ResearchGate Impact Factor (2018): 0.28 | SJIF (2019): 7.583

Study of Ambient Air Quality in Urban and Rural Residential Areas of Kalyan City in Maharashtra

Tayade Sandeep¹, Chandrakant Singh²

¹Member, Socleen, Elanza Tower, Sayani Rd, Prabhadevi (West), Mumbai, Maharashtra, India Sandeeptayade[at]gmail.com

²Ph.D Research Scholar, G.N. Khalsa College, Matunga, University of Mumbai, Mumbai, India *Chandrakantsinghin[at]gmail.com*

Abstract: Major issues and increasing risk factor due to the air pollution, causes for ill health in India and to the country's burden of disease. Rural and urban towns of India are both affected by poor air quality. Urban activities create more pollution as compare with rural activities. This paper assesses the status of ambient air quality in urban and rural residential area of adjoining village of Kalyan city. For assessment purpose, three monitoring sites were selected for urban as well as nearby adjourning residential rural to understand the present status of the air quality of this region. The ambient air quality was studies using assessing the air pollutants parameters, namely, Particulate matter less than 10 microns (PM_{10}) , Particulate matter less than 2.5 microns $(PM_{2.5})$, Nitrogen Dioxide (NO_2) , Sulphur Dioxide (SO_2) , Ammonia (NH_3) , and Carbon Monoxide (CO). After assessing, it has been observed that PM_{10} and $PM_{2.5}$ valves found high at Urban as comparison to Rural site at all locations, exceeded the prescribed standard. Gaseous pollutants are found to be in prescribed standards at urban and rural sites. Air Quality Index were observed as heavily polluted at all urban sites and also at one rural site (Koregaon). It is recommended that particulate matter should be reduced at urban as well as rural areas.

Keywords: Risk factor, ambient air quality, particulate matter, microns

1. Introduction

Today, air pollution is considered as one of the utmost problems affecting humans, with significant consequences on the environment as well as health of the population. In metros or megacities such as São Paulo, Los Angeles, and Beijing, the industrial processes, fuel combustion, transportation and urbanization are major causes of contamination sources [1]-[3]. Subsequently, air pollutant determinations have attracted great concern over the last decades due to the evidence as they are associated with respiratory and cardiovascular diseases in humans [4]-[5]. Increase in the concentration of traffic particles by 1 μ g/m³, could be associated with about 7,000 additional early deaths per year in the United States [6].

Exposure to air pollution has shown to slow lung development in children [7], affect cognitive development [8], and has resulted in high levels of mortality from respiratory infections [9]. The older aged is more likely to develop chronic respiratory and cardiac illnesses as a result of long-term exposure and are more susceptible to heart attacks and strokes during episodic high pollution events. Susceptible also are those of a lower socio-economic status with results of studies shows they are more vulnerable to insults from air pollution exposure for a various reason including occupation, housing, cooking fuel use, the common link being poverty [10].

Worldwide, it is observed that air pollution is now widely known to have impacts over human health, agriculture, ecology, buildings, and climate. It affects the respiratory, cardiovascular, cardiopulmonary and reproductive systems and that can also lead to cancer [11]. International Agency for Research on Cancer (IARC) has classified outdoor air pollution as carcinogenic to humans [12]. Lim et al. (2012) estimated 0.62 million mortalities annually in India that

could be attributed to PM_{2.5} pollution in 2010 [13]. This makes air pollution the fifth largest killer in India. TERI [14] projected the mortalities to increase to 1.1 million in 2031 and 1.8 million in 2051, in a business as usual scenario. IHME (2013) also lists air pollution among the top 10 health risks in India [15].

Other than ambient outdoor air pollution, biomass used in rural areas and urban slums for cooking and kerosene for lighting is also associated indoor air pollution and with a many health disease such as Chronic Obstructive Pulmonary Disease [16], tuberculosis [17], cataract [18] and adverse pregnancy results [19]. Carbon monoxide (CO) is one of the significant sources of motor vehicle exhausts in megacities of the developing countries [20]-[21]. A study by Sathitkunarat et al. (2006) show that traffic can contribute with up to 90% of total CO emissions in a city. CO reduces the oxygen-carrying capacity of the blood and health-based guidelines for maximum ambient CO-levels are; 86 ppm for 15 min, 52 ppm for 30 min, 26 ppm for 1 hour and 9 ppm for 8 hours exposure [22]-[23].

