
International Journal of Science and Research (IJSR)
ISSN: 2319-7064

ResearchGate Impact Factor (2018): 0.28 | SJIF (2018): 7.426

Volume 9 Issue 1, January 2020

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

Multikeyword Rank Search Scheme for Unindexed

Encrypted Cloud Data

Vaishali Bambode

Master of Engineering, Department of Computer Science and Engineering, SIPNA COET, Amravati, India

Abstract: The increasing popularity of cloud computing leads to more and more data owners to outsource their data to cloud servers

for great convenience and reduced cost in data management. However, sensitive data should be encrypted before outsourcing For

privacy requirements, which no longer support data utilization like keyword –based document retrieval. In this review paper, we present

Asecure multi keyword ranked search scheme over encrypted cloud data, which simultaneously supports dynamic update operation like

deletion and insertion of documents. Specifically, the vector space model and the widely-used TF-IDF model are combined in the index

construction and query generation. We construct a special tree-based index structure and propose a “Greedy Depth-first Search”

algorithm to provide efficient multi keyword ranked search. The secure kNN algorithm is utilized to encrypt the index and query vectors,

and meanwhile ensure accurate relevance score calculation between encrypted index and query vectors. In order to resist statistical

attacks, phantom means illusory terms are added to the index vector for blinding search results. Due to the use of special tree-based

index structure, the proposed scheme can achieve sub-linear search time and deal with the deletion and insertion of documents flexibly.

Keywords: Cloud Computing, Searchable schemes, Multi keyword Rank Search, Encrypted Data, Dynamic Update

1. Introduction

1.1 Overview

Cloud computing has been considered as a new model of

enterprise IT infrastructure, which can organize huge

resource of computing, storage and applications, and enable

users to enjoy ubiquitous, convenient and on demand

network access to a shared pool of configurable computing

resources with great efficiency and minimal economic

overhead . The cloud service providers (CSPs) that keep the

data for users may access users sensitive information

without authorization. A general approach to protect the data

confidentiality is to encrypt the data before outsourcing.

However, this will cause a huge cost in terms of data

usability. Downloading all the data from the cloud and

decrypt locally is obviously impractical. In order to address

the above problem, researchers have designed some general-

purpose solutions with fully-homomorphism encryption

means conversion of data into cipher text that can be

analyzed and worked with as if it were still in its original

form. However, these methods are not practical due to their

high computational overhead for both the cloud sever and

user.

1.2 Searchable Encryption Scheme

On the contrary, more practical special-purpose solutions,

such as searchable encryption (SE) schemes have made

specific contributions in terms of efficiency, functionality

and security. Searchable encryption schemes enable the

client to store the encrypted data to the cloud and execute

keyword search over cipher text domain. So far, abundant

work has been proposed under to achieve various search

functionality, such as single keyword search, similarity

search, multi-keyword Boolean search, ranked search, multi-

keyword ranked search, etc. Among them, multi-keyword

ranked search achieves more and more attention for its

practical applicability. Recently, some dynamic schemes

have been proposed to support inserting and deleting

operations on document collection. These are significant

works as it is highly possible that the data owners need to

update their data on the cloud server. But few of the

dynamic schemes support efficient multi-keyword ranked

search.

2. Proposed Work

This project proposes a secure tree-based search scheme

over the encrypted cloud data, which supports multi-

keyword ranked search and dynamic operation on the

document collection. In order to obtain high search

efficiency, we construct a tree-based index structure and

propose a ―Greedy Depth-first Search (GDFS)‖ algorithm

based on this index tree. In existing system, The techniques

of data updation are utilizes effectively but there is big

problem in working with sharing keys and decrypted data

with other users which may disturb the security as well in

this a unencrypted index key is used for ranking which may

break security as well. So that we proposed a mechanism in

which the encrypted index term key will get generated and

perform the evaluation for the multi keyword searching in

all encrypted cloud storage. This project helps to implement

metadata based keyword search. Metadata based keyword

search means search engine that powers a portal search

based on a specific metadata schema. It encourages to

implement usability based ranking optimization i.e. to check

how many times a particular file has been accessed. It

supports privacy preserving over shared data to cloud by

means of encrypting data. As well to implement efficient

ranking system based on term frequency generation. The

TF-IDF module is used for page ranking.

