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Abstract: A machine complex monitoring system model was designed and analyzed deliberating on the human involvement in the 

machine operations. In this paper a deliberation is done to the performance of both Offline and Real-time condition monitoring systems 

and their divergence from the online monitoring system. The non-defected monitored machine complex (MC)’s safety, machine 

component malfunction and the rate of its deterioration up to its enduring time are quantified by vibro-parameters or diagnostic signals 

that can highlight them within set acceptable deviations. The model illustrated the (component) unit’s state and the whole machine 

complex’s observability and controllability. The mathematical model developed in this paper assures that the procedure of dynamic 

diagnostics and forecasting of potentially hazardous dilapidation of component/units’ state in machine complex basing on phase 

trajectory of life cycle which permits full use of equipment resource in keeping its safety and maintainability is efficient and effective in 

all construction heavy vehicles. 
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1. Introduction 
 

This project tested the hypothesis that construction vehicles 

downtime due to mechanical failures can be reduced to 

closely non occurrence by using formulated methods of 

automatic condition monitoring system. It targets the most 

frequent challenges on machine complex for the future 

operational sustainability solutions. The subsequent failure 

of a machine complex results in breakdown and prolonged 

downtime, which negates the production rate. Once rotating 

machinery defects, it definitely produces complex 

fluctuations due to moving and nonlinear properties of 

dynamical systems 
[1, 2]

. The subsequent result is dynamical 

structures of vibration data from rotating machinery are 

difficult to reveal. The unit state variables for this model 

include the distinct fractional worn out functions and their 

rates of wear. In this model observations assist to transmit 

malfunction of a unit component of the machine complex 

from an abrupt failure to a slow and steady inefficiency. 

 

A dynamical system generally produces complex 

fluctuations, which relate to underlying dynamics of the 

studied system
[3]

. These fluctuations are the variables that 

are to be monitored and constraint this research paper. 

Monitoring system can be best expressed as an integration of 

observatory equipment that can either be controlled or 

cannot be controlled by human, in supervising the state or 

functionality of the machine complex
[4]

.  

 

Signals such as vibration, current, temperature, image, etc., 

are observed in state monitoring of machines complexes. 

The vibration signal process is one of the most general 

methods in the fault detection and condition monitoring of 

rotating machinery 
[5]

. Previous researchers and writers have 

carried out the evaluations of the disoriented patterns that 

appear in most mechanical systems. In large rotating 

machine complexes this disoriented performance is as a 

result of the interactions in the rotor/bearing/stator system 
[5-

7]
. Thus the need to carry out monitoring which can best be 

done fractionally, that is checking on a specific unit 

technical state. A unit component’s technical state is 

supervised by observing its functional change and alerts on 

any deviation from the set limits. This deviation is known as 

the system nonlinearity and can occur in the discontinuous 

stiffness, damping, surface friction and impact. Nowadays 

most nonlinear features, including approximate entropy and 

sample entropy, are of great use in monitoring dynamical 

behavior of complex systems
[8]

.
 
 

 

In this research paper monitoring therefore enhances a 

malleable transition of failure from abrupt to gradual and 

giving warning to maintenance personnel to carry a 

preventive maintenance (PM) which thus eliminates 

machine downtime. The diagnostic and monitoring system 

operates within some specific speeds which are given in this 

model in order to approximate enduring operational failures 

according to observability criterion. Monitoring accuracy 

upheld close to non error margin enhances breakdown 

reduction and subsequently increases the machine running 

time
[9]

. 

 

Online monitoring is made feasible by automatic systems 

with operations which do not rely on the machine 

construction phenomenon. The machine complex is 

composed of hydraulic systems which encompass cylinders, 

seals, pistons, the fluid; and bearings including other rotating 

and fixed parts
[10]

. These numerous parts have specific 

technical dimensions they should meet to ensure total 

functionality and efficiency of the machine. They are the 

components that are diagnosed and monitored prior to their 

failure as well as minimizing dynamic or static errors.   

 

The principle of information completeness (π-principle) 

during the choice of state diagnostic features in conditions of 

prior uncertainty is formulated
[11]

. According to this 

principle features should arrange a complete group in 

statistical sense including both all known and supplemented 

features in the selected base of signals. This allows 

significant decrease in probability of defects passing, 

diagnostic features of which in this base are unknown. The 

most common and broadband signal base is vibration that’s 
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why obtained conclusions will be correct for other signal 

bases (current, temperature, etc.)
[12, 13]

. 

 

2. Methods 
 

2.1 Online monitoring data acquisition and processing 

 

Diagnostic signals (vibroparameters) is the data obtained 

from sensors attached to different locations of the machine 

complex. This data is preprocessed to clean and convert it 

into a form which enables extraction of condition indicators. 

