
International Journal of Science and Research (IJSR)
ISSN: 2319-7064

SJIF (2019): 7.583

Volume 9 Issue 11, November 2020

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

SAP Cloud Integration - An Overview, Best

Practices, and Implementation Steps - Part 2

Deepak Kumar1, Maha Bhageshwara Raju Kesaboina2

Wilmington, USA

Email: deepak3830[at]gmail.com

Hyderabad, India

Email: bhageshwar.raju[at]gmail.com

Abstract: SAP CPI, also known as SAP Cloud Platform Integration is a cloud-based integration platform provided by SAP. It allows for

connectivity, between applications, systems, and services both within and outside of an organization. With SAP CPI businesses can simplify

the integration process. Optimize data flow and communication between software solutions. It facilitates the exchange of data across

environments promoting interoperability and enhancing collaboration efficiency. Additionally, SAP CPI offers built-in integration iFlow

and adapters to reduce the complexity of integration projects and speed up deployment timelines. Overall SAP CPI plays a role, in the SAP

ecosystem by enabling the creation of agile business processes. In this paper, we will discuss SAP CPI's capabilities in connecting diverse

applications, facilitating data flow, supporting different integration scenarios, and leveraging pre-built content and adapters. It will provide

a step-by-step guide or overview of the fundamental steps involved in implementing SAP CPI. This paper will cover the initial setup,

configuration, and the process of establishing connections between different systems. The aim is to offer a practical understanding for

readers who might be considering or undergoing the implementation process. This paper will also address the monitoring aspect of SAP

CPI, emphasizing the importance of keeping track of integrations and workflows. Insights into monitoring tools, key performance

indicators, and best practices for ensuring the ongoing efficiency and reliability of integrated systems will be elaborated.

Keywords: SAP, SAP CPI, SAP Cloud Integration, SAP On-premice to SAP cloud integration

1. Introduction

SAP CPI – SAP Cloud Platform Integration is a powerful

cloud-based platform that enables seamless integration

between cloud applications and other SAP or non-SAP cloud

or on-premises applications. SAP CPI uses Apache Camel in

its integration framework. Apache Camel is an open-source

framework that offers a variety of pre-built components and

patterns for creating enterprise integration solutions. SAP

CPI utilizes Apache Camel to make it easier to develop

integration flows and to improve the platform's flexibility and

extensibility.

Integration Flow (Iflow) – An iFlow is a graphical

representation of the complete integration process within

SAP CPI. It outlines the steps messages must take as they

travel from a source system to a target system, including data

transformations and mappings along the way.

API stands for Application Programming Interface. It's a set

of protocols, tools, and definitions that enable different

software applications to communicate with each other. APIs

determine how software components should interact,

allowing developers to access specific features or data from a

service, library, or application without having to comprehend

its internal workings.

Groovy Script – A Groovy script is a script written in the

Groovy programming language. Groovy is an object-oriented

scripting language that is dynamically typed and seamlessly

integrates with Java. It is often used as a scripting language

for Java applications and provides concise and expressive

syntax. Pre-requisite: To understand this paper thoroughly

prerequisite is SAP Cloud Integration – An Overview, Best

Practices, and Implementation Steps – PART 1.

2. Discussion

SAP CPI Standards and Best Practices - The purpose of this

paper is to establish guidelines for integration developers who

will be using the SAP Cloud Platform Integration Service to

develop integrations for projects. This blog provides end-to-

end CPI standards and best practices that build upon the

guidelines and insights shared by experienced CPI developers

worldwide. Additionally, it incorporates our real-world

experience from numerous projects and the recent distribution

of millions of API messages through CPI.