3. Literature Survey

Searchable encryption schemes [1] enable the clients to store

the encrypted data to the cloud and execute keyword search

over cipher text domain. Due to different cryptography

primitives, searchable encryption schemes can be

constructed using public key based cryptography[2][3] or

Paper ID: ART20204375 DOI: 10.21275/ART20204375 1423

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

ResearchGate Impact Factor (2018): 0.28 | SJIF (2018): 7.426

Volume 9 Issue 1, January 2020

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

symmetric key based cryptography. Multi-keyword Boolean

search[4] allows the users to input multiple query keywords

to request suitable documents. Among these works,

conjunctive keyword search scheme only return the

documents that contain all of the query keywords.

Disjunctive keyword search schemes return all of the

documents that contain a subset of the query keywords.

Predicate search are proposed to support both conjunctive

and disjunctive search. All these multi-keyword search

schemes retrieve search results based on the existence of

keywords, which cannot provide acceptable result ranking

functionality. Practically, the data owner may need to update

the document collection after he upload the collection to the

cloud server. Thus, the SE schemes are expected to support

the insertion and deletion of the documents. There are also

several dynamic searchable encryption schemes. Goh [7]

proposed a scheme to generate a sub-index (Bloom filter) for

every document based on keywords. Then the dynamic

operations can be easily realized through updating of a

Bloom filter along with the corresponding document.

However, Goh‘s scheme has linear search time and suffers

from false positives. In 2012, Kamara and Papamanthou[8]

Constructed an encrypted inverted index that can handle

dynamic data efficiently. But, this scheme is very complex

to implement. Subsequently, as an improvement, Kamara

and Papamanthou proposed a new search scheme based on

tree-based index, which can handle dynamic update on

document data stored in leaf nodes. However, their scheme

is designed only for single-keyword Boolean search.

Multi-keyword Boolean search allows the users to input

multiple query keywords to request suitable documents.

Among these works, conjunctive keyword search schemes,

only return the documents that contain all of the query

keywords. Disjunctive keyword search schemes return all of

the documents that contain a subset of the query keywords.

Predicate search schemes are proposed to support both

conjunctive and disjunctive search. All these multi keyword

search schemes retrieve search results based on the existence

of keywords, which cannot provide acceptable result ranking

functionality. Ranked search can enable quick search of the

most relevant data. Sending back only the top-k most

relevant document scan effectively decrease network traffic

.Some early works [5] have realized the ranked search using

order-preserving techniques, but they are designed only for

single keyword search. Cao et al. [9] realized the first

privacy-preserving multi-keyword ranked search scheme, in

which documents and queries are represented as vectors of

dictionary size. With the ―coordinate matching‖, the

documents are ranked according to the number of matched

query keywords. However, Cao et al.‘s scheme does not

consider the importance of the different keywords, and thus

is not accurate enough. In addition, the search efficiency of

the scheme is linear with the cardinality of document

collection. In the work of Song et.al[6] ,the each document

is considered as a sequence of fixed length words and is

individually indexed. In the work of Sun et al. [10] presented

a secure multi-keyword search scheme that supports

similarity-of document collection. In the work of Song

et.al[6] ,the each document is considered as a sequence of

fixed length words and is individually indexed. In the work

of Sun et al. [10] presented a secure multi-keyword search

scheme that supports similarity-

4. Problem Definition

In existing system the challenge is symmetric searchable

schemes. It requires huge cost in terms of data usability. For

example, the existing techniques on keyword-based

information retrieval, which are widely used on the plaintext

data, cannot be directly applied on the encrypted data.

Downloading all the data from the cloud and decrypt locally

is obviously impractical. Existing System methods not

practical due to their high computational overhead for both

the cloud sever and user. In the proposed scheme, the data

owner is responsible for updating information and sending

them to the cloud server. Thus, the data owner needs to store

the unencrypted index tree and the information that are

necessary to recalculate the IDF values. IDF is inverse

document frequency ,is a numerical statistic that is intended

to reflect how important a word is to a document in data

retrieval. Such an active data owner may not be very suitable

for the cloud computing model. It could be a meaningful but

difficult future work to design a dynamic searchable

encryption scheme whose updating operation can be

completed by cloud server only, meanwhile reserving the

ability to support multi-keyword ranked search. In addition,

as the most of works about searchable encryption, our

scheme mainly considers the challenge from the cloud

server.

