
International Journal of Science and Research (IJSR)
ISSN: 2319-7064

SJIF (2019): 7.583

Volume 9 Issue 12, December 2020

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

Preserving Architectural Integrity: Addressing the

Erosion of Software Design

Raghavendra Sridhar

Independent Researcher

Email: princeraj01[at]gmail.com

Abstract: The escalating costs, complexity, and risks of new software development have driven organizations to extend the lifespan of

existing systems across multiple decades. This extended utilization necessitates prolonged maintenance periods interspersed with intensive

upgrade phases, contributing to the software's continuous evolution. While initial architectural frameworks are established during design,

the software undergoes numerous modifications over time, both deliberate and inadvertent, resulting in architecture erosion where

implementations diverge from original design intentions. These architectural deviations manifest as various technical issues ranging from

minor performance inefficiencies and maintenance challenges to critical quality defects that can render systems completely inoperable or

prohibitively difficult to maintain. This paper investigates the fundamental causes and consequences of software architecture erosion,

evaluates remediation approaches, and establishes foundational work toward an Architectural Maturity Model Integration framework for

assessing organizational capabilities in architectural governance and preservation.

Keywords: System Architecture, Architectural Degradation, System Upkeep, Code Quality, Structural Decay in Software, Inherited

Codebases, Architecture Maturity Framework

1. Introduction

In today’s world, software projects are growing more complex

than ever before. Think about modern cars, which now rely

on up to 100 million lines of code, or the massive systems

powering companies like Google, where the codebase is

estimated at a staggering 2 billion lines [1]. With this

complexity comes higher costs, longer timelines, and bigger

teams-not to mention an increased risk of running over

budget, missing deadlines, or even failing to deliver what

customers really want. Because of these challenges,

organizations often choose to keep their existing software

running for as long as possible, investing in regular

maintenance and upgrades instead of starting from scratch.

This means some software systems are expected to last for

decades, evolving to meet new technology standards, user

expectations, and security needs along the way.

But as software ages, it faces a hidden challenge: architectural

erosion. This happens when the way the software is actually

built starts to drift away from its original design. The

architecture of a system is like its blueprint, created early in

the project to organize all the moving parts and ensure

everything works together smoothly. A strong architecture

makes complex projects more manageable by breaking them

into focused areas and keeping different concerns separate

[2]. Whether it’s formally documented or just understood by

the team, the architecture is a crucial decision point that

shapes the entire project, ideally reflecting what customers

need and the environment in which the software will operate.

Over time, though, it’s easy for the actual implementation to

stray from that original blueprint-sometimes without anyone

noticing until problems start to pile up. This kind of erosion

can make software harder to maintain, slow down

development, hurt performance, and lower overall quality. In

the worst cases, the software becomes so fragile that it can’t

be fixed or improved without a major overhaul [3]. Often,

teams only address these issues after bugs or failures have

already caused trouble, rather than preventing them in the first

place. That’s why many experts recommend proactive,

process-driven approaches to help spot and fix architectural

erosion before it becomes a serious problem.

2. Software Architecture Erosion: Challenging

Common Assumptions

Traditional views of software architecture erosion often

assume it occurs gradually and unintentionally during

maintenance phases. However, erosion can begin as early as

architectural selection or design stages, accelerate during

intensive upgrade sprints, and even be deliberately incurred

as technical debt to meet deadlines. While incremental

changes over time contribute to degradation, rapid erosion

emerges during periods of concentrated modifications (e.g.,

platform shifts or UI overhauls) under tight production

constraints.

Contrary to the perception of erosion as purely accidental,

teams may intentionally deviate from architectures to address

perceived flaws or defer fixes, creating debt that compounds

if unresolved. Such decisions, often driven by schedule

pressures or evolving requirements, highlight the need for

proactive architectural governance [4]. Erosion’s multifaceted

causes-spanning intentional trade-offs, rushed

implementations, and uncoordinated changes-underscore the

importance of continuous monitoring and structured

evolution plans to mitigate systemic risks.

