
International Journal of Science and Research (IJSR)
ISSN: 2319-7064

SJIF (2019): 7.583

Volume 9 Issue 11, November 2020

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

Hybrid Method for Software Development Based

On Agile Methodologies in the Coding and Testing

Phases

Ing. Miguel Ángel Muñoz Pozos
1
, Ing. Ayizdeth Fuentes Zarate

2
, Dr. René Santaolaya Salgado

3
,

Dr José Juan Hernández Mora
4

1Tecnológico Nacional de México/Apizaco, Carrera Apizaco-Tzompantepec. esquina con Av. Instituto Tecnológico s/n, Conurbado

Apizaco-Tzompantepec, Tlaxcala, México C.P. 90300

M13370809[at]apizaco.tecnm.mx

2Tecnológico Nacional de México/Apizaco, Carrera Apizaco-Tzompantepec. esquina con Av. Instituto Tecnológico s/n, Conurbado

Apizaco-Tzompantepec, Tlaxcala, México C.P. 90300

M13370774[at]apizaco.tecnm.mx

3Tecnológico Nacional de México/CENIDET, Interior Internado Palmira S/N, Palmira, 62490 Cuernavaca, Morelos, Mexico

rene.ss[at]cenidet.tecnm.mx

4Tecnológico Nacional de México/Apizaco, Carrera Apizaco-Tzompantepec. esquina con Av. Instituto Tecnológico s/n, Conurbado

Apizaco-Tzompantepec, Tlaxcala, México C.P. 90300

juan.hm[at]apizaco.tecnm.mx

Abstract: This article proposes a hybrid method for the coding and testing phases in software development that involves both

traditional methodologies and agile methodologies in the complete Development cycle. In the coding phase, agile techniques Scrum and

extreme programming (XP) are used, taking the sprint section from scrum while extreme programming takes programming in pairs,

resulting in a hybrid method (Scrum / XP). For the coding phase, this hybrid method takes the use of a version control flow very

seriously, counting on the “git Flow” technique as the one recommended for software development. While in the testing phase the use of

black box and white box tests is suggested, it is also recommended to use static and dynamic techniques. In this phase you can use “TDD

or Test-Driven Development”, in which tests are first and development second.

Keywords: Agile method, coding phase, testing phase, version control

1. Introduction

Currently agile methods provide various benefits to

software development, such as: incremental project

deliveries, quick releases, flexible to change. However,

one of its limitations is the lack of documentation in the

different stages of software development. Since the 1990s,

agile methods have been considered the most promising

route to successful software development. A considerable

number of publications of studies about agile methods

present the benefits that companies obtain by adopting

agile methods, as in the article “Is Water-Scrum-Fall

Reality? On the Use of Agile and Traditional Development

Practice” [1], which makes a comparison between the

various methodologies and, as a result, it is noted that

Scrum has become the most popular agile method, in

addition that agile methods are adapted and combined with

other processes, and that companies are inclined towards

the use of methods hybrids like the one proposed in this

article. On the other hand, surveys on agile methods

suggest that they are rarely used in their "pure" form. For

example, in the article “What Do Practitioners Vary in

Using Scrum?” [2], a study is published showing how

Scrum is used in practice (with a particular focus on

variations and the respective justification). Agile software

development has become a popular way of developing

software. Scrum is the most widely used agile framework,

but it is reported that in practice it is often adapted.

The authors Tripp and Armstrong, in their article

“Exploring the Relationship between Organizational

Adoption Motives and the Tailoring of Agile Methods”

They publish that in their study they found that there are

three reasons for agile adoption: a) the desire for higher

quality software, b) greater efficiency or greater

effectiveness, c) association with different configurations

of agile practices, focused on project management; and

agile practices related to the software development

approach [3]. They also show that the most popular agile

methods are: Extreme Programming (XP), Scrum,

Dynamic Systems Development Method (DSDM), Crystal

and Function-based Development (FDD).

Among other things, the Tripp and Armstrong studies [3],

they also show that traditional process models remain of

some relevance. [4] Scrum and XP are the most popular

methodologies adopted by the development community;

they even find that the waterfall / XP and Scrum / XP

combinations are the most common. Recently published

studies by the authors M. Kuhrmann and D. Méndez

Fernández [5], indicate a situation where traditional and

agile approaches coexist, as practically (mixed / hybrid)

approaches.