In rural areas, air quality is being measured but no action was taken to reduce the pollutant level. Thus, in other words, options available in paper/reports only not implemented. The common belief is that rural areas are free from air pollution. On the contrary, air quality in the rural areas all over the world and particularly in the developing countries may be more polluted than some of the urban areas. Major sources of air pollution in rural area are indiscriminate use of insecticides/pesticides sprays and burning of wheat and paddy straw. The major air pollutants include gases like sulphur dioxide, oxides of nitrogen, suspended particulate matter and respirable suspended particulate matter. These air pollutants in the atmosphere have an adverse effect on human life and are contributed by various sources. The direct effect of air pollutants on plants, animals and soil can

Volume 9 Issue 10, October 2020

www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

Paper ID: SR201019213550 DOI: 10.21275/SR201019213550 1489

ResearchGate Impact Factor (2018): 0.28 | SJIF (2019): 7.583

influence the structure and function of ecosystems, including self-regulation ability, thereby affecting the quality of life [24].

Air quality of a city is not only affected by local emission sources but also related to meteorological conditions. Various studies have analyses the influences of wind, temperature, and relative humidity on the concentrations of air pollutants [25]-[26]. Furthermore, air quality is affected by temporary weather conditions, and it might also be influenced by the variability of climate systems. So, it needs to monitor the ambient air quality of urban and adjoining rural residential areas of Kalyan City.

2. Method and Materials

Kalyan Dombilivi Municipal Corporation is located in Thane district, situated on the western coast and comes under the Konkan division of the Maharashtra state. The climate of the district is distinctly different on the coastal plains and on the eastern slopes. Being fully tropical, the climate on the coast, the coastal strip including Thane, Vasai, Palghar and Dahanu Tahsils is very humid and warm. On the other hand, the climate on the eastern slopes and in the plains at the foot of the slopes is comparatively less humid. The maximum temperature varies from 28.0°C to 35.2°C and the minimum temperature varies from 16.3°C to 26.5°C. The district receives average rainfall of 2000 to 4000 mm from the South-West monsoons during the months June to September (https://thane.nic.in/district-profile/). The study was carried out at six sites, out of which three each site located at rural and urban city as shown in Table 1.

Table 1: Details of Monitoring Locations at Urban and Rural Site

rear at the					
Urban Air Monitoring Locations		Rural Air Monitoring Locations			
Sr.No Site		Sr.No	Site		
U1	U1 Dombivali		Konegaon		
U2	Kalyan	R2	Bhalgaon		
U3	Vithallwadi	R3	Golavali		

Air monitoring samples was collected for twice a week in a month for twelve months. Thus, for one site, twelve weeks samples are collected for air monitoring. Monitoring was carried out during the month of March 2018 to February 2019. The ambient air quality was measured for Particulate Matter less than 10 microns (PM₁₀), Particulate matter less than 2.5 microns (PM_{2.5}), Nitrogen Dioxide (NO_X), Sulphur Dioxide (SO₂), Ammonia (NH₃) and Carbon Monoxide (CO). Samples of PM₁₀ and PM_{2.5} were collected at all the 6 sites that include rural and urban sites, at 24 hours for twice a week. PM10 and PM2.5 samples were collected on Whatman GF/A and Teflon-Millipore filter papers by respirable dust sampler (APM 460DX, Envirotech, New Delhi) and Wins-Anderson impactor (APM 550, Envirotech, New Delhi) with sharper cut point of 10µm and 2.5µm, respectively. The high-volume sampler and Wins- Anderson impactor was operated at flow rates of 1.0 m³/min and 16.67 l/min, respectively.

Filter papers used for the instruments were pre-weighed on analytical weighing balance before the sampling and desiccated for 24 hours. To avoid the contamination, the conditioned and weighed filter papers were placed in filter holder cassette for PM_{2.5} and zip lock polybag for PM₁₀ and were taken to the field for sampling. Before loading the filter papers on the samplers, initial volume and timer readings were noted for PM_{2.5} and the manometer reading for PM₁₀ sampler. Filter papers were loaded on respective samplers and starting the samplers. After sampling, the loaded filter of PM_{2.5} was removed with forceps and placed in cassette and wrapped with aluminum foil. Similarly, the PM₁₀ filter paper was covered in aluminum foil and placed back in zip lock polybag and both the filter papers were transferred to laboratory as soon as possible. In laboratory, filter papers were conditioned and weighed again to determine the mass concentration of the PM₁₀ and PM_{2.5}. The weighed filter papers were preserved in freezer for chemical analysis.