The vibroparameters (data) preprocesing involves the 

transformation between time and frequency domain; noise 

reduction (through filtering/smoothing); detrending, offset 

removal and missing-value removal. 

 

The figure below illustrates the preprocessing work flow of 

data mined from the machine being monitored. 

 

 

 
Figure 1: Sensor data (vibro-parameter) from machine complex on which algorithm is deployed 

 

Basically, this data is preprocessed before analysis in order 

to identify potential condition indicators and a measure that 

predictably changes when the system performance weakens. 

The transformed signal (preprocessed) is further analyzed to 

give a condition indicator signal.  

 

2.2 On-line machine condition monitoring using 

condition indicator (vibration) signals  

 

The data acquisition apparatus in this paper are sensors 

mounted on roller ball bearings of the machine complex to 

monitor any changes in vibrations and then perform 

prognostics with the signals obtained.  

 

A mathematical model designed herein this states that the 

static state approximations only define the static system 

variables exclusive of the dynamic system states so to use it 

in control techniques won’t be adequate. Taking in the 

Aleksei M Bruevich’s work which states that: 

𝑆1 =  𝑆0 +  𝑆 𝑡 = 𝑆  𝑛0,𝑝0, +  
𝜕𝑆

𝜕𝑞𝑗
∆𝑞𝑗

𝑚
𝑗=1  (𝑡)   (1) 

The technical state of the machine complex’s unit 𝑆1 

depends on its operation mode 𝑆0  and level of obtained 

errors. 

here 𝑆0  = 𝑆  𝑛0,𝑝0,  is a unit component which describes 

mechanisms with minimum, close to none technological and 

operational errors, and functions in the range of nominal 

speed (𝑛0 ) and loading (𝑝0 ) modes whilst ∆𝑞𝑗 = 𝑋𝑗   where 

j- is the default mechanism inaccuracy  (t = 0), which serve 

as the datum of wear process, or generalized as the level of 

mechanism degradation and level of its ageing;  
𝜕𝑆

𝜕𝑞𝑗
 is 

sensitivity of generalized error S to j-error of the mechanism 

according to corresponding generalized coordinate 𝑞𝑗 . Here 

and after, to simplify the writing of this argument (t) is given 

for denoting, significantly in this case, dependence of 

parameter against time on the reviewed interval. 

 

The monitoring system here is mathematically modeled 

basing on the equation of state variables as follows: 

 (𝑆 (𝑡) =  𝐴  𝑆 𝑡  +  [𝐵] 
 𝑌 𝑡  =  𝐶  𝑆 𝑡   +   𝐷  𝑈    ………… (2)  

where {S(t)} is a vector of unit wearing functions of m 

dimensionality, in which every component describes its 

technical structural parameter which is a subject to 

estimation and describing enduring partial resource of unit 

according to this generalized parameter, has in time 

multimodal character by virtue of partial errors summing 

equation 1; whilst {𝑆  (t) } is a vector of wearing speed 

(wear, reduction of fluent operation, safety, residual 

resource) also having multimodal character; and {U} is a 

vector of dimensionality control variables (p+k) including 

varying tasks of unit’s operation mode {Up(t)} and factors of 

human influence during the control and maintenance of 

object {Uk(t)}. 

 

{Y(t)} is a vector of dimensionality diagnostics signals  

𝑛 ≥ 𝑚  measured by monitoring system. The Matrice [А], 

[В], [С], [D] represent correspondently square matrix of the 

system;  [A] = [aij] a rectangular matrix of control, then [B] 

= [bij] determines the influence of human actions to the unit 

state; (matrix of output) [С] = [сij] the observation matrix, 

determines observability of internal state; then [D] = [dij] the 

transfer matrix, determines the influence of operating and 

maintenance personnel to the unit’s vibration parameters.  

 

Elements of matrix [A] are random processes of which 

values are found according to the mathematical expression at 

a given time. Elements of matrix [B], [С], [D] are 

coefficients of corresponding regression equations. 

Monitoring system is quite manageable as the machine 

complex is observable on conditions that matrix ranks [A] 

and [C] have concurred, and there is no zero columns in the 

last one.  