3. API Business Hub Package

The SAP API Business Hub Package is a collection of APIs,

integration content, and resources available on the SAP API

Business Hub. The SAP API Business Hub is a central

repository provided by SAP that offers a catalog of APIs, pre-

built integration packages, and other content. These packages

are intended to help developers create integrations between

SAP solutions and other systems more easily and quickly. The

packages CPI Cloud Exemplar package SAP CPI Integration

Design Guidelines and SAP CPI Troubleshooting Tips

include not only detailed documentation or FAQs but also

working samples and templates that help you:

• Understand how you can perform basic tasks

• Identify the common pitfalls while designing your flow

• Discover optimal ways of modeling an integration flow

• Determine techniques to achieve a better memory

footprint

Paper ID: SR24628113258 DOI: https://dx.doi.org/10.21275/SR24628113258 1727

www.ijsr.net
http://creativecommons.org/licenses/by/4.0/
mailto:Deepak3830@gmail.com
mailto:Bhageshwar.raju@gmail.com

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

SJIF (2019): 7.583

Volume 9 Issue 11, November 2020

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

• Define what to keep in mind in order to create performant

integration flows

• Solve commonly known errors with a ready solution

4. Development Guidelines

SAP CPI offers development in two different environments

namely Eclipse and Web IDE.

Eclipse is a widely used integrated development environment

(IDE) that is primarily Java-based but supports various

programming languages through plugins. It provides a

comprehensive platform for software development, offering

tools and features for coding, debugging, and version control.

Eclipse is open-source and has a large ecosystem of plugins

and extensions that enhance its functionality. In the context

of SAP Cloud Platform Integration (CPI), developers often

use Eclipse with the SAP Tools for Eclipse (SAP TDI) plugin

to facilitate the development and deployment of integration

flows.

The SAP Cloud Platform Integration (CPI) Web UI refers to

the web-based user interface provided by SAP for designing,

configuring, monitoring, and managing integration processes

within the SAP CPI environment. The CPI Web UI is

accessible through a web browser and serves as the primary

interface for users involved in integration development and

operations.

Here are some guidelines to consider when designing the

layout, for integration flows which can help simplify

maintenance;

• Try to avoid overlapping sequence flows

• Keep the sequence and message flow connectors straight

as possible avoiding any twists or turns.

• Make sure not to have process steps overlapping. If you

have a lot of process steps consider expanding the canvas

and arranging them neatly.

• For complex logic break them down into modules that are

easier to understand. Move the logic of each module into

its subprocess. Give the subprocess an appropriate name

that describes its operation.

• Avoid mixing transformations in a script or subprocess.

Each sub-process should only contain the logic for one

function.

• Only assign the XML message to a header or property if

necessary. Once you're done with it make sure to clear it.

• Always maintain a flow direction from left to right in your

design. The sender should always be on the side. The

receiver is on the right side.

• It is advisable to keep the number of steps, in an

integration flow limited to 10. Utilize the integration

process within those steps to break down integration flows

as it helps reduce the total cost of ownership and facilitates

easier maintenance.

Here are some recommended practices when multiple

developers are working on projects, in SAP Cloud

Integration. These practices ensure that developers do not

make changes to packages and artifacts created by

developers.

• To indicate that a package is still a work in progress enter

"WIP" in the Version field. In the Owned By text box

specify your name or team name to indicate who should

be contacted by teams or developers if they want to make

changes to this package's artifact.

• These steps will assist developers in coordinating and

communicating about editing the artifacts within the

package. After completing the edits save the package as a

version. This will update the version number, from WIP

to the number.

5. Performance Guidelines

It is advisable to avoid using Bulk Extracts whenever

possible. When designing processes it is important to utilize

change pointers and deltas of transferring data in bulk. We

should only transmit the data by avoiding transmitting

unnecessary information. Transmitting huge amounts of data

can have an impact, on the performance of CPI systems,

external partner systems, networks and ultimately affect end

users. Therefore when designing interfaces it is crucial to

optimize the transfer of data. Additionally consider exploring

tools such, as SAP Data Services, CPI Data Services or Smart

Data Integration if you need to extract data from source

systems and transform it before loading it into target systems.