2.1 The Slow Creep of Software Problems: When Good

Code Goes Bad

Think of software erosion like a tiny crack in a foundation –

you might not notice it at first, but over time, it spreads and

starts causing all sorts of headaches. In the beginning, it might

just be a few weird glitches or a button that doesn't always

work, annoying but manageable. But as a software project

gets older, these little issues can snowball into a full-blown

Paper ID: MS2012134218 DOI: https://dx.doi.org/10.21275/MS2012134218 1939

www.ijsr.net
http://creativecommons.org/licenses/by/4.0/

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

SJIF (2019): 7.583

Volume 9 Issue 12, December 2020

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

crisis. Suddenly, your team is spending more time fixing bugs

than building new things, customers are complaining, and

what used to be a reliable system feels like it's constantly on

the verge of breaking [5]. It’s not just about slow

performance; it's about the whole experience becoming a

struggle for everyone involved – the people using it, the

people trying to keep it running, and the people paying the

bills. It's that sinking feeling when a simple update turns into

a week-long ordeal, or when the software just can't do what

it's supposed to anymore, no matter how much effort you pour

into it.

Here's how that slow decay really starts to bite:

Things Just Don't Work Right Anymore: Imagine trying to

use a feature that only works half the time, or when every

attempt to fix one bug mysteriously creates two more. It's

frustrating for users who can't get their work done and for

developers who feel like they're constantly fighting fires.

Like Wading Through Treacle (Performance

Slumps): Even if the software technically still does its job, it

can become painfully slow and clunky. And ironically,

sometimes the very attempts to speed things up can make the

underlying problems even worse.

"Quick Updates" Become Ancient History: Simple

maintenance tasks or adding a new feature starts to take

forever. Your team gets bogged down, deadlines slip, and

getting anything new out to your customers feels like a

marathon.

The Money Pit Opens Up: It's not just about developers'

salaries; it's the missed deadlines, the unhappy customers who

might leave, the damage to your reputation when your product

is seen as unreliable. The costs just keep piling up.

It's Just a Mess to Work With (Quality Plummets): The

code becomes a tangled web. Good programming practices go

out the window, making it harder to change anything, harder

to test, and harder to roll out updates without breaking

something else.

Walking on Eggshells (Brittle Code): The software

becomes so fragile that even the smallest tweak can cause the

whole thing to crash or lose important features. It’s a stressful,

high-stakes situation where everyone is afraid to touch

anything.

2.2 Why Good Software Plans Can Go Astray: The

Human Side of Code Decay

Think of building a house. You have a blueprint (the software

architecture), but along the way, things can start to drift from

that original plan. This "software erosion" isn't always some

mysterious technical gremlin [6]; often, it's rooted in very

human and team-related challenges. These issues can pop up

right from the design stage or later during the nitty-gritty of

coding and implementation. On the other side of the coin are

the organizational and staffing headaches, which we'll touch

on a bit later (in section 2.3).

So, what are some common ways the technical blueprint itself

starts to crumble?

When Small Decisions Clash with the Big

Picture: Sometimes, individual design choices made during

development, especially when teams are moving fast (like in

agile projects) or tackling unexpected problems, can

unknowingly chip away at the overall architectural plan.

Lost in Translation: If the original architectural vision isn't

crystal clear to everyone building the software, it's almost

guaranteed that the final product won't quite match. Fuzzy

documentation, team members coming and going, or

constantly changing requests can all lead to misinterpretations

and deviations.

Breaking the Architectural "Rules of the Road": Good

architectures have guidelines on how different parts should

talk to each other. Violations happen when, for instance,

developers take a shortcut and make parts of the software

communicate directly when they're supposed to go through

specific channels, a bit like ignoring "no entry" signs in a

well-planned city.