 

The dimensionality of vector {S(t)} in matrix [A], the matrix 

that determines a level of real observability of the unit state, 

can be used depending on statistics of each component/units 

failures. A rule applies that components {S(t) are 

inaccessible for direct observation and are estimated 

according to indirect measurements. {U} is a management 

vector which changes at irregular intervals during the start-

stop and maintenance of the system. Between these 

moments {U} = const. (constant). The  increase of 

diagnostic signals (vibroparameters) is directly proportional 
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to the increase of wear, loss of safety and decrease of the 

remaining useful life of the machine complex in whole: 

 

 ∆𝑌 =  𝐶  ∆𝑆 ,     𝑌  𝑡  =  𝐶  𝑆  𝑡   

 𝑌𝑁𝐷𝑃  =  𝐶  𝑆 ,     𝑌 𝑁𝐷𝑃  =  𝐶 {𝑆 𝑁𝐷𝑃 }    ………….. (3) 
 

Each i-generalized error expresses partial function of unit 

wear. The changes of (i) in time (trend) highlights the total 

trends including structural parameters Xj(t), and, in common 

has multimodal character. The rate of changes in diagnostic 

features, i.e vibroparameters, is unambiguously obtained by 

weighted sum of correspondent unit error change rates. The 

increase of vibroparameters vector {∆𝑌𝑛 }  is directly 

proportional to the increase of component’s wearing vector 

(generalized errors – structural parameters) {∆𝑆𝑚 }, and the 

increase of initial diagnosed errors of the unit’s mechanisms 

{∆𝑋𝑘}. 

 

Creating an orthogonal diagnostic feature {𝑌𝑖}  is the 

preliminary objective of diagnostic and monitoring systems, 

correspondingly representing formulated orthogonal classes 

of failures {𝑆𝑖}. This definately corresponds to the reduction 

of observation matrix [𝐶]  to a diagonal square matrix 

defining one-one (regressive) relation between diagnostic 

feature and corresponding generalized error. Now, the 

challenge of condition monitoring is to correctly interprete 

the formation of this generalized error considering the rate 

of failures classes’ appearance.  

 

During that time it is discovered that about 90% are 

misalignment cases, whereas 7% imbalances are observed. 

Then the remaining percentage is for vibrovelocity growth 

and other factors. Therefore such intepretation of reasons to 

consequences, reasons being errors which results in 

vibrations (consenquences), is likened to reducing 

observation matrix to diagonal square form which 

corresponds to condition monitoring. If there is no such 

interpretation it leads to parameter monitoring (vibration, 

temperature, etc.). Mostly failures of units such as 

destruction of friction surface and weakening of fastening 

are immeasurable strong scales (ratios of intervals). Given 

these cases values of measured diagnostic features i.e 

vibroparameters are used to measure such failures according 

to equation (3). It is coherent to obtain technical state of unit 

basing on partial component of its vector of state {S( t)} 

which has the maximum value Smax(t)  amongst the other 

diagnosed parameters of this unit. 

 

The hazards on a unit technical state are a result of partial 

component Smax(t), of which is the maximal one among all 

wear rates of diagnosed unit. Technical state of units set in 

the machine complex corresponds to partial component of its 

vector of a state which has the maximum value among all 

diagnosed parameters of all units in the machine complex. 

Now, the hazard of the machine complex state is also a 

result of the partial component Smax(t) which is the maximal 

one among all wear rates of all units in machine complex. 

 

These formulations are also correct for the space of 

diagnostic features in accordance with generalized 

mathematical model given on equations (2) and (3). The 

technical state of component/unit and the machine complex 

in whole is obtained by partial component of diagnostic 

features vector Ymax(t) which is observed by the diagnostic 

and monitoring system among unit components and whole 

machine complex. The hazard of a unit component and that 

of the whole machine complex state is defined by maximal 

partial component of vibroparameters trend growth rate 

𝑌 max(t) which is observed by the diagnostic and monitoring 

system among all rates of unit components and the whole 

machine complex following suit. The required operating 

speed of the diagnostic and monitoring system is obtained 

by the highest speed of functionality loss and the least 

reserve of established component/unit limiting state: 

 

𝐹 =  
1

𝑇
= 𝑀𝑎𝑥  𝐵

𝑆 𝑁𝐷𝑃

𝑆𝑁𝐷𝑃
 = 𝑀𝑎𝑥  𝐵

𝑌 𝑁𝐷𝑃

𝑌𝑁𝐷𝑃
  ……. (4) 

 

Equation (4) bring about B which describes the standard of 

approximation algorithm of the measured diagnostic features 

growth rate. Given models and their description are the main 

factors of investigative methods and the diagnostic and 

monitoring system with functionally undefined structure. 