API(S) generally are designed for low volumes. We should

use other adapters like JMS, Files, JDBC, etc for large

volumes or CPI Data Services/Smart Data Integration if we

have to extract, transform, and distribute large amounts of

data between many systems. The following are

the performance guidelines to optimize IFLOW when you are

integrating systems using API endpoints.

Session Reuse: Creating a login session is a task that requires

a lot of resources. Therefore, it is advisable to reuse login

sessions instead of creating a new session for each HTTP

transaction or each page of paginated data. When making API

Paper ID: SR24628113258 DOI: https://dx.doi.org/10.21275/SR24628113258 1728

www.ijsr.net
http://creativecommons.org/licenses/by/4.0/

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

SJIF (2019): 7.583

Volume 9 Issue 11, November 2020

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

calls, a user session is created, which is also a resource-

intensive process. If there are a large number of API calls, it

can cause stress on the server and significantly impact

response time. To avoid this, you can enable a session on the

integration flow to reuse the session. You can find more

information about this in the blog post linked below.

API Retry Mechanism: Implement your retry logic properly,

Retry logic can help to recover transactions that failed due to

internet connectivity or backend server issues, but retry must

be done with care based on the type of HTTP error. Only

return a maximum number 5 of times before abandoning your

task.

OData API Performance Optimization Recommendations:

It's important to optimize the size of your batch requests when

using the OData API, as it can only return up to 1000 records

on a single page. To achieve the best performance, your batch

sizes should be as large as possible. However, for more

complex transactions, you may need to reduce the size to

avoid HTTP timeouts. Instead of pulling many records one at

a time, you can use batch or $filter to retrieve multiple records

at once. When using the $expand statement to request master-

detail data, it's important to avoid using it to join a large

number of tables, as this can result in poor performance. SAP

recommends fetching the master data by batch first, and then

using a content enricher or expand to get the details. It's also

important to avoid querying properties or expanding entities

that you don't need or use.

Splitter: We should consider improving interface

performance by exploring options for parallelizing the

process within the CPI tenant. To activate parallel processing,

you can use the "Splitter" step, which splits the content into

packages containing 1000 entries per package. You can

enable parallel processing by selecting the checkbox at this

step. Additionally, the splitter step has concurrency that can

restrict the number of concurrent parallel processes that CPI

can trigger in the SAP destination systems.

6. Externalizing parameters

Integration Developers build their integration flows using the

SAP Cloud Platform Integration tools on their development

systems and once the development is complete, they move

them to the test and production systems. During this

development phase, they realize that the same integration

flow may not work across different systems and would

require changes in the configurations of adapters or flow

steps. To overcome this situation, they use the externalization

feature offered by SAP Cloud

Platform Integration tools.

The configuration view allows to configuration of the

externalized parameters of adapters and/or flow steps without

editing the integration flow. The value configured from the

configuration view is called the configured value of a

parameter. The Configured value of a parameter is centric to

the tenant/landscape. Below are the recommended steps for

externalization:

• Externalize all the fields of integration flow that you

envisioned and provide the appropriate Default values.

• Ensure not to provide the tenant/landscape-specific value

as a Default value of parameters.

• Validate the Default value of parameters through

validation checks. Save of integration flow will run

validation checks.

• Always provide tenant/landscape-specific value in the

Configure View.

• Before downloading the Integration flow or exporting the

content package, always leverage the benefit of

Externalized Parameter View to compare the Default and

Configured value of parameters for quality assurance.

Update the parameter's default value from the externalized

parameters view or externalization editor for any

correction.

• Download the integration flow with “Default Values

Only” if you wish to import the integration flow in the

target system which has a different tenant/landscape

configuration.

• Download the integration flow from the source system

with “Merged Configured and Default Values” if you wish

to import the integration flow in the target system with the

same tenant/landscape configuration.