5. Architecture

Figure 1: The architecture of ranked search over encrypted

cloud data

This scheme, different data owners use different secret keys

to encrypt their documents and keywords while authorized

data

users can query without knowing keys of these different data

owners. The authors proposed an ―Additive Order

Preserving Function‖ to retrieve the most relevant search

results. However, these works don‘t support dynamic

operations. Practically, the data owner may need to update

the document collection after he upload the collection to the

cloud server. Thus, the SE schemes are expected to support

the insertion and deletion of the documents. Xia etc.[4]

constructed a tree-based index structure and proposed a

greedy depth-first search [GDFS] algorithm that achieved

higher search efficiency. Wang etc[4] raised a secure ranked

search which returned the top-k relevant files and was only

designed for single keyword search. based ranking. The

authors constructed a searchable index tree based on vector

space model and adopted cosine measure together with

TF×IDF to provide ranking results. Sun et al.‘s search

algorithm achieves better-than-linear search efficiency but

results in precision loss. ¨Orencik et al. [11] proposed a

Paper ID: ART20204375 DOI: 10.21275/ART20204375 1424

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

ResearchGate Impact Factor (2018): 0.28 | SJIF (2018): 7.426

Volume 9 Issue 1, January 2020

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

secure multi-keyword search method which utilized local

sensitive hash only designed for single keyword.

D.Bonehetc a [5]],have discussed the public key encryption

for keyword search.

The system model in this paper involves three different

entities: data owner, data user and cloud server, as illustrated

in Fig.1Data owner has a collection of documents that he

wants to outsource to the cloud server in encrypted form

while still keeping the capability to search on them for

effective utilization. In our scheme, the data owner first

builds a secure searchable tree index from document

collection , and then generates an encrypted document

collection . Afterwards, the data owner outsources the

encrypted collection and the secure index to the cloud

server, and securely distributes the key information of

trapdoor generation (including keyword IDF values) and

document decryption to the authorized data users. Besides,

the data owner is responsible for the update operation of his

documents stored in the cloud server. While updating, the

data owner generates the update information locally and

sends it to the server. Data users are authorized ones to

access the documents of data owner. With query keywords,

the authorized user can generate a trapdoor TD according to

search control mechanisms to fetch k encrypted documents

from cloud server. Then, the data user can decrypt the

documents with the shared secret key. Cloud server stores

the encrypted document collection C and the encrypted

searchable tree index for data owner. Upon receiving the

trapdoor TD from the data user, the cloud server executes

search over the index tree, and finally returns the

corresponding collection of top-k ranked encrypted

documents. Besides, upon receiving the update information

from the data owner, the server needs to update the index

and document collection according to the received

information.

6. Methodology/Approach

In this section, we review various methodologies that are

used in this project work.

Vector Space Model with TF * IDF value

Vector space model along with TF-IDF rule is widely used

in plaintext information retrieval, which efficiently supports

ranked multi-keyword search . Here, the term frequency is

the number of times a given term (keyword) appears within

a document, and the containing the keyword. In the vector

space model, each document is denoted by a vector, whose

elements are the normalized TF values of keywords in this

document. Each query is also denoted as a vector Q, whose

elements are the normalized TF values of keywords in this

document. Each query is also denoted as a vector Q, whose

elements are the normalized IDF values of query keywords

in the document collection. Naturally, the lengths of both the

TF vector and the IDF vector are equal to the total number

of keywords. TF denotes the frequency of a given keyword

appearing in the file and IDF is the logarithm of the total

number of files divided by the number of files containing the

keyword and get value obtained the logarithm. In the

proposed work, we learn about building a basic search

engine or document retrieval system using Vector space

model. This use case is widely used in information retrieval

systems. This use case is widely used in information

retrieval systems. Given a set of documents and search

term(s)/query we need to retrieve relevant documents that

are similar to the search query. The problem statement

explained above is represented as in below image.

Document retrieval system

Vector Space Model:

A vector space model is an algebraic model, involving two

steps, in first step we represent the text documents into

vector of words and in second step we transform to

numerical format so that we can apply any text mining

techniques such as information retrieval, extraction

,information filtering etc. Let us understand with an

example. consider below statements and a query term. The

statements are referred as documents hereafter.

Document1: Cat runs behind rat

Document2: Dog runs behind cat

Query: rat

Document vectors representation:

In this step includes breaking each document into words,

applying preprocessing steps such as removing stop words,

punctuations, special characters etc. After preprocessing the

documents we represent them as vectors of words.

Below is a sample representation of the document vectors.

Document1: (cat, runs, behind, rat)

Document2: (Dog, runs, behind, cat)

Query: (rat)

the relevant document to Query = greater of (similarity

score between (Document1, Query), similarity score

between (Document2, Query)

Next step is to represent the above created vectors of terms

to numerical format known as term document matrix.

