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Abstract: The properties of moduli space and Teichmuller space has been studied mathematically and physically to show their 

importance and applications in metric structure. Riemann considered the space M of all complex structures on an orientable surface 

modulo the action of orientation preserving diffeomorphisms and derived the dimension of this space which expressed as dimg. M=6g-

6…..(I) where g ≥ 2 is the genus of the topological surface. Moduli spaces of Riemann surfaces have also been studied in algebraic 

geometry by F.O. Gardina. The geometric invariant theory developed by Mumfor is major achievement. Deligne and Mumford studied 

the projective property of the Moduli space and they showed that the moduli space is quasi-projective and can be compactified naturally 

by adding in the stable nodal surfaces. The classical metrics on the Teichmuller space and the moduli spaces have also been studied 

independently. Each metric has played mportant role in the study of the geometry and topology of the moduli and Teichmuller spaces. 

We consider some of them such as (India) finsler metrics: (ii) the Teichm “uller metric ll lle (iii) They are all complete metrics on the 

Teichmuller space and are invariant under the moduli group action.  

 

Keywords: Teichmuller space, Moduli space, Finsler metrics, curvature, Poincare metric, and Kahler-Einstein metric 

 

1. Introduction 
 

We derive interesting applications in algebraic geometry. 

K.Liu suitabley applied it algebraic geometry. Teichmuller 

considered a cover of M by taking the quotient of all 

complex structures by those orientation preserving 

diffeomorphims which are isotopic to the identity map. The 

Teichm uller space Tg is a contractible in set in C
3g-3 

. Also, it 

is a pseudo convex domain. Teichm uller also introduced the 

Teichm uller metic by first takeing the L1 norm on the 

contangent space of Tg and then taking the dual norm on the 

tangent space, which is a Finsler metric. Another finsler 

metrics are the Carath eodorymetic and Kobayashi metric. 

These Finsler metries have been powerful tools to study the 

hyperbolic property of the moduli and the Teichm uller 

spaces and the mapping class groups Royden proved that the 

Teichm uller metric and the Kobayashi metric are the same. 

He has shown the holomorphic automorphism group of the 

Teichm uller space is exactly the mapping class group. Well 

Peterson introduced the fisrt derive Hermitian metric on the 

Teich’muller space. Ahlfors shown that the Well- Patersson 

metric is K ahler and its holomorphic sectional curvature is 

negative. Ahlofors and Beys derived on the solutions of 

Beltrami equation which put a solid forundation of the 

theory of Fugian space. Under the moduli group action. The 

sxistence of the K”ahler-Einstein metric is used here to 

derive algebraic and geometice applications including as its 

properties like the curvature and the behavours near the 

comactification divisor. S.T. Yau developed the concept that 

the K” ahler-Einstein metric is equivalent to the Teichm 

uller metric and the Bergman metric. McMullen introduced 

a metric known as the McMullen metric by perturbing the 

Well-Petersson metic go get a complete K” ahler metric 

which is complete and K”ahler hyperbolic. Thus the lowest 

eigen value of the Laplace operator is positive and the L
2
- 

Cohomology is trivial except for the middle dimension. The 

moduli space has been widely used in geometry, topologhy, 

algebraic geometry to number theory. Faltings’ proof of the 

Mordell conjecture depends heavily on the moduli space 

which can be defined over the integer ring. Moduli space 

also paly significant role in many areas of theoretical 

physics. Such as in string theory in where many 

computations of path integrals are reduced to integrals of 

Chern classes on the moduli space. In physical theories. 

Physicists have made several interesting conjectures about 

generating series of Hodge integrals for all genera and all 

marked points on the moduli spaces. We discuss the basic 

concepts of teichmuller theory introduced by A.J. Trombe 

and its impact on moduli space. Let ∑ be an orientable 

surface with genus g ≥ 2. A complex structure on ∑ is a 

covering of ∑ by charts such that the transition functions are 

holomorphic. By the uniformzation theorem. If we put a 

complex structure on ∑ then it can be viewed as aquotient of 

the phperbolic plane H
2
 by a Fuchsian group. Thus there is a 

unique K” ahler-Einstein metric. or the hyperbolic metric on 

∑ Let Country be the set of all complex structures on ∑ Let 

Diff
+
 (∑) be the group of orientation preserving 

diffeomorphisms and let Diff
+

0 (∑) be the subgroup of 

Diff
+
(∑) consisting of those elements which are isotopic to 

dentity. The groups Diff
+
 (∑) and Diff

+
0(∑) act on the space 

Country by pull-back. The Teichmuller space is s a quotient 

of the space Country 

Tg = C/Diff
+

0(∑).  ...(1) 