Parameters such as SO₂, NO₂ and NH₃ were measured with help of RDS APM 460DX with gaseous attachment APM 411 by sucking air into appropriate reagent for 48 hours every week at 24-hourly intervals and after air monitoring it procured into laboratory and analysis for the concentration level. SO₂, NO₂ and NH₃ were collected by bubbling the ample in a specific absorbing (Sodium tetrachloromercurate for SO₂, Sodium hydroxide for NO₂, and 0.1N Sulphuric acid for NH₃) solution at an average flow rate of 0.2-0.5 l/min. Impinge samples were placed in the ice boxes immediately after sampling and placed immediately to a refrigerator and analyzed within 24 hrs. The concentration of NO₂ was measured with standard method of Modified [27], SO₂ was measured by modified [28] and NH₃ was measured by using Nessler method. The instrument was kept at a height of 2 to 2.5 mts from the surface of the ground. CO samples collected in poly-teadlar bags using low volume sampler for 8 hours at respective sites. Samples were transferred to laboratory and analyzed using Thermo Scientific Analyzer (Model 48i CO).

2.1 Air Quality Index

Air Quality Index (AQI) is used to study the air quality in cities across the country on a real time basis and also to enhance the public awareness. Air Quality Index (AQI) is one such tool for effective dissemination of air quality information to people [29]-[30]. AQI will help the people know about the level of pollution in the ambient air on daily basis. The AQI is a measure of the ratio of the pollutant's concentration to the status of ambient air in monitoring places. Indices of air pollutant or air quality have been used for about 25 years [29]. The following computation was used to drive the air quality index of the sites under consideration:

$$AQI=1/4 \times (I_{PM10}/S_{PM10} + I_{PM2.5} / S_{PM2.5} + I_{SO2} / S_{SO2} + I_{NO2} / S_{NO2} + I_{NH3} / S_{NH3} + I_{CO} / S_{CO}) \times 100$$
 (1)

Where:

 I_{PM10} , $I_{PM2.5}$, I_{SO2} , I_{NO2} , I_{NH3} and I_{CO} = Individual values of particulate matter (10 and 2.5), Sulphur dioxide oxides of nitrogen, ammonia and carbon monoxide respectively.

 $S_{PM10},\ S_{PM2.5},\ S_{SO2},\ S_{NO2},\ S_{NH3}$ and $S_{CO}=$ Standards of ambient air quality.

The indices [31] use health-based descriptions to provide

Volume 9 Issue 10, October 2020

www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

Paper ID: SR201019213550 DOI: 10.21275/SR201019213550 1490

ResearchGate Impact Factor (2018): 0.28 | SJIF (2019): 7.583

meaningful information to the public. The five levels of AQI are represented in Table 2.

Table 2: Index Values of Air Quality Index calculation

Sr No.	Index Value	Remarks
1	Between 10 - 25	Clear air
2	Between 26 - 50	Light air pollution
3	Between 51 - 75	Moderate air pollution
4	Between 76-100	Heavy air pollution
5	More than 100	Severe air pollution

(Source: Rao and Rao, 1989)

3. Results and Discussion

PM₁₀ values observed at Urban sites are in the range of 146 $\mu g/m^3$ (U2) to 527 $\mu g/m^3$ (U1) respectively. Average PM₁₀ values are found highest at U1. i.e. Dombivali site (420 µg/m³) followed by Vithallwadi (U3) and Kalyan (U2) respectively. All PM₁₀ valves of Urban sites are found to be higher than standard prescribe by National Ambient Air Quality (Table 4). Table 3 and Figure 1 shows the concentration levels of PM₁₀ at Urban sites. Maximum and minimum values of PM₁₀ at Rural sites are observed at 333 $\mu g/m^3$ (R1) and 26 $\mu g/m^3$ (R2) respectively. Average PM₁₀ values are found higher at Konegaon (R1) as compare to other sites as well as higher than standard (Table 4) as shown in Figure 2. Urban area found more polluted (420 $\mu g/m^3$) with PM₁₀ compared to the rural residential area (247) μg/m³). PM₁₀ is most associated with vehicular exhausts, road dust and construction activities. Wear and tear of brakes and tyres on vehicles and crushing activities at construction sites can all contribute to a rise in PM₁₀.