Digital Hoarding (Orphan Elements): Imagine a workshop

cluttered with old tools and parts that no one uses anymore

but are still taking up space. In software, these are "orphan

elements"-bits of code left in the system that serve no

purpose, adding confusion and unnecessary complexity.

Seeing Double (Duplicate Code): Sometimes, developers

create multiple, nearly identical pieces of code to do the same

job ("clone elements"). This becomes a headache because if

you need to make a change, you have to find and update every

single copy, or things will get out of sync.

Mixing Old and New (Legacy Integration): Bringing in

older software or reusable components can seem like a time-

saver. But often, it’s like trying to fit puzzle pieces from

different sets together – compromises are made, and these

awkward connections can become weak points where erosion

starts.

Things Get Too Tangled (Increased Coupling): As erosion

sets in, different parts of the software that should be

independent can become overly reliant on each other. This

makes the system more complex, harder for anyone to

understand fully, and a nightmare to test because a change in

one place can cause unexpected problems elsewhere.

Losing Focus (Decreased Cohesion): The flip side of

tangling is when individual components lose their clear,

singular purpose. They might end up as a jumble of unrelated

functions, often because teams try to avoid creating new

pieces and just stuff more into existing ones. This makes the

architecture muddled.

Overly Complicated Family Trees (Deep Inheritance): In

programming, creating "families" of code (inheritance) can be

useful. But if these family trees get too deep and complex, it’s

like having a very fragile ancestor – changing something at

the top can have widespread and problematic consequences

for all its "descendants."

Paper ID: MS2012134218 DOI: https://dx.doi.org/10.21275/MS2012134218 1940

www.ijsr.net
http://creativecommons.org/licenses/by/4.0/

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

SJIF (2019): 7.583

Volume 9 Issue 12, December 2020

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

Just Plain Too Complex: As the architecture grows more

intricate, it simply becomes harder for anyone to keep the

whole picture in their head. This confusion naturally leads to

more mistakes and deviations from the intended design.

Wrong Blueprint for the Job (Incorrect

Architecture): Sometimes, the problem starts right at the

beginning: the chosen architecture might just be a poor fit for

what the software actually needs to do. Later attempts to patch

and work around these fundamental flaws, if not managed

very carefully, can often make the erosion far worse than just

sticking with the original, albeit flawed, plan.

2.3 The Human Element: Non-Technical Drivers of

Software Erosion

It's not always about complicated code or tricky technical

details when software starts to lose its way. Often, the real

culprits are found in how a company works, the pressures

people are under, and the unspoken rules of the workplace.

Think of it like this: even the best blueprint for a building

won't help if the construction crew is rushed, a new foreman

takes over every week with different ideas, or there's no clear

plan everyone is following. The same thing happens with

software. When the environment and the way people are

expected to work don't actively protect the software's design,

even the most brilliant architecture will start to crumble over

time [8]. It's the company's culture and day-to-day habits that

can either build a strong defense against this decay or

accidentally make it happen faster.

Here are some common ways the human and organizational

side of things can lead to software headaches:

"Just Get It Done!" (The Deadline Crunch): When

everyone's scrambling to hit a tight deadline, taking the time

to do things "the right way" architecturally often gets pushed

aside. It's like slapping on a quick fix to get the car running,

knowing it might cause bigger problems down the road.

The Revolving Door (High Staff Turnover): If team

members are constantly leaving and new folks are coming in,

it's tough for anyone to really understand the software's

original design, the "why" behind certain decisions, or even

just how things are supposed to be done. New people, trying

their best, can unintentionally make changes that weaken the

architecture.

When the Process Doesn't Care About the Blueprint

(Process Issues): Sometimes, the way a company builds

software, like some super-fast agile methods, might focus so

much on churning out small pieces quickly that no one's really

looking at the big picture or ensuring all those pieces fit

together neatly according to an overall design. The

"architecture" just kind of happens, and it's often messy.