2. Hybrid method

Currently, agile methods provide various benefits to

software development, such as: incremental project

Paper ID: SR201119084738 DOI: 10.21275/SR201119084738 1085

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

SJIF (2019): 7.583

Volume 9 Issue 11, November 2020

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

deliveries, quick releases, flexible to changes. However,

one of its limitations is the lack of documentation.

The hybrid method proposed in this article consists of

combining the advantages that SCRUM offers, such as: the

iterations with sprint, priority list and extreme

programming methodology (XP) that during coding

performs programming in pairs. It also takes advantage of

traditional methodologies such as technical

documentation. In the stages of requirements gathering,

analysis and the definition of a coding standard in which

the Delphi method is applied.

A diagram outlining the proposed hybrid method is shown

in Figure 1.

Figure 1: Hybrid method sketch

3. Coding Phase

Coding, or also called software programming, consists of

transforming the requirements and the design into a

defined programming language. This task is carried out by

the team of programmers, following a coding standard. In

this work this standard is defined by consensus using the

Delphi method.

This method is a structured communication technique,

developed as a systematic and interactive method of

prediction, which is based on a panel of experts, where the

cornerstone consists of a series of questionnaires defined

by the group of participants within the procedure.

The method proposed in the coding phase is based mainly

on Sprint, which is the coding of each of the user stories,

given their level of priority and dependence on the others.

Each Sprint is the creation of a piece of usable version

software, which takes 1 to 4 weeks to build. The entrance

to this phase is the requirements, objectives, design, work

plan and the deliverable at the end of each Sprint.

In the method proposed in this article, a Sprint is made up

of the following elements: Selected iterations, weekly

meetings, pair programming (using standard coding and

versioning), lessons learned, and Sprint review. Which are

described below; Figure 2 shows the workflow of each

Sprint in the coding phase.

Figure 2: Coding

In this method, the selected iterations are the beginning of

the planning of each sprint, and the user stories are

selected, given their priority to begin with the coding of

the solution for each one of them. Fulfilling the

requirements and the design defined in the two previous

phases.

The weekly meetings consist of meetings where the work

team expresses what has been achieved since the last

meeting, as well as the problems that have arisen. This is

how you know when you already have a solution or to

reach the right solution as quickly as possible with the help

of the team. These meetings, mainly, should be done in

less than an hour and present the functional software of the

solution to the client or the project leader.

The coding is done with a technique used in agile software

development, mainly in the extreme XP programming

methodology, which consists of programming in pairs

where two programmers work together, one of them being

the driver, who is the one who writes the source code;

while the other is the observer who inspects the driver's

progress. Programmers alternate these roles. In this

method, it is recommended that each programmer dedicate

himself to solving a user story to provide greater results,

more advances in less time, and that each programmer

carry both roles with him.

A coding standard is a homogeneous programming style.

In a project it allows all participants to understand it in less

time, and consequently the code to be maintainable and

durable. The agile extreme programming methodology

emphasizes that programmers' communication is through

code, making it essential that certain programming

standards be followed to keep the code readable and

maintainable during coding and software maintenance. It

is for this reason that the proposed hybrid method defines

a coding standard with the help of the Delphi method.

Figure 3 shows the steps to follow to achieve a coding

standard based on the knowledge and experience of

experts in software development.

The Delphi method [6] is an information gathering

technique that allows obtaining the opinion of a group of

experts through repeated consultation. This qualitative

Paper ID: SR201119084738 DOI: 10.21275/SR201119084738 1086

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

SJIF (2019): 7.583

Volume 9 Issue 11, November 2020

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

technique is recommended when there is insufficient or

necessary information for decision-making. This article

describes the main characteristics of the technique and

details the process of repeated consultations in the

application of the technique.

Figure 3: Delphi method to define encoding standard

Version control is a system that records changes made to a

file or set of files over time, so that later, specific versions

can be recovered from earlier [7]. This is why, in the

proposed hybrid method, it is necessary to have a version

control scheme in the coding phase, for the benefit of

programmers; but mainly, to demonstrate the growth of the

project, during the Sprint and its culmination. Some other

reasons why you should have a version control system are:

a. Know who has been responsible for a certain

modification and when it was made

b. Make comparisons between versions of an application

c. Observe the evolution of the project over time

d. Be aware of source code changes

e. Have a backup of the project

f. Have a history in which the modifications made to the

code are detailed

Figure 4 shows the work cycle to be followed for the use

of a version control system for the hybrid method and for

projects that require the use of a version control system. It

is made up of three areas working directory, staging area,

and git repository.