Table 3:Concentration Levels of PM₁₀& PM_{2.5} at Urban & Rural sites

Ruful Sites							
4	C 1:	$PM_{10} (\mu g/m^3)$			$PM_{2.5} (\mu g/m^3)$		
Area	Sampling sites	Avg	Min	Max	Avg	Min	Max
	Dombivali (U1)	420	250	527	107	83	190
	Kalyan (U2)	315	182	430	129	56	286
	Vithallwadi ((U3)	324	146	459	142	52	428
	Konegaon (R1)	247	75	333	89	56	133
Rural	Bhalgaon (R2)	135	26	253	51	17	78
	Golavali (R3)	105	49	234	51	42	60

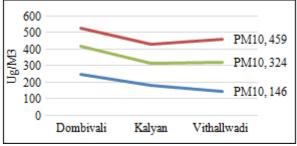


Figure 1: Concentration of PM10 at Urban Sites

Table 4: Standard for National Ambient Air Quality (CPCB, 2009)

		/	
Pollutants Parameters	Time Weighted average	Residential Concentration in ambient air	Method of Measurement
Particulate Matter (size less than 10μm) or PM10, μg/m3	24 hrs	100	Gravimetric
Particulate Matter (size less than 2.5 μm) or PM2.5, μg/m3	24 hrs	60	Gravimetric
Sulphur Dioxide (SO2), µg/m3	24 hrs	80	Improved West & Gaeke
Nitrogen Dioxide (NO2), μg/m3	24 hrs	80	Modified Jacob & Hochheiser
Carbon Monoxide (CO), mg/m3	8 hrs	02	NDIR spectroscopy
Ammonia (NH3), µg/m3	24 hrs	400	Indophenol blue method
a abab anno			

Source: CPCB, 2009

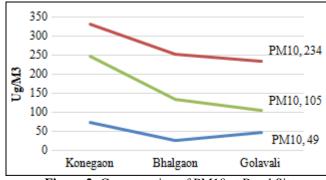


Figure 2: Concentration of PM10 at Rural Sites

 $PM_{2.5}$ values found at urban sites are in the range of 52 $\mu g/m^3$ (U3) to 428 $\mu g/m^3$ (U3) respectively. Average $PM_{2.5}$ values are found highest at U3. i.e. Vithallwadi site (142 $\mu g/m^3$) followed by Kalyan (U2) and Dombivali (U1) respectively as shown Average $PM_{2.5}$ valves of urban sites are found to be higher than standard prescribe by National Ambient Air Quality (Table 4). Table 3 and Figure 3 shows the concentration levels of $PM_{2.5}$ at rural sites. Similarly, average value of $PM_{2.5}$ is higher at Konegaon (R1) and more than standard prescribe by National Ambient Air Quality (Table 4). Alternatively, $PM^{2.5}$ is more associated with fuel burning, industrial combustion processes and vehicle emissions.

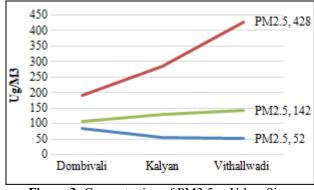


Figure 3: Concentration of PM2.5 at Urban Sites

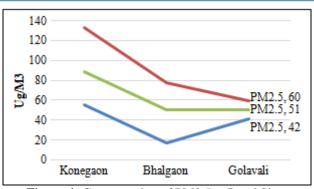


Figure 4: Concentration of PM2.5 at Rural Sites

 SO_2 values are found in the range of 53 μ g/m³ to 2 μ g/m³ and 33 μ g/m³ to 2 μ g/m³ at Urban and Rural site respectively as shown in Table 4. Average SO_2 values are highest at Dombivali (U1) i.e. 17.6 μ g/m³ and Konegaon (R1) i.e. 8.0 μ g/m³ for Urban and Rural sites as shown in Figure 5 and Figure 6 respectively and within the standard limits (Table 4).