The component/unit state and the vibration on the life 

interval has a dynamic model that is developed considering 

human involvement which establishes the exponential form 

of the relationship between analytical features, structural 

constraints and the enduring life. Equation (5) illustrates the 

established dynamic model: 

 

 𝑌  =  𝑎 𝑒 𝑎 𝑇{𝑌0} 

 𝑆  =  𝐶 −1 𝑎 𝑒 𝑎 𝑇{𝑌0}      ……… (5) 

 

This model entirely presents the machine complex units’ 

state dynamics using the the dynamics of analytical features 

of power, changes in temperatures, vibrations and also the 

rate of their changes. These factors manipulates the 

individual unit component’s operability and its enduring life 

span. The functional irregularities of a unit component such 

as warping and breaking are a manifestation of human 

involvement in the functionality of the machine complex due 

to some inconsistences in meeting operational demads such 

as cooling water, correct oil type and adherence to 

component’s life span. These human errors leads to accute 

increases in temperature, vibrations or total cease of the 

machine complex. The technical state dynamic model of a 

square matrix of diagonal error transformation is obtained by;  

∆𝑆𝑖  =  
𝜕𝑆𝑖

𝜕𝑞𝑖
 .∆𝑋𝑖(𝑡); 

𝑆 𝑖  =  
𝜕𝑆𝑖

𝜕𝑞𝑖
 .  𝑋 𝑖(𝑡)          …………………. (6) 

 

The vibro-signal in a dynamic model for an orthogonal 

feature is shown as: 

∆𝑌𝑖 = 𝐶𝑖𝑖  .∆𝑆𝑖(𝑡); 

𝑌 𝑖 = 𝐶𝑖𝑖  . 𝑆 𝑖(𝑡)            ………………….. (7) 

 

For the square diagonal matrix cases, the errors 

transformations are as follows;  

 ∆𝑌𝑖 = 𝐶𝑖𝑖  .
𝜕𝑆𝑖

𝜕𝑞𝑖
 .∆𝑋𝑖 ; 

𝑌 𝑖 = 𝐶𝑖𝑖  .
𝜕𝑆𝑖

𝜕𝑞𝑖
 .𝑋 𝑖          …………………..  (8) 

The mathematical model established in this paper assures 

that the procedure of dynamic diagnostics and forecasting of 

potentially hazardous dilapidation of component/units’ state 

in machine complex basing on phase trajectory of life cycle 
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which permits full use of equipment resource in keeping its 

safety and maintainability is efficient and effective in all 

construction heavy vehicles. 

3. Results and Discussion 
 

 
(a) Sensor signal from a healthy bearing (blue) and a    faulty bearing (red); (b) Change of defect depth in different segment of 

data; 

 

 
Figure 2: Bearing condition monitoring trends, (c) Vibro-displacement signal of a healthy and faulty bearing; (d) The 

extracted Mean Frequency against the increase in time 

 

The Mean Peak Frequencies of the two bearings: 

 
Figure 3: (a) The graph depicts the probability distributions of the Mean Peak Frequencies for the two bearings. (b) The 

signal in the first 200 seconds is a mixture of noise and consistence in frequency level, this initial dynamic model has an 

acceptable fit. 
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Figure 4: (c) The graph depicts a normal running of the bearings since the signal is far below the set threshold. (d) The 

vibration frequency reached the threshold value thus giving alarm of malfunction. 

 

In this paper the practical realization of the designed 

mathematical model in monitoring systems is achieved by 

the use of Matlab software application. The extend of 

prediction accuracy ranges up to 15 times the period of 

observation with flaws of far less than 5%. This is quite an 

endorsement to the designed monitoring model. Bearings are 

the key rotating components on construction vehicles and 

are prone to failure such that their health status determines 

the operational availability of the machine complex.  

 

In the analysis it is realized that the mean peak frequencies 

obtained accurately depicts the differences healthy bearing 

from the faulty one. 

 

The machine performance can be efficiently monitored 

through the set thresholds in vibration signals and noises 

produced. Machine health forecasting is made possible and 

accurate predictions were witnessed which help to prepare 

for a potential malfunction.  The batch mode of updating the 

time series done in this model captures instantaneous trends. 

This updated time series with the graphs shown in figure 2 is 

used to compute a ten step ahead forecasting.  

 

4. Conclusion 
 

The frequency trends depicted by this mathematical 

modeling confirm that online health monitoring is effective 

and efficient to achieve smooth running of machine vehicles. 

The calculated specific function of a component’s wear and 

its rate is defined by generalized errors, structural 

parameters and the rate of its growth, and is offered for use 

as variables of the component’s condition. 

 

The technical condition of the machine system and its 

corresponding risk of its operability loss are given to be 

evaluated according to the minimum residual operability and 

maximum rate of its functionality loss, which is observed by 

diagnostic and monitoring systems. Online monitoring 

allows the failures transition of a component from a sudden 

failure to gradual or repair before failure. 
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