The Wild West (No Clear Process): If there's no set way of

doing things and everyone is just figuring it out as they go, it's

almost guaranteed that there won't be a well-thought-out

architecture. Development and fixes become a free-for-all,

which is a recipe for erosion.

It's Just "How We Do Things Around Here" (Company

Culture): Some companies really value quality and have

strong processes and best practices that help prevent or fix

architectural problems, especially if they're building software

where mistakes can have serious consequences. Others might

prioritize speed or cutting costs above all else, and in those

places, erosion is much more likely to take hold.

3. Software Erosion Management: Strategies,

Methods, and Costs

Managing software architecture erosion involves three main

approaches: prevention, minimization, and recovery. While

prevention aims to stop erosion before it starts, it is often

considered a form of minimization since it reduces the risk

and impact of future erosion. In practice, most organizations

focus on minimization and recovery, as completely

preventing erosion is rarely feasible in complex, evolving

systems. There is also the “no-action” approach, where

erosion is allowed to occur without intervention [9]. This is

typically reserved for small, non-critical projects with short

lifecycles or limited business value, where the cost and effort

of addressing erosion would outweigh any potential benefits.

In such cases, organizations or customers may accept reduced

quality or performance, knowing that the consequences are

minimal.

Recovery approaches are designed to repair the damage

caused by erosion after it has occurred. This typically

involves identifying degraded components or modules and

refactoring them to restore alignment with the intended

architecture. While recovery can be effective, it often requires

significant effort to locate and address all instances of erosion,

and the process can become increasingly complex as the

system grows. Process-driven minimization, by contrast,

focuses on reducing the likelihood and severity of erosion

through disciplined development practices. These methods

rely on well-defined processes, such as maintaining

comprehensive architectural documentation, enforcing design

standards, and regularly monitoring compliance with

architectural constraints. The goal is to catch and correct

deviations early, making maintenance and updates more

predictable and less costly over time. However, these

approaches demand a high level of organizational discipline,

ongoing communication among team members, and a

willingness to invest in process rigor and oversight.

At the highest level of rigor and cost are formal minimization

methods, which utilize advanced tools like Architecture

Description Languages (ADLs), domain-specific constraint

languages, and formal frameworks or patterns [10]. These

techniques enable detailed syntactic analysis of architecture

descriptions, helping teams identify rule violations and

suggest targeted repairs. While formal methods can be highly

effective in maintaining architectural integrity, they require

extensive training, specialized expertise, and significant time

investment, making them less common in everyday practice.

Regardless of the chosen approach, successful erosion

management depends on a foundation of thorough

architecture analysis, clear documentation, and strong

coordination across development teams. As software systems

grow in complexity and importance, organizations must be

prepared to escalate their investment in governance,

Paper ID: MS2012134218 DOI: https://dx.doi.org/10.21275/MS2012134218 1941

www.ijsr.net
http://creativecommons.org/licenses/by/4.0/

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

SJIF (2019): 7.583

Volume 9 Issue 12, December 2020

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

monitoring, and process improvement to ensure that erosion

is kept in check and long-term software quality is preserved.

3.1 The Hunt for Software Decay: What's Being Done

About It

When software starts to drift away from its original design,

it's like a house slowly developing structural problems.

Researchers have been working on ways to spot these issues

early, prevent them from happening, and fix them when they

do occur. All these approaches share a common goal: catching

those moments when someone changes the code in a way that

breaks good design rules, because those small breaks add up

to big problems over time.

Seeing the Problem: Making Erosion Visible

One popular approach is to create visual tools that show

developers where things are going wrong. Imagine being able

to see a map of your software where trouble spots light up in

red. These tools look for specific warning signs like circular

dependencies (where module A needs module B, which needs

module C, which needs module A-creating a tangled mess).

Other tools track when object-oriented design principles are

being violated, like when code that should be independent

starts becoming too intertwined. By making these problems

visible, developers can spot trends and fix issues before they

spread throughout the system.