Table 4: Concentration Levels of SO₂ at Urban and Rural

4	Campling sites	$SO_2(\mu g/m^3)$		
Area	Sampling sites	Avg	Min	Max
	Dombivali (U1)	17.6	2.0	53.0
Urban	Kalyan (U2)	8.8	2.0	43.0
	Vithallwadi ((U3)	3.3	2.0	15.0
	Konegaon (R1)	8.0	2.0	33.0
Rural	Bhalgaon (R2)	2.3	2.0	4.0
	Golavali (R3)	2.2	2.0	4.0

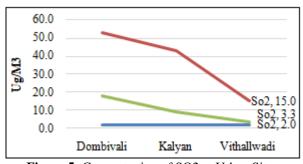


Figure 5: Concentration of SO2 at Urban Sites



Figure 6: Concentration of SO2 at Rural Sites

 NO_2 values are found in the range of 86 $\mu g/m^3$ to 5 $\mu g/m^3$ and 32 $\mu g/m^3$ to 2 $\mu g/m^3$ at Urban and Rural site respectively as shown in Table 5. Average NO_2 values are highest at Vithallwadi (U3) i.e. 86.0 $\mu g/m^3$ and Konegaon

(R1) i.e. $32.0 \mu g/m^3$ for Urban and Rural sites as shown in Figure 7 and Figure 8 respectively. All average NO_2 values within the standard limits (Table 4).

Table 5: Concentration Levels of NO₂ at Urban and Rural Sites

Area	Sampling sites	NO2 (μg/m3)			
Area	sampting sites	Avg	Min	Max	
	Dombivali (U1)	19.4	5.0	55	
Urban	Kalyan (U2)	23.0	5.0	39	
	Vithallwadi (U3)	19.7	5.0	86	
	Konegaon (R1)	13.4	5.0	32	
Rural	Bhalgaon (R2)	10.1	5.0	23	
	Golavali (R3)	6.0	5.0	11	

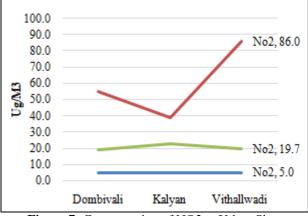


Figure 7: Concentration of NO2 at Urban Sites

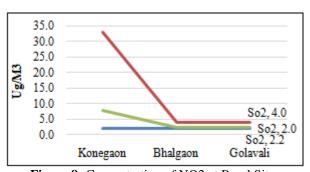


Figure 8: Concentration of NO2 at Rural Sites

NH₃ values are found in the range of 159 $\mu g/m^3$ to 5 $\mu g/m^3$ and 177 $\mu g/m^3$ to 2 $\mu g/m^3$ at Urban and Rural site respectively as shown in Table 5. Average NH₃ values are highest at Dombivali (U1) i.e. 44.8 $\mu g/m^3$ and Konegaon (R1) i.e. 48.3 $\mu g/m^3$ for Urban and Rural sites as shown in Figure 9 and Figure 10 respectively. All average NH₃ values within the standard limits (Table 4).

Table 6: Concentration Levels of NH3 at Urban and Rural Sites

A	Sampling sites	NH3 (μg/m3)			
Area		Avg	Min	Max	
	Dombivali (U1)	44.8	5.0	110	
Urban	Kalyan (U2)	40.1	5.0	134	
	Vithallwadi (U3)	37.7	5.0	159	
	Konegaon (R1)	48.3	5.0	177	
Rural	Bhalgaon (R2)	22.5	5.0	152	
	Golavali (R3)	19.3	5.0	39	

Volume 9 Issue 10, October 2020 www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

ResearchGate Impact Factor (2018): 0.28 | SJIF (2019): 7.583

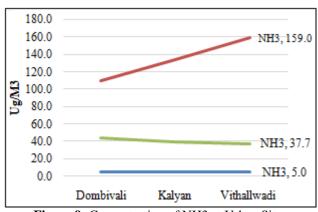


Figure 9: Concentration of NH3 at Urban Sites

CO values are found in the range of 2.5 mg/m³ to 0.3 mg/m³ and 1.2 mg/m³ to 0.3 mg/m³ at Urban and Rural site respectively as shown in Table 7. Average CO values are highest at Vithallwadi (U3) i.e. 1.0 mg/m³ and Golavali (R3) i.e. 0.9 mg/m³ for Urban and Rural sites as shown in Figure 11 and Figure 12 respectively. All average COvalues within the standard limits (Table 4).