 

By an appropriate application of Bers embedding theorem, it 

is known that Tg can be embedded into C
3g-3 

as a 

pseudoconves domain and is contractible. Let us put 

Modg = Diff
+
 (∑)/Diff

+
0(∑) 

 

be the group of isotopic classes of diffeomorphisms. This 

groups is called the (Teichm”uller) moduli group or the 

mapping class group. Its representations are helpful in 

topology and in quantum field theory. The moduli space Mg 

is the space of distinct complex structures on ∑ defined as 

follows. 

 

Mg = C/Diff
+
(∑) = Tg/Modg. 

 

The moduli space is a complex orbifold. For any point ∈Mg, 

let X = Xs be a representative of the corresponding class of 
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Riemann surfaces. Combining properties of the Kodair-

Spencer deformation theory and the Hodge theory, we get. 

 TxMg  ≅ H
1
(X,Tx) = HB (X) ....(3) 

where HB(X) is the space of harmonic Beltrami differentials 

on X. 

 

TxMg ≅ Q(X) 

 

where Q(X) is the space of holomorphic qualdratic 

differentials on X. Let us µ ∈ HB (X)  and ∅ µ Q(X). If we 

fix a holomorphic local coordinate z on X. we can write µ = 

µ 

(z)
𝜕

𝜕𝑧
  ⊗  𝑑𝑧     and µ = (z)dx

2
 Thus, the quality between TxMg 

and T
*
xMg is 

[µ : 𝜑]  𝜇
𝑥

(z)𝜑(z)dz𝑑𝑧    

 By suitable application the Riemann-Roch theorem, we 

obtain 

dimC HB(X) = Q(X) = 3g- 3 

which implies 

dimC Tg = dimCMg = 3g- 3 

 

2. Classification of Teichmuller Space and the 

Moduli Space 
 

We describe norm structure of seven types of Kahler metrics 

(india) the Weil-Petersson metric 𝜔 wp which is incomplete, 

(ii) the Cheng-Yau’s K”ahler-Einstein metric 𝜔 KE, (iii) the 

McMullen metric 𝜔 c, (iv) the Bergman metric 𝜔 b, (v) the 

asymptotic Poincar’e metric on the moduli space 𝜔 p, (vi) 

the Ricci metric  , and (vii) the perturbed Ricci metric 𝜔T 

Six metices (viii) are complete. Ricci metric and perturbed 

Ricci metric have been studied by S.I. yau. The Teichmuller 

metric was first introduced by Teichmuller to be L
1
 norm in 

the cotangent space. For each 𝜑 = 𝜑 (z) dz2  ∈ Q (X) ≅ 

T
*

xMg, the Teichm”uller norm of 𝜑 is expressed as  

 

|| 𝜑||T = ∫x|𝜇(z)|dzd𝑧 . 
 

By using the duality. For each 𝜇 ∈ HB(X) ≅ TxMg. 

||𝜇|𝜇 = sup {Re[𝜇;𝜑] \ ||𝜑|| |r = 1 } 

 

F.P.Gardner derived that Teich”uller metric has constant 

holomorphic sectional curvature 1. 

 

The Kobayashi and the carath eodory metrics defined it for 

any complex space as follows. Let Y be a complex manifold 

and of dimension n. let ∆R be the disk in Country with radius 

R. Let ∆ = ∆1 and let 𝜌 be the Poincar’e metric on ∆. Let P 𝜑 

Y be a point and let v 𝜑 Tp Y be a holomorphic tangent 

vector. Let Hol (Y, ∆R) and Hol (∆R, Y) be the spaces of 

holomorphic maps from Y to ∆R and from ∆R to Y 

respectively. The Caratheodory norm of the vector v is 

defined as follows. 

||𝜗||c =   sup   ||f*𝜗||∆1𝜌 

          

f∈Hol(Y, ∆)        ....(5) 

and the Kabayashi norm of v is expressed as 

|| 𝜗||k = 
𝑖𝑛𝑓

𝑓∈𝐻𝑜𝑙  ∆R Y ,f 0 =P1  f1 0 =𝜗
 
2

𝑅
. 

 

The Bergman (pseudo) metric has been defined for any 

complex space Y provided the Bergman Kernel is positive. 