Term Document Matrix:
A term document matrix is a way of representing documents

vectors in a matrix format in which each row represents term

vectors across all the documents and columns represent

document vectors across all the terms. The cell values

frequency counts of each term in corresponding document.

If a term is present in a document, then the corresponding

cell value contains 1 else if the term is not present in the

document then the cell value contains 0. After creating the

term document matrix, we will calculate term weights for all

the terms in the matrix across all the documents. It is also

important to calculate the term weightings because we need

to find out terms which uniquely define a document.

We should note that a word which occurs in most of the

documents might not contribute to represent the document

Paper ID: ART20204375 DOI: 10.21275/ART20204375 1425

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

ResearchGate Impact Factor (2018): 0.28 | SJIF (2018): 7.426

Volume 9 Issue 1, January 2020

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

relevance whereas less frequently occurred terms might

define document relevance. This can be achieved using a

method known as term frequency - inverse document

frequency (tf-idf), which gives higher weights to the terms

which occurs more in a document but rarely occurs in all

other documents, lower weights to the terms which

commonly occurs within and across all the documents.

Tf-idf = tf X idf

tf=term frequency is the number of times a term occurs in a

document

idf= inverse of the document frequency, given as below

idf = log(N/df), where df is the document frequency-number

of documents containing an inverse document frequency

Note: idf is calculated using logarithm of inverse fraction

between document count and document frequency

tf-idf calculation

Note: Tf-idf weightage is calculated using tf X idf

Note, there are many variations in the way we calculate the

term-frequency(tf) and inverse document frequency (idf)

term frequency variation

inverse document frequency variation

Tree Based Indexed Structure
To improve the efficiency of the search, Xia et.al[11] first

proposed the keyword balanced binary tree. In our scheme,

data owner builds A secure keyword balanced binary tree

and outsource them to the cloud server. The cloud server

merges those index trees and performs the efficiently multi

keyword ranked search. First we must know about index and

unindexed files..The index stores a list of all words, each

with a list of documents that contain it. There is no need to

search every document for the keyword each time the user

wants to search for a word. The keyword is simply located in

the index (if it exists), and a list of documents that contain it

is immediately available. An unindexed search is one that

cannot be processed using the set of index defined in the

server. It will necessitate iterating through most or all of the

entries in the database. Unindexed encrypted data simply

means not provided with an index or indexes.

When we think about the performance of a database,

indexing is the first thing that comes to the mind. Here, we

are going to look into how database indexing works on a

database in the proposed scheme .B-tree is a data structure

that store data in its node in sorted order. We can represent

sample B-tree as follows.

B-tree stores data such that each node contains keys in

ascending order. Each of these keys has two references to

another two child.nodes. The left side child node keys are

less than the current keys and the right side child node keys

are more than the current keys. If a single node has ―n‖

number of keys, then it can have maximum ―n+1‖ child

nodes.

Why Is Indexing Used in the Database?

Imagine you need to store a list of numbers in a file and

search a given number on that list. The simplest solution is

to store data in an array and append values when new values

come. But if you need to check if a given value exists in the

array, then you need to search through all of the array

elements one by one and check whether the given value

exists. If you are lucky enough, you can find the given value

in the first element. In the worst case, the value can be the

last element in the array. We can denote this worst case as

O(n) in asymptotic notation. This means if your array size is

―n,‖ at most, you need to do ―n‖ number of searches to find

a given value in an array.How could you improve this time?

The easiest solution is to sort the array and use binary search

to find the value. Whenever you insert a value into the array,

it should maintain order. Searching start by selecting a value

from the middle of the array. Then compare the selected

value with the search value. If the selected value is greater

than search value, ignore the left side of the array and search

the value on the right side and vice versa.

Paper ID: ART20204375 DOI: 10.21275/ART20204375 1426

https://docs.oracle.com/cd/E19476-01/821-0510/def-index.html
https://docs.oracle.com/cd/E19476-01/821-0510/def-database.html
https://www.collinsdictionary.com/dictionary/english/provide
https://www.collinsdictionary.com/dictionary/english/index
https://4.bp.blogspot.com/-iK-fPUBaCJw/WfquoRa2XSI/AAAAAAAAGCU/xISB9LksuyQBmMIIzLIbuJ-RhMob5WDRwCK4BGAYYCw/s1600/term_frequency_variants.PNG
https://4.bp.blogspot.com/-YIotvRU0ObE/WfqvC548rPI/AAAAAAAAGCc/ewk6WlZ2zmUhp47xe3p8jKwvU6cyq12TACK4BGAYYCw/s1600/inverse_document_frequency_variants.PNG

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

ResearchGate Impact Factor (2018): 0.28 | SJIF (2018): 7.426

Volume 9 Issue 1, January 2020

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

Binary search

Here, we try to search key 15 from the array 3,6,8,11,15, and

18, which is already in sorted order. If you do a normal

search, then it will take five units of time to search since the

element is in the fifth position. But in the binary search, it

will take only three searches.If we apply this binary search

to all of the elements in the array, then it would be as

follows

Binary search to all element

It is a Binary tree. This is the simplest form of the B-tree.