Table 7: Concentration Levels of CO at Urban and Rural Sites

	Sites					
Area	C	CO(mg/m3)				
Area	Sampling sites	Avg	Min	Max		
	Dombivali (U1)	0.5	0.4	0.9		
Urban	Kalyan (U2)	0.8	0.5	1.2		
	Vithallwadi (U3)	1.0	0.3	2.5		
	Konegaon (R1)	0.7	0.3	1.2		
Rural	Bhalgaon (R2)	0.8	0.5	1.1		
	Golavali (R3)	0.9	0.4	1.2		

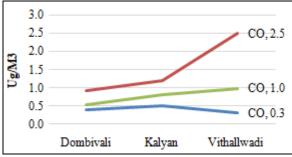


Figure 11: Concentration of CO at Urban Sites

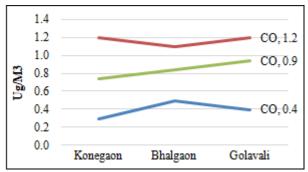


Figure 12: Concentration of CO at Rural Sites

Ambient air quality with respect to the average parameters and respective AQI is presented in Table 8. On the basis of AQI, it can be seen that the Dombivali, Kalyan, Vithallwadi, and Konegaon were heavily polluted (AQI above 100) whereas the Bhalgaon and Golavali were moderately

polluted (AQI 51-75) as per Table 2.

Table 8: Ambient air quality with respect to the average parameters and respective AQI

Sites	PM_{10}	$PM_{2.5}$	SO_2	NO_2	NH_3	CO	AQI
Dombivali	420	107	17.6	19.4	44.8	0.5	168
Kalyan	315	129	8.8	23.0	40.1	0.8	150
Vithallwadi	324	142	3.3	19.7	37.7	1.0	156
Konegaon	247	89	8.0	13.4	48.3	0.7	113
Bhalgaon	135	51	2.3	10.1	22.5	0.8	66
Golavali	105	51	2.2	6.0	19.3	0.9	57

All values in µg/m3 except CO in mg/m3

Table 9: Ambient air quality with respective AQI

Sites	AQI	Quality of Ambient air
Dombivali	168	Severe air pollution
Kalyan	150	Severe air pollution
Vithallwadi	156	Severe air pollution
Konegaon	113	Severe air pollution
Bhalgaon	66	Moderate air pollution
Golavali	57	Moderate air pollution

4. Conclusion

Average monitoring data of urban and rural sites clearly showed lower concentrations of gaseous pollutants (SO₂, NO₂, NH₃, and CO) and higher concentrations of PM₁₀ and PM_{2.5} in the ambient air. At all urban and rural the monitoring sites, PM₁₀ and PM_{2.5} concentrations exceeded the permissible limits specified by CPCB while SO₂, NO₂ NH₃ and CO were within the standard specified by CPCB. In India, the major factors for increasing Air pollution are growing number of cars in cities, private & commercial vehicles are the major factor for causing air pollution. Low standards for vehicle emissions & fuel have resulted in increased levels of Nitrogen Oxides & Sulphur dioxide.

Kerosene lanterns used in rural areas are a primary source of emission of black carbon soot and cause significant health impact, particularly in the case of women and children. Agricultural burning of residues is another factor which contributes to the problem seasonally. A business model needs to be developed for waste to energy conversion using biomass gasification technology. Dusty construction sites have multiplied, outdoor air pollution has become a major healthhazard. Heavy duty vehicles such as trucks and interstate buses have the highest share in vehicular emission. Many steps to reduce air pollutants in terms of introducing many policies and increasing awareness towards clean energy have taken place, however lot needs to be done for active implementation. A shift towards renewable energy is part of the plan to reduce dependency on fossil fuels as well as provide clean energy to households that are currently using kerosene for lighting purposes.