Let Ky be the canonical bundle of Y and let W be the space 

of L2 holomorphic sections of Ky in the sense that if 𝜍 ∈ W, 

then 

|| 𝜍||
2

𝐿
 = ( −1))

n2
 𝜍 ∆ 𝜍 <∞ 

 

The inner product on W is defined to be 

( 𝜍,𝜌) =   ( −1)n2𝜍 ∆ 𝜌  
for all 𝜍 𝜌 ∈ W. Let 𝜍1 𝜍2 ⋯ be an othonormal basis of W. 

The Bergman Kernel form is the non-negative (n, n)- form 

𝛽y =  ( −1)∞
0;1 n2 aj ∆ aj 

 

With a suitable choice of local coordinates z1 ⋯ zn. we get 

𝛽Y = BEY(..........) ( −)n2 dz1 ∆ ... ∆ d2n ∆ d21 ∆ ... ∆ 𝑑2    n 

where BEY (z, 𝑧 ) is called the Bergman kernel function. if 

the Bergman kernel BY is positive, Bergman metric is 

defined as follows. 

B𝑖𝑗  = 
𝜕2𝑙𝑜𝑔𝐵𝐸𝑌  (𝑧 ,𝑧 )

𝜕2𝑖𝜕2 𝑗
 

 

The Bergman metric is well-defined and is non degenerate if 

the elements in W separate points and the first jet of Y. 

Hence, the Bergman metric is a K”ahler metric. We thus 

conclude that both the Teichmuller space and the moduli 

space are equipped with the Bergman metrics. However, the 

Bergman metric on the moduli space is different from the 

metric induced from the Bergman metric of the 

Teichm”uller space. The bergman metric defined on the 

moduli space is incomplete due to the fact that the moduli 

space is quasi-projective and any L2 holomorphic section 

the canonical bundle can be extended over. We state here the 

basic properties of the Kobayashi, the Carath eodory and the 

Bergman metrics which have been studied by S. Kobayash. 

We reformulate some of the theorem in its complex metric 

structure. 

 

3. Theorem 
 

Let X be a complex space. Then following relations holds  

(i) ||  .  ||c. x  ≤  ||  .  ||K,X; 

(ii) Let Y be another coplex space and f : X   Y be a 

holomorphic map. Let p ∈ X and v ∈ TpX. 

Then||f+(𝜗)||C,Y f(p) ≤  ||𝜗||C,X, p and ||f*(𝜗)||K.Y f(p) 

≤ ||𝜗|| K,X,P; 

(iii) If X ∁ Y  is a connected open subset and z ∈ X is a 

point. Then with any local coordinates we have BEY (z) 

≤ BEX (z); 

(iv) If the Bergman kernel is positive, then at each point z ∈ 

X a peack section 𝜍 at z exists. Such a peak section is 

unique up to a constant factor c with norm 1. 

furthermore, with any choice of local coordinates, we 

have BEX(z) = | 𝜍(z)|
2
; 

(v) If the Bergman kernel of X is positive, the || . ||C,X ≤ 2||  

.  ||B.X; 

(vi) If X is a bounded convex domain C
n
, then||  .  || C.X = ||  

.  K,X; 

(vii) Let |  .  | be the Euclidean norm and let Br be the open 

ball with centre 0 and radius r in C
n
. Then for any 

holomorphic tangent vector v at 0, 

|𝜗|C.Br0 = ||𝜗||K.Br.0 = 
2

𝑟
|𝜗| 

where |v| is the Euclidean norm of v. 
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Proof 

The three Finsler metrics (i) - (iii) paly a significant role in 

understanding the hyperbolic geometry of the doduli spaces, 

and the mapping class group. It has been derived that the 

Bergman metric on the Teichmuller space is complete The 

Weil-Petersson metric is the first K”ahler metric defined on 

the Teichmuller and the moduli space. It has been defined by 

using the L
2
 inner product on the tangent space in the 

following way: let 𝜇, 𝜗 ∈ TxMg Two gangent vectors and let 

λ be the unique K”ahler-Enistein metric on X. Then the 

Weil-Pertersson metric is given by 

h(𝜇. 𝜗) = ∫x𝜇𝑣  d𝜗 

where dv = 
 −1

2
 λ  dz ∆ is the volume form. The curvatures 

of the Weil-Pertesson metric have been investigated by 

Ahlors. Royden and Wolpert, its Ricci and holomophic 

sectional carvatuure are all negative with negative upper 

bound, but with bno nower bound. Its boundary behavior is 

incomplete metric from which we find that it is an 

inmomplete metric. The xistence of the K”ahler-Einstein 

metric was studied by Cheng-yau. Its Ricci curvature is -1. 