Building Rules into Models: The Blueprint Approach

Another strategy is to create detailed models of how the

software should be structured, with built-in rules that act like

architectural guidelines. Think of it as having a blueprint with

notes that say "never connect the bathroom plumbing directly

to the electrical system." These models can automatically

check if new code follows the rules, flagging violations before

they make it into the final product. This approach is especially

helpful for teams that need to maintain strict standards.

Mapping Dependencies: Who Needs Whom

Some teams use tools that track which parts of the software

depend on other parts. These create relationship maps

(sometimes called Dependency Structure Matrices) that show

at a glance if modules are connecting in ways they shouldn't.

Other tools use specialized query languages that can ask

questions like "show me all places where low-level code is

directly accessing the user interface"-which would typically

be a design no-no. While powerful, these approaches

sometimes miss the bigger architectural picture.

Reverse Engineering: Working Backward

For more complex or older systems, some teams use

sophisticated tools that work backward from the existing code

to create models of what's actually happening, then compare

that to what was intended. This is like examining a finished

building and creating blueprints from what you see, then

comparing those to the original plans to spot differences.

These methods take more effort but can be invaluable for

understanding systems that have evolved over many years.

Finding What Works for Your Team

There's no one-size-fits-all solution here. The right approach

depends on what you're building, how experienced your team

is, and how mature your organization is when it comes to

thinking about architecture. A small startup might benefit

most from simple visualization tools, while a company

building medical devices might need the rigor of formal

models with strict rules. As we'll see later, your organization's

"architectural maturity" plays a big role in determining which

methods will work best for keeping your software healthy

over the long haul.

3.2 Gauging an Organization's Architectural Strength:

The Maturity Factor

The way a company approaches the development and ongoing

care of its software architecture reveals what we call its

"Architectural Maturity Level." Businesses that are

"architecturally-aware" and truly "architecture-centric" are

naturally better equipped to handle the wear and tear (erosion

and drift) that software designs can experience over time.

However, to be formally recognized as having this advanced

architectural focus, an organization needs to embrace several

key principles. The more of these principles they successfully

implement, the higher their architectural maturity. These

principles aren't just abstract ideas; they form the practical

steps a company must establish, enforce, and support to

effectively control erosion and drift, especially in software

systems where reliability is critical [11].

To achieve a high level of architectural maturity and

effectively manage erosion, organizations should strive to

meet the following foundational requirements:

• Cultivating Architectural Awareness: The entire

organization must recognize the critical role of software

architecture. This means having a clear, well-defined

process for designing and modifying architecture that

everyone understands and is expected to follow.

• Explicit and Traceable Architectural

Requirements: Architectural needs must be clearly

spelled out, documented, and directly linked to the

software's quality goals and major functions. The

company's process should detail how these requirements

are recorded and maintained, including specific formats

and any necessary systems or models.

• Rigorous Conformance Checking: All architectural

designs must be verified for compliance before any coding

begins and continually throughout the software's

evolution. The steps for this checking, and what comes out

of each step, must be clearly laid out in the organization's

development process.

• Architecture-First Updates: Before any changes are

made to the code to accommodate new requirements, the

architecture itself must be updated first to reflect these

planned changes. This ensures that implementation always

follows a deliberate architectural adjustment.

• Ensuring Implementation Compliance: Every piece of

new code or any update must be thoroughly checked to

ensure it aligns with the established architectural design

before it's released. The specific steps, tools, and

procedures for these checks must be an integral part of the

organization's adopted development process.

An organization that embeds strong support for these five

principles within its defined software development process is

demonstrably more architecturally mature than one that falls

short in one or more areas. Adopting these practices directly

Paper ID: MS2012134218 DOI: https://dx.doi.org/10.21275/MS2012134218 1942

www.ijsr.net
http://creativecommons.org/licenses/by/4.0/

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

SJIF (2019): 7.583

Volume 9 Issue 12, December 2020

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

and positively impacts the challenges of architecture erosion

and drift. It ensures that the causes, impacts, and management

strategies discussed earlier are systematically taken into

account through specific process steps and the documented

outputs these steps produce.