References

[1] C. Warneke, Gouw J. A. de, J. S. Holloway, J. Peischl, T. B. Ryerson, E. Atlas, D. Blake, M. Trainer, and D. D. Parrish, "Multiyear trends in volatile organic compounds in Los Angeles, California: Five decades of decreasing emissions," Journal of Geophysical Research Atmospheres, 117 (17), DOV17, 2012.

1493

Volume 9 Issue 10, October 2020

www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

Paper ID: SR201019213550 DOI: 10.21275/SR201019213550

ResearchGate Impact Factor (2018): 0.28 | SJIF (2019): 7.583

- [2] Q. Zhang, Yuan. B, Shao. M, Wang, X, Lu.S, Lu. K, M. Wang, L. Chen, C.-C. Chang, and S. C. Liu, "Variations of ground level O3 and its precursors in Beijing in summertime between 2005 and 2011," Atmospheric Chemistry and Physics., 14, pp. 6089–6101, 2014.
- [3] N. Gouveia, G.A.S. Mendonça, A.P. Leon, J.E.M. Correia, W.L. Junger, C.U. Freitas, R.P. Daumas, L.C. Martins, L. Giussepe, G. M. S. Conceição, A. Manerich, J. Cunha-Cruz, "Poluição do ar e efeitos na saúde nas populações de duas grandes metrópoles brasileiras" English "Air pollution and health effects in two Brazilian metropolis", Epidemiology and Health Services, 12, pp. 29-40, 2003
- [4] D.W. Dockery, C.A. Pope, "Acute respiratory effects of particulate air pollution.", Annual Review of Public, 15, pp.107-132, 1994.
- [5] O. Wappelhorst, I. Kuhn, J. Oehlmann, B. Markert, "Deposition and disease: a moss monitoring project as an approach to ascertaining potential connections", Science of Total Environment., 249 (1-3), pp.243-256, 2000.
- [6] J. Schwartz, F. Laden, and A. Zanobetti., "The Concentration–Response Relation between PM2.5 and Daily Deaths", Environmental Health Perspectives, 110(10), pp 1025-1029, 2002.
- [7] Central Pollution Control Board, "Study on Ambient Air Quality, Respiratory Symptoms and Lung Function of Children in Delhi". 2019 Online Available from: http://cpcb.nic.in/upload/NewItems/NewItem_162_Chi ldren.pdf
- [8] A. Clifford, L. Lang, R. Chen, KJ. Anstey, A. Seaton, "Exposure to air pollution and cognitive functioning across the life course A systematic literature review". Environmental Research, 147 pp. 383–98, 2016.
- [9] AJ. Cohen, M. Brauer, R Burnett, HR. Anderson, J. Frostad, K. Estep, et al. "Estimates and 25- year trends of the global burden of disease attributable to ambient air pollution: an analysis of data from the Global Burden of Diseases Study", 389, pp 1907-18, 2017.
- [10] A Hajat, Diez-Roux A V., Adar SD, Auchincloss AH, Lovasi GS, O'Neill MS, et al. "Air Pollution and Individual and Neighborhood Socioeconomic Status: Evidence from the Multi Ethnic Study of therosclerosis (MESA)", Environmental Health Perspectives, 121(11-12): 1325–1333, 2013.
- [11] S. Steinle, S. Reis, CE. Sabel, S. Semple, MM. Twigg, "Personal exposure monitoring of PM2.5 in indoor and outdoor microenvironments", Science of the Total Environment, 508, 383–394, 2015.
- [12] IARC, "Outdoor air pollution a leading environmental cause of cancer deaths" 2013, URL: https://www.iarc.fr/en/mediacentre/iarcnews/pdf/pr221
 _E.pdf, International Agency for Research on Cancer
- [13] SS. Lim, T. Vos, AD. Flaxman, G. Danaei, K. Shibuya, H. Adair-Rohani, "A comparative risk assessment of burden of disease and injury attributable to 67 risk factors and risk factor clusters in 21 regions, 1990-2010: a systematic analysis for the Global Burden of Disease Study 2010", Lancet., 380(9859):2224–60, 2012.
- [14] TERI, Energy & Environment Data Diary and Yearbook 2014/15. New Delhi: TERI Press.