The expression for Ricci-curvature is given by 

𝜕𝜕 log𝜔n
KE  =  𝜔KE 

where n = 3g – 3. it has been found that a bounded domain 

in Cn admits a complete K”ahler-Einstien metric if and only 

if it is pseudoconvex. The McMullen 1/1 metric defined has 

been Weil-Pertersson metric by adding a K”ahler form 

whose potention involves the short geodesic length functions 

on the Riemann surfaces. for each simple colosed curve y 

let, 1y (X) be the length of the unique geodesic in the 

homotopy class of y with respect to the unique K:ahler-

Einstein metric. Then the McMullen metric is defined as 

follows. 

𝜔𝜗 = 𝜔wp – i𝛿 ∑ 𝜕𝜕 Log
∈

𝜑
 

where ∈ and 𝛿 are small positive constants and Log(x) is a 

smooth function defined as follows. 

Log(r) = {
log  𝑟      .𝑟   ≥  2

0           𝑟   ≥  1.
} 

 

This metric is Kahler hyperbolic imples that it satisfies the 

following conditions: 

(i) (Mg  𝜔1/1) has finite volume: 

(ii) The sectional Curvature of (Mg,   𝜔 1/1 ) is bounded 

above and below; 

(iii) The injectivity radius of (Tg, 𝜔 1/1) is bounded below; 

(iv) On Tg, the K”ahler form 𝜔1/1 can be written as 𝜔1/1 

where 𝛼 is a bounded 1- form. 

 

We find that the Kahler hyperbolicity is that the L
2 

-

cohomology is trivial except for the middle dimension. The 

asymptotoic Poincar’e metric is defined as a complete 

K”ahler metric on a complex manifold M which is obtained 

by removing a divisor Y with only normal crossings from a 

compact K”ahler manifold (𝑀 , 𝜔). The Kahler hyperbolicity 

satisfies the above conditions (i) – (iii). 

 

4. Theorem 
 

The curvature of the Weil-Petersson metric is given by  

RJ,KT= ∫x(J∫kt + 𝜋∫kj) dv 

Proof 

We show that the Ricci and the holomorphic sectional 

curvature have explicit negative upper bound. we establish 

the curvature formula of the Ricci metric and introduce more 

operators. Firstly, the Commutator of the operator VK and (    

+    1) play an important role. we view the vector field VK as 

a operator acting on functions. Let us define.  

 

ξk = [𝜗1     ξk]    ….(9) 

 
By simple computation reduces to 

∈K  =  AKP. 

Lte us define the commutator of 𝜗1     and ∈K.Let us put 

Q𝑘𝑗  =  (𝜗𝑗.    ∈K) 

We obtain the relation 

Q𝑘𝑙  (f) = 𝑃  (e𝑘 )P(f) – 2f 𝐾𝑖     

f + λ
-1 
𝜕z f𝑘𝑖  𝜕z f𝑘𝑖  𝜕𝑧 f 

 for any smooth function f. Let us introduce the 

symmertization operator of the indices. Let U be any 

quantity which depends on indicesi i,k,𝛼,𝑗 ,𝑙  ,𝛽 . The 

symmetrization operator 𝜍1 is defined by taking summation 

of all orders of the triple (i, k,  ). Fin other words, 

𝜍1 (U(i,k,𝛼,𝑗 ,𝑙  ,𝛽 ))  =  U(i,k,𝛼,𝑗 ,𝑙  ,𝛽  ) + U(i,k,𝛼,𝑗 ,𝑙  ,𝛽 ) 
+  U(i,k,𝛼,𝑗 ,𝑙  ,𝛽  ) + U(i,k,𝛼,𝑗 ,𝑙  ,𝛽 ) + U(i,k,𝛼,𝑗 ,𝑙  ,𝛽 ) 

+ U(i,k,𝛼,𝑗 ,𝑙  ,𝛽 ) + U(i,k,𝛼,𝑗 ,𝑙  ,𝛽 )       …(10) 

 

Similarly, 𝜍2 is the symmetrization operator of 𝑗  and 𝛽  and 𝜍  

is the symmetrization operator of 𝑗  𝑙  and 𝛽 . K. Liu an S.T. 

Yau derived the curvature formulas stated here as a theorem. 
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