4. Conclusions: Navigating the Legacy

Software Landscape

As software development costs, timeline pressures, and

complexity continue to rise, organizations increasingly opt to

extend existing systems rather than build new ones from

scratch. This economic reality has led to software lifecycles

spanning decades, characterized by extended maintenance

periods punctuated by intensive upgrade phases. Legacy

systems require continuous adaptation to address

technological shifts, emerging user needs, interface

modernization, deployment changes, and security

vulnerabilities. However, this ongoing evolution introduces a

significant risk: architectural erosion.

This erosion-the gradual deviation from intended design-

accumulates throughout a system's lifespan, progressively

undermining performance, maintainability, reliability, and

overall quality. The consequences range in severity from

minor operational inefficiencies to catastrophic system

failures where software becomes unstable, unusable, or

unable to fulfill its core functions [12]. Similarly,

maintenance impacts escalate from simple refactoring

requirements to completely brittle, unmaintainable code bases

that resist modification.

While conventional wisdom suggests erosion occurs

gradually during maintenance phases, research reveals it can

begin during initial architecture definition and accelerate

rapidly under certain conditions. Contributing factors include

schedule pressures, architectural misalignment with

requirements, inadequate development processes, high staff

turnover, and organizational culture that prioritizes short-term

delivery over long-term sustainability. Organizations seeking

to mitigate these risks must implement architecture-centric

governance frameworks that address prevention, correction,

and ongoing management of erosion. This requires

establishing clear processes for architectural definition,

maintenance, and evolution that explicitly account for the

causes and impacts outlined in this research, supported by

organizational commitment to architectural integrity

throughout the software lifecycle.

5. Advancing Architectural Excellence: The

Case for a Dedicated Maturity Model

The capability of organizations to effectively manage

software architecture design, let alone address erosion and

drift, varies dramatically. For critical software projects,

particularly those involving life-or-death stakes, an

organization's architectural maturity can be the paramount

factor in selecting a vendor from competing bids [14]. It is

widely accepted that when choosing a contractor for a large,

critical project, decision-makers would favor one

demonstrating a high level of architectural competence.

Consequently, a standardized method for assessing an

organization's architectural maturity is essential. Such a

model would allow organizations to be formally recognized

at specific competence levels, akin to the well-established

CMMI-DEV model, which evaluates organizations based on

the maturity of their overall product development processes

and methods.

What is needed is a multi-dimensional framework that

captures an organization's architectural proficiency through

an evaluation of its specific architectural processes and the

steps within those processes. An "Architecture Maturity

Model Integration (AMMI)" built on this foundation could

provide a robust means to assess an organization's

architectural maturity, where higher maturity levels would

ideally correlate with the production of more reliable, higher-

quality software products. While software architecture is

touched upon within the CMMI framework, it is not

addressed with the specificity or depth required for an

effective AMMI-style assessment [13]. Therefore, future

research must focus on defining a dedicated architectural

maturity model. This model should not only provide a means

to assess organizations but also offer process guidance to help

them enhance their architectural capabilities. Indeed, the

foundational work presented in this paper begins to lay the

groundwork necessary for developing such a comprehensive

model.

References

[1] M. Fowler. "Technical Debt Quadrant". Internet:

https://martinfowler.com/bliki/TechnicalDebtQuadrant.

html, October 14, 2009 [Dec. 28, 2019].

[2] B. Algaze. "Software is Increasingly Complex. That

Can Be Dangerous." Internet:

https://www.extremetech.com/computing/259977-

software-increasingly-complex-thats-dangerous, Dec.

7, 2017 [Dec. 20, 2019].

[3] S.A. White. "Software Architecture Design Domain." In

Proc. of the Second World Conference on Integrated

Design and Process Technology, Vol. 1, Austin, TX.