Paper ID: SR24628113258 DOI: https://dx.doi.org/10.21275/SR24628113258 1729

www.ijsr.net
http://creativecommons.org/licenses/by/4.0/

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

SJIF (2019): 7.583

Volume 9 Issue 11, November 2020

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

7. Monitoring

SAP CPI offers pre-built monitoring features and thorough

auditing of message processing at every stage of its life cycle.

This helps support teams to swiftly resolve any problems that

arise. It is advisable to enable payload tracing solely in testing

systems and activate it in production systems based on the

logging configuration of the IFLOW. This optimizes system

performance unless it is necessary to have it on in the

production environment. Troubleshooting always begins with

the Monitor Message Processing feature and multiple search

options are available to retrieve the message you are

interested in. After having selected the specific message

processing log, you see the first details of the message

processing. In this case, we are investigating the error that

occurred in the message processing. The Error Details are

giving you a first technical hint on what happened. To further

analyze this issue, click on the Log Level you are seeing in

the detailed view of the message processing log. In this

specific case, the message was sent in a log-level Trace.

On the left-hand side, you see the master list containing the

Run Steps. A click on one of the elements will affect the

views on the right-hand side, the Integration Flow Model, the

Log Content, and Message Content views that are selectable

by clicking on the respective tabs. The visible log steps are

the logical steps that match the configured integration

message flow model steps, in this case, ODataSender, Script,

Groovy Script, and HCIOData. Other steps are not visible,

since the occurring error stopped the message processing. If

the integration flow model is still deployed it will be loaded

and shown as the default page. The Run Steps table on the left

side is the starting point for all views. The indicates the steps

where an error occurred. The table is sorted by occurrence,

the newest entries being at the top. Errors are most likely

shown in one of the last steps and that is what we are looking

for in this case.

8. Transport Mechanism & Naming

Conventions

SAP provides below mechanisms to transport CPI objects:

• Manual Export and Import

• CTS+ (Content Transport Service)

• MTAR Download

• Transport Management Service

It is recommended to use CTS+(If the customer has a CTS+

System)/TMS transports for transporting objects from one

environment into another environment. CTS+/TMS

Transport should contain package name and version number

and change the description for each transport for customers

with complex integration landscape and who have solution

managers in the to-be landscape. Customers can evaluate SCP

TMS and FIGAF for small to medium-complexity

integration landscape or if customers don’t have a solution

manager on the roadmap.

CPI Transport Naming Conventions : <CR Number>

<CR Description><Package Name/Artefact Name>

<Version Number>

9. Conclusion

The this discussion we have included an overview of the SAP

CPI architecture, which involves understanding how different

components within SAP CPI interact to facilitate seamless

integration between various systems and applications. This

paper covers aspects such as message processing, connectors,

runtime, and the overall structure of the integration platform.

This paper covers how SAP CPI enables users to connect

different systems, orchestrate processes, and manage the flow

of data. Integration capabilities may include pre-built

connectors, data mapping, content-based routing, and support

for various protocols. Also, we have provided a glimpse into

the user interface of SAP CPI, including key screens such as

the homepage, design tab, monitoring tab, and settings tab.

This gives users an understanding of where they can perform

different tasks related to designing, monitoring, and

configuring integration processes. The upcoming sections

will focus on implementation steps along with practices and

a case study to offer valuable insights and guidance, for users

working with SAP CPI.

Declarations

Ethics approval and consent to participate: Not Applicable

Consent for publication: All authors have consent to submit

this paper to the Journal of Cloud Computing. Also, we

confirm that this paper or any part of this paper was not

submitted anywhere.

Availability of data and materials: Not Applicable

Competing interests: Not Applicable

Paper ID: SR24628113258 DOI: https://dx.doi.org/10.21275/SR24628113258 1730

www.ijsr.net
http://creativecommons.org/licenses/by/4.0/
https://blogs.sap.com/2019/01/08/sap-cloud-platform-transport-management-service-generally-available/
https://blogs.sap.com/2019/01/08/sap-cloud-platform-transport-management-service-generally-available/
https://figaf.com/

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

SJIF (2019): 7.583

Volume 9 Issue 11, November 2020

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

Funding: Not Applicable

Acknowledgments: Thank you co-author Maha

Bhageshwara Raju Kesaboina for his expertise and assistance

throughout all aspects of our study and for your help in

covering a few topics and reviewing the manuscript.