Figure 4: The lifecycle of file status

When you are a Version Control System, there are

workflows with production branches that are:

Centralized workflow: This is a great Git workflow for

teams migrating from Apache Subversion. Like

Subversion, the centralized workflow uses a central

repository as the entry point for all changes to the project.

Instead of "trunk", the default development branch is

named "master", and all changes are committed to that

branch. This workflow does not require more branches

than "master".

Figure 5 shows how the branch and the version of the

project are structured using this technique for the

development of the work.

Figure 5: Basic branching

Feature branch workflow: The main idea behind the

feature branch workflow is that development of a feature

should be done in a specialized branch, rather than a

master branch. This isolation allows multiple developers to

work on a specific feature without disturbing the content

of the main codebase. It also implies that the "master"

branch will in no case contain erroneous code, which is a

great advantage for continuous integration environments.

Figure 6 shows how the branches are organized with this

work option.

Figure 6: Characteristic branches

Gitflow workflow: Ideal for projects that have a scheduled

release cycle. This workflow does not add any concepts or

new commands beyond what is needed for the feature

branch workflow. Instead, it assigns specific roles to the

different branches and defines how and when they should

interact. In addition to feature branches, individual

branches are used to prepare, maintain, and register

publications. Of course, you also take advantage of the

benefits of the feature branch workflow, such as: pull

requests, isolated experiments, and more efficient

collaboration. In Figure 7 you can see how branches are

integrated to handle software development more

efficiently.

Figure 7: Git Flow

The lessons learned from the process are generally

collected at the end of each Sprint, to determine and

analyze the elements of each user story that were

successful or not. For the project team to learn from

experiences in product development. These lessons are

composed of the knowledge acquired through experience.

It reflects information on successes or failures and is a

valuable source of information for future projects.

Paper ID: SR201119084738 DOI: 10.21275/SR201119084738 1087

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

SJIF (2019): 7.583

Volume 9 Issue 11, November 2020

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

The Sprint Review is the step where the team reviews that

what is requested in the User Stories has been completed

and performed correctly. If the user stories are approved, it

goes to the testing phase. This is done to see if the product

or user story is finished and can go through testing without

any missing or incomplete features.

4. Test phase

It is in the testing phase of the proposed hybrid method

that each user story is passed through some type of

evaluation, see Figure 8. This phase is supported by some

techniques to be able to perform them efficiently to locate

and reduce defects in the applications under development;

some of these techniques are shown in Figure 9.

Figure 8: Types of software tests

Figure 9: Testing techniques

Dynamic testing is the process of running a program with

the intention of finding defects [8].

Some of the reasons why any software should be tested

are:

a. Detect as many defects as possible

b. Help managers with decision making

c. Find the safe scenarios for the use of the product

d. Assess quality

e. Check product correctness

f. Quality assurance

g. Commercial competitiveness

h. Achieve higher quality in software

i. Changes in technology

j. Cost and risk reduction

k. Increased productivity

And the main objective of the tests is to bring quality to

the product that is being developed.

To find the defects in the code, two of the techniques most

used in testing can be used are the dynamic techniques of

"white box" and "black box" see Figure 9. Although there

are tools such as Test-guided Development (TDD) See

Figure 10 where we can see how this tool can be used to

test each requirement, and thus cover the testing part of the

software in question.

Figure 10: The TDD cycle

It should be noted that in software development, the

testing phase is critical to ensure that the product is sent to

the production environment with the quality expected by

the customer. That is why today it is essential to have a

Software Testing Plan to carefully specify the functions to

be tested, how the tests will be executed, who will be

responsible and the schedule for their execution. The

informatics project office (pmoinformatica) [9] has many

templates for multiple processes. One of these is for a

software test plan, where a template based on

pmoinformatics is found, to achieve the definition of a

software test plan.

5. Evaluation and results of the practice of

the proposed hybrid method

The developed method was subjected to two evaluations.

The first was applying the evaluation approach shown in

Figure 1, the second was applying the method to a real case.

This hybrid method was tested in the migration of an

information system called "teacher evaluation" for the

technological institute of Apizaco, and excellent results

were obtained. Table 1 shows a comparison between using

a method for software development.

