencies with 

diminishing public funds and increasing demand, and liaison 

to more effectively integrate reward and reinvestment for 

primary and secondary care health professionals to boost 

mental health resource accessibility. is a key issue for 

machine learning in predictive maintenance. It not only 

affects basic performance inspection values but imprints on 

fundamental understandings of the learning process. 

Traditionally, a predictive modeling problem is set up through 

the steps of defining a predictive problem, collecting and 

cleansing data, selecting a learning algorithm, applying the 

learning algorithm to the data, and gauging the quality of the 

final result. For applying those steps to learning in prediction 

maintenance, it means how to prepare a validation set on 

industrial systems that change or wear. 

 

9. Conclusion 
 

The work aims to mitigate failures of banking infrastructure 

services by developing adequate methodologies based on 

Machine Learning (ML). In this particular research work, as 

the first milestone of all the planned ones, a data-centric 

approach using supervised methods is analyzed. Taking 

inspiration from real-world scenarios of fraudulent 

transactions occurrences, it is considered almost one year of 

continuous and historical data of one banking infrastructure 

service of a specific large Portuguese bank. One safe-rail 

subway service of that bank is understood and modeled with 

only two assumptions: a barely affected service is acquired 

and a small set of the most disruptive anomalies is found. As 
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contributions, the synthesis of anomalies is obtained using 

Generative Adversarial Networks (GAN) for the first time in 

this domain. Moreover, predictive models are constructed to 

uncover impairment and disruption of the service in near 

future, which can enable human operators to do proper service 

recovery actions, preventing any unrecoverable damage. 

 

Future work should focus on collecting a larger set of data 

from the chosen service and appropriately labeling it. 

Nonetheless, as just a small subset of the overall data is 

exploited in this work, the planned educational time series 

modeling techniques can be directly implemented to be able 

to (i) better understand the service’s dynamics, (ii) be used 

among ML models to define more diverse training sets, and 

(iii) serve as a benchmark against more sophisticated yet 

computationally expensive ML techniques. Additionally, an 

explorative effort can be directed to construction of 

unsupervised methods based solely on the data recordings so 

that the effects of using synthesized anomalies or any other 

artificially generated data can be analyzed. 

 

As an add-in contribution, a brief literature review on such 

methodologies is provided. By understanding the service in 

depth and implementing the earliest models, the significance 

of extrapolative forecasting is better understood in this 

domain as it can impact other continuing research works 

significantly. 

 

9.1 Future Trends 

 

Predictive Maintenance (PdM) is a modern strategy that 

predicts when the part of an infrastructure, machine or vehicle 

must be replaced. This prediction should take into 

consideration many factors such as the age of the part, how 

intensively it is used, environmental parameters and whether 

it has enough physical reserves for its operation. The 

prediction of when a replacement must take place is of great 

significance, as it can significantly reduce the time and the 

cost necessary for the maintenance of the infrastructure 

inflow. When replacement is carried out not earlier or later, it 

does not affect the operation of the machine, and its useful life 

is maximized. To achieve this prediction, the part must be 

continuously monitored by various sensors. The sensors 

measure many signals such as temperate, vibration, sound, 

humidity, and pressure that have a contribution to the health 

of the part. In a modern IoT environment, these sensors gather 

and save a lot of data, thousands of measurements per sensor 

per second. The data are forwarded to a maintenance 

prediction model and the model predicts the part replacement. 

The model has to be trained with historical data ensuring a 

good prediction over future measurements. 

 

There are many measurements in industries today such as 

temperature, vibration, acoustic and infrared. Deep learning 

has evolved as a solution for many intelligent problems in 

various fields. However, for predictive maintenance 

applications, it is preferable to use simpler and faster machine 

learning methods, given especially the need of time-critical 

applications such as motor failures, bearings and impellers. 

The current work lists and describes the machine learning 

ones that have been already implemented, by providing 

surveys and discussions of the prevalence of each one on a 

robust effort to predict infrastructure maintenance throughout 

the collected processing-list. Many machine learning models 

have been successfully implemented to various 

infrastructure-based applications of predictive maintenance. 

There is always a model that fits and achieves a good accuracy 

of prediction. However, in order to avoid the “black box” 

character of deep learning, the use of simpler algorithms. 
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