References

[1] “SAP Business Accelerator Hub,” api.sap.com.

https://api.sap.com/integrations/packages

[2] Sookriti_Mishra, “My adventure in learning CPI: Part 1

| All about SAP Cloud.,” SAP Community, Sep. 10,

2019. https://community.sap.com/t5/technology-blogs-

by-members/my-adventure-in-learning-cpi-part-1-all-

about-sap-cloud/ba-p/13393526

[3] Sookriti_Mishra, “My adventure in learning CPI: Part 2

| Deployment Models,” SAP Community, Sep. 15,

2019. https://community.sap.com/t5/technology-blogs-

by-members/my-adventure-in-learning-cpi-part-2-

deployment-models/ba-p/13394902

[4] Sookriti_Mishra, “My adventure in learning CPI: Part 3

| Cloud Security,” SAP Community, Sep. 15, 2019.

https://community.sap.com/t5/technology-blogs-by-

members/my-adventure-in-learning-cpi-part-3-cloud-

security/ba-p/13398951

[5] “SAP CPI | SAP Blogs,” blogs.sap.com.

https://blogs.sap.com/tag/sap-cpi/

[6] STALANKI, “Comprehensive SAP CPI Guide for

Standards & Best Practices,” SAP Community, Jan. 16,

2020. https://community.sap.com/t5/technology-blogs-

by-members/comprehensive-sap-cpi-guide-for-

standards-best-practices/ba-p/13457873

[7] “SAP Help Portal,” help.sap.com.

https://help.sap.com/docs/cloud-integration/sap-cloud-

integration/sap-cloud-integration

[8] “Home - Apache Camel,” camel.apache.org.

https://camel.apache.org/

[9] “SAP Help Portal,” help.sap.com.

https://help.sap.com/docs/cloud-integration/sap-cloud-

integration/integration-capabilitiesengswee, “CPI’s

Groovy meets Spock – To boldly test where none has

tested before,” SAP Community, Jan. 24, 2018.

https://community.sap.com/t5/technology-blogs-by-

members/cpi-s-groovy-meets-spock-to-boldly-test-

where-none-has-tested-before/ba-p/13367099

[10] “Steps to learn SAP CPI, what you must know before

your first project | SAP Blogs,” blogs.sap.com.

https://blogs.sap.com/2019/12/06/steps-to-learn-sap-

cpi-what-you-must-know-before-your-first-project/

[11] “The Apache Groovy programming language - Syntax,”

groovy-lang.org. https://groovy-

lang.org/syntax.html#_unicode_escape_sequence

[12] “Comprehensive SAP CPI Guide for Standards & Best

Practices | SAP Blogs,” blogs.sap.com.

https://blogs.sap.com/2020/01/16/comprehensive-sap-

cpi-development-standards-best-practices/

[13] “Integration Developer’s Corner | SAP Blogs,”

blogs.sap.com.

https://blogs.sap.com/2017/07/17/introduction-to-

developers-corner/

[14] “SAP Help Portal,” help.sap.com.

https://help.sap.com/docs/cloud-integration/sap-cloud-

integration/integration-flow-design-guidelines

[15] “Externalizing parameters using SAP Cloud Platform

Integration’s Web Application | SAP Blogs,”

blogs.sap.com.

https://blogs.sap.com/2017/06/20/externalizing-

parameters-using-sap-cloud-platform-integrations-

web-application/

[16] “Enrichments of Externalization Feature in SAP Cloud

Integration | SAP Blogs,” blogs.sap.com.

https://blogs.sap.com/2020/01/21/enrichments-of-

externalization-feature-in-sap-cloud-platform-

integration/?