Table 1: Method comparison

 Teacher evaluation

Questions
Created without

methodology

Created with "The

hybrid method"

Documentation Does not apply Wide and durable

Stages of

development
Not defined

● Survey of

requirements

● Requirements

analysis

● Software design

● Coding

● Tests

● Launching

Agility Not defined High

Durability Not defined High

Scalability Not defined High

Paper ID: SR201119084738 DOI: 10.21275/SR201119084738 1088

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

SJIF (2019): 7.583

Volume 9 Issue 11, November 2020

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

6. Conclusions

The proposed hybrid method for the coding and testing

phase is intended to cover the limitations of agile

methodologies, which is the lack of documentation. In this

article, each activity of the coding and testing phases was

described, as well as the proposal detailing each phase of

how the application of each of them would be. As we have

seen, several authors are inclined to believe that hybrid

methods for software development are the best solution,

which is why the method proposed in this article integrates

various software development process models, taking and

combining the capabilities or advantages relevant to each

of them.

References

[1] G. Theocharis, M. Kuhrmann, J. Münch, P. Diebold.

“Is Water-Scrum-Fall Reality? On the Use of Agile

and Traditional Development Practices”. Lecture

Notes in Computer Science. 9459, pp. 149-166, 2015.

[2] P. Diebold, J. Ostberg, S. Wagner, U. Zendler. “What

Do Practitioners Vary in Using Scrum?”. Lecture

Notes in Business Information Processing. 212, pp.

40-51, 2015.

[3] J. F. Tripp and D. J. Armstrong, "Exploring the

Relationship between Organizational Adoption

Motives and the Tailoring of Agile Methods," 2014

47th Hawaii International Conference on System

Sciences, Waikoloa, HI, pp. 4799-4806, 2014.

[4] A. Solinski, K. Petersen, “Prioritizing agile benefits

and limitations in relation to practice usage”. Software

Qual J 24, pp. 447-482, 2016.

[5] M. Kuhrmann y D. Méndez Fernández, “Systematic

Software Development: A State of the Practice Report

from Germany”. 2015

[6] M. Reguant Alvarez, M. Torrado Fonseca. “El método

Delphi”, Reire. 9, pp. 87-102, 2016.

[7] S. Chacon, "Getting Started About Version Control".

May, 09, 2014, [Online]. Available: https://git-

scm.com/book/en/v2/Getting-Started-About-Version-

Control. [Accessed: feb. 12, 2020].

[8] G. J. Myers and S. Corey, The Art of Software

Testing, USA, 2004.

[9] R. A. Rodríguez Morillo, "La oficina de proyectos de

informática" www.pmoinformatica.com, Jan. 31,

2001. [Online]. Available:

http://www.pmoinformatica.com/p/plantillas-de-

gerencia-de-proyectos.htm [Accessed: Enero. 12,

2020].

Author Profile

Miguel Angel Muñoz Pozos received the degree of

Eng. In Information and Communication

Technologies from Tecnologico de Apizaco in

2018, during 2013-2018 he belonged to the degree

in Information and Communication Technologies,

from August 2018 to date he is In the division of postgraduate

studies, he completed a master's degree in computer systems.

Ayizdeth Fuentes Zarate received the B.I. degree

in Engineering in information and communication

technologies from Technological Institute of

Apizaco in 2018. During 2016-2019, she stayed in

Computer Center from the same institute to develop

Web-based information systems to use of students, teachers and

administrative staff. She now studies Master's degree in

Computer Systems.

René Santaolaya Salgado is professor of

Technological Research and Develop National

Center (CENIDET), Cuernavaca, Morelos, México.

His research interest includes software process

model, software architecture, software reuse and

web services. René Santaolaya received a PhD in Computer

Science (Software Engineering) from National Polytechnic

Institute, Computing Research Center. He is a senior member of

the IEEE. He has been developer, analyst and project leader in

the Academic Body of Software Engineer.

José Juan Hernández Mora has a Doctor of

Teaching Excellence degree from the University of

Los Angeles, 2019. He also has a degree in

Computer engineer from the Universidad Autónoma

de Tlaxcala, from 1994. Master’s in computer science at the

National Center for Research and Technological Development of

the TecNM, 2003. Research professor at the Tecnológico de

Apizaco del TecNM. Teacher of the Master of computer systems

of the TecNM / Instituto Tecnológico de Apizaco.

Paper ID: SR201119084738 DOI: 10.21275/SR201119084738 1089

http://www.pmoinformatica.com/