- [15] Institute for Health Metrics and Evaluation (IHME), "The Global Burden of Disease 2010: Generating Evidence and Guiding Policy, (Seattle, WA: Institute for Health Metrics and Evaluation).
- [16] ND. Sukhsohale, UW. Narlawar, MS. Phatak, "Indoor air pollution from biomass combustion and its adverse health effects in central India: an exposure-response study", Indian J Community Med., 38(3), pp. 162-7, 2013.
- [17] PVM. Lakshmi, NK. Virdi, JS. Thakur, KR. Smith, MN. Bates, R. Kumar, "Biomass fuel and risk of tuberculosis: a case-control study from Northern India", J Epidemiol Community Health, 66(5), pp 457–61, 2012.
- [18] AK. Pokhrel, KR. Smith, A. Khalakdina, A. Deuja, MN, Bates, "Casecontrol study of indoor cooking smoke exposure and cataract in Nepal and India", Int J Epidemiol., 34(3), pp. 702–8, 2005.
- [19] PVM, Lakshmi, NK, Virdi, A. Sharma, JP. Tripathy, KR. Smith, MN. Bates, "Household air pollution and stillbirths in India: analysis of the DLHS-II National Survey", Environ Res., 121, pp. 17–22, 2013.
- [20] G. Kumar, S. Sampath, VS. Jeena, R. Anjali, "Carbon Monoxide Pollution 1428 Levels at Environmentally Different Sites", J. Ind. Geophys. 12 (1), pp. 31-40, 2008.
- [21] H. Mayer, "Air pollution in cities", Atmospheric Environment, 33, 4029-4037, 1999.
- [22] S. Sathitkunarat, P. Wongwises, R. Pan-Aram, M. Zhang, "Carbon monoxide emission and concentration models for Chiang Mai urban area", Advances in Atmospheric Sciences, 23, pp 901–908, 2006.
- [23] WHO, "Environmental Health Criteria 213: Carbon Monoxide", 2nd ed. 2004.
- [24] WHO, "Air Quality Guidelines for Europe. Copenhagen, WHO Regional Office for Europe", 1987 (WHO Regional Publications, European Series, No. 23).
- [25] WY. Fung, R. Wu, "Relationship between intraseasonal variations of air pollution and meteorological variables in Hong Kong" Ann. GIS, 20, pp. 217–226, 2014.
- [26] T. Wang, Y. Wu, T. Cheung, K. Lam, "A study of surface ozone and the relation to complex wind flow in Hong Kong", Atmos. Environ., 35, pp. 3203–3215, 2001.
- [27] MB. Jacobs and S. Hochheiser, C. Anal. 30, 426, 1958.
- [28] PW. West & GC. Gaeke, "Fixation of Sulphur dioxide As Disulphito mercurate", (ii) and Sub-sequent Colorimetric Estimation", C. Anal, 28 (12), 1956.
- [29] A. Zlauddin, NA. Siddiqui, "air quality index (AQI) A tool to determine ambient air quality", Pollution Research, 25, pp. 885-887, 2006.
- [30] PC. Joshi, M. Semwal, "Distribution of air pollutants in ambient air of district Haridwar (Uttarakhand), India: A case study after establishment of State Industrial Development Corporation", International Journal of Environmental Science, 2 (1), pp. 249-254, 2011.
- [31] MN. Rao, HVN. Rao, "Air pollution", TATA Mc GrawHill publishing company, New Delhi. 1986.

Volume 9 Issue 10, October 2020

www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

Paper ID: SR201019213550 DOI: 10.21275/SR201019213550 1494

ResearchGate Impact Factor (2018): 0.28 | SJIF (2019): 7.583

Author Profile

Sandeep Tayade received the M.Sc. degrees in Environmental Science from Institute of Science, Mumbai in 1999. During 1999-2015, he worked with various organization (CSIR-NEERI, WTERT, EPRL, etc.) related to various environmental components and

research projects (Technology development). Presently, now with SOCLEEN (NGO) at Mumbai for SWM, awareness education, etc.

Chandrakant R. Singh received B.Sc. and M.Sc (Research) degree in Chemistry subject from Mumbai University in 2004 and 2009 respectively. Presently, he is doing Ph.D (Chemistry) with Mumbai University on Perovskite Nanoparticles and their potential application as Antimicrobials.

Volume 9 Issue 10, October 2020

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

1495

Paper ID: SR201019213550 DOI: 10.21275/SR201019213550