Dec. 1-4, 1996, pp. 283-290.

[4] S. A. White. "The Repository Based Software

Engineering Program". in Proc. of the 1996 workshop,

A NASA Focus on Software Reuse. George Mason

University, Fairfax, Virginia pp. 53-62, September 24-

27, 1996.

[5] H. Koziolek, D. Domis, T. Goldschmidt and P. Vorst.

"Measuring Architecture Sustainability,” IEEE

Software, vol. 30, no. 6, pp. 54-62, Nov.-Dec. 2013.

[6] D. L. Parnas. "Designing software for ease of extension

and contraction,” IEEE transactions on software

engineering, vol. SE-5, no. 2, pp. 128-138, Mar. 1979.

[7] B. Algaze. "Software is Increasingly Complex. That

Can Be Dangerous." Internet:

https://www.extremetech.com/computing/259977-

software-increasingly-complex-thats-dangerous, Dec.

7, 2017 [Dec. 20, 2019].

[8] M. Dalgarno. (2009, Spring). "When Good Architecture

Goes Bad,” Methods and Tools [On line] Available

http://www.methodsandtools.com/archive/archive.php?

id=85, [Dec. 28, 2019].

[9] E. Whiting and S. Andrews. "Drift and Erosion in

Software Architecture: Summary and Prevention

Paper ID: MS2012134218 DOI: https://dx.doi.org/10.21275/MS2012134218 1943

www.ijsr.net
http://creativecommons.org/licenses/by/4.0/

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

SJIF (2019): 7.583

Volume 9 Issue 12, December 2020

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

Strategies,” to appear in Proceedings ACM 4th

International Conference on Information System and

Data Mining (ICISDM). Hilo, Hawaii, May 15-27.

2020.

[10] S.A. White. "A Framework for the development of

Domain Specific Design Support Systems". in Proc.

First World Conference on Integrated Design & Process

Technology, Austin, TX. IDPT- Vol 1, Dec. 6-9, 1995,

pp. 37-42.

[11] S. Schröder and M. Riebisch. "Architecture

Conformance Checking with Description Logics,”

ECSA '17: in Proc. 11th European Conference on

Software Architecture. Sep. 11–15, pp. 166-172, 2017.

[12] M. De Silva and I. Perera. "Preventing Software

Architecture Erosion Through Static Architecture

Conformance Checking,” in Proc. IEEE 10th

International Conference on Industrial and Information

Systems (ICIIS0), Peradeniya, 2015, pp. 43-48.

[13] G. Murphy, K. Sullivan, D. Notkin. "Software

Reflexion Models: Bridging the Gap between Source

and High-Level Models,” ACM Software Engineering

Notes. vol 20, issue 4, pp. 18-28, Oct. 1995.

[14] Z. Naboulski. "Code Metrics – Depth of Inheritance

(DIT),” Internet:

https://blogs.msdn.microsoft.com/zainnab/2011/05/19/

code-metrics-depth-of-inheritance-dit/, May, 19, 2011

[Dec 20 2019].

[15] R. Shatnaw. "A Quantitative Investigation of the

Acceptable Risk Levels of Object-Oriented Metrics in

Open-Source Systems,” IEEE Transactions on Software

Engineering. Vol: 36, Issue: 2 pp. 216–225, 2010.

[16] L. De Silva, & D. Balasubramaniam. "Controlling

software architecture erosion: A survey,” Journal of

Systems and Software. Vol 85, Issue 1, pp. 132-151.

Jan. 2012.

[17] R. Terra, M. T. Valente, K. Czarnecki and R. S.

Bigonha, "Recommending Refactorings to Reverse

Software Architecture Erosion," in Proc. 16th European

Paper ID: MS2012134218 DOI: https://dx.doi.org/10.21275/MS2012134218 1944

www.ijsr.net
http://creativecommons.org/licenses/by/4.0/