Paper ID: SR24628113258 DOI: https://dx.doi.org/10.21275/SR24628113258 1731

www.ijsr.net
http://creativecommons.org/licenses/by/4.0/
https://api.sap.com/integrations/packages
https://community.sap.com/t5/technology-blogs-by-members/my-adventure-in-learning-cpi-part-1-all-about-sap-cloud/ba-p/13393526
https://community.sap.com/t5/technology-blogs-by-members/my-adventure-in-learning-cpi-part-1-all-about-sap-cloud/ba-p/13393526
https://community.sap.com/t5/technology-blogs-by-members/my-adventure-in-learning-cpi-part-1-all-about-sap-cloud/ba-p/13393526
https://community.sap.com/t5/technology-blogs-by-members/my-adventure-in-learning-cpi-part-2-deployment-models/ba-p/13394902
https://community.sap.com/t5/technology-blogs-by-members/my-adventure-in-learning-cpi-part-2-deployment-models/ba-p/13394902
https://community.sap.com/t5/technology-blogs-by-members/my-adventure-in-learning-cpi-part-2-deployment-models/ba-p/13394902
https://community.sap.com/t5/technology-blogs-by-members/my-adventure-in-learning-cpi-part-3-cloud-security/ba-p/13398951
https://community.sap.com/t5/technology-blogs-by-members/my-adventure-in-learning-cpi-part-3-cloud-security/ba-p/13398951
https://community.sap.com/t5/technology-blogs-by-members/my-adventure-in-learning-cpi-part-3-cloud-security/ba-p/13398951
https://blogs.sap.com/tag/sap-cpi/
https://community.sap.com/t5/technology-blogs-by-members/comprehensive-sap-cpi-guide-for-standards-best-practices/ba-p/13457873
https://community.sap.com/t5/technology-blogs-by-members/comprehensive-sap-cpi-guide-for-standards-best-practices/ba-p/13457873
https://community.sap.com/t5/technology-blogs-by-members/comprehensive-sap-cpi-guide-for-standards-best-practices/ba-p/13457873
https://help.sap.com/docs/cloud-integration/sap-cloud-integration/sap-cloud-integration
https://help.sap.com/docs/cloud-integration/sap-cloud-integration/sap-cloud-integration
https://camel.apache.org/
https://help.sap.com/docs/cloud-integration/sap-cloud-integration/integration-capabilities
https://help.sap.com/docs/cloud-integration/sap-cloud-integration/integration-capabilities
https://community.sap.com/t5/technology-blogs-by-members/cpi-s-groovy-meets-spock-to-boldly-test-where-none-has-tested-before/ba-p/13367099
https://community.sap.com/t5/technology-blogs-by-members/cpi-s-groovy-meets-spock-to-boldly-test-where-none-has-tested-before/ba-p/13367099
https://community.sap.com/t5/technology-blogs-by-members/cpi-s-groovy-meets-spock-to-boldly-test-where-none-has-tested-before/ba-p/13367099
https://blogs.sap.com/2019/12/06/steps-to-learn-sap-cpi-what-you-must-know-before-your-first-project/
https://blogs.sap.com/2019/12/06/steps-to-learn-sap-cpi-what-you-must-know-before-your-first-project/
https://groovy-lang.org/syntax.html#_unicode_escape_sequence
https://groovy-lang.org/syntax.html#_unicode_escape_sequence
https://blogs.sap.com/2020/01/16/comprehensive-sap-cpi-development-standards-best-practices/
https://blogs.sap.com/2020/01/16/comprehensive-sap-cpi-development-standards-best-practices/
https://blogs.sap.com/2017/07/17/introduction-to-developers-corner/
https://blogs.sap.com/2017/07/17/introduction-to-developers-corner/
https://help.sap.com/docs/cloud-integration/sap-cloud-integration/integration-flow-design-guidelines
https://help.sap.com/docs/cloud-integration/sap-cloud-integration/integration-flow-design-guidelines