For Binary tree, we can use pointers instead of keeping data

in a sorted array. Mathematically, we can prove that the

worst case search time for a binary tree is O(log(n)). The

concept of Binary tree can be extended into a more

generalized form, which is known as B-tree. Instead of

having a single entry for a single node, B-tree uses an array

of entries for a single node and having reference to child

node for each of these entries. Below are some time

complexity comparisons of each pre-described method.

Type Insertion Deletion Lookup

Unsorted Array O(1) O(n) O(n)

Sorted Array O(n) O(n) O(log(n))

B-tree O(log(n)) O(log(n)) O(log(n))

B+treeis another data structure that used to store data, which

looks almost the same as the B-tree. The only difference of

B+tree is that it stores data on the leaf nodes. This means

that all non-leaf node values are duplicated in leaf nodes

again. Below is a sample B+tree.

Figure: B+Tree

13, 30, 9, 11, 16, and 38 non-leaf values are again repeated

in leaf nodes. Can you see the specialty in this tree at leaf

nodes? Yeah, leaf node includes all values and all of the

records are in sorted order. In specialty in B+tree is, you can

do the same search as B-tree, and additionally, you can

travel through all the values in leaf node if we put a pointer

to each leaf nodes.

Index construction & Query Generation

In the proposed scheme..B-tree comes to the database

indexing, this data structure gets a little complicated by not

just having a key, but also having a value assigned with the

key. This value is a reference to the actual data record. The

key and value together are called a payload.First, the

database creates a unique random index (or primary key) for

each of the given records and converts the relevant rows into

a byte stream. Then, it stores each of the keys and record

byte streams on a B+tree. For example,

B+tree on database pages

Here you can see that all records are stored in the leaf nodes

of the B+tree and index used as the key to creating a B+tree.

No records are stored on non-leaf nodes. Each of the leaf

nodes has reference to the next record in the tree. A database

can perform a binary search by using the index or sequential

search by searching through every element by only traveling

through the leaf nodes.If no indexing is used, then

the database reads each of these records to find the given

record. When indexing is enabled, the database creates three

B-trees for each of the columns in the table as follows. Here

the key is the B-tree key used to indexing. The index is the

reference to the actual data record. For Example,

When indexing is used first, the database searches a given

key in correspondence to B-tree and gets the index in

O(log(n)) time. Then, it performs another search in B+tree

by using the already found index in O(log(n)) time and gets

the record. Each of these nodes in B-tree and B+tree is

stored inside the Pages. Pages are fixed in size. Pages have a

unique number starting from one. A page can be a reference

to another page by using page number. At the beginning of

the page, page meta details such as the rightmost child page

number, first free cell offset, and first cell offset stored.

Databases should have an efficient way to store, read, and

modify data. B-tree provides an efficient way to insert and

read data. In actual Database implementation, the database

uses both B-tree and B+tree together to store data. B-tree

used for indexing and B+tree used to store the actual

records. B+tree provides sequential search capabilities in

addition to the binary search, which gives the database more

control to search non-index values in a database.

Greedy DFS Algorithm

The search process that is used in this paper is a recursive

procedure upon the tree, named as ―Greedy Depth-First

Search‖ algorithm. We construct a result list which stores

the k accessed documents with the largest relevance scores

to the query.The elements of the result list are ranked in

descending order and will be updated timely during the

search process. A greedy algorithm is an algorithm that

follows the problem solving heuristic of making the locally

optimal choice at each stage with the hope of finding a

Paper ID: ART20204375 DOI: 10.21275/ART20204375 1427

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

ResearchGate Impact Factor (2018): 0.28 | SJIF (2018): 7.426

Volume 9 Issue 1, January 2020

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

global optimum. There are essentially two graph traversal

algorithms, known as Breadth-first search and Depth-search

first. In general, Given a graph G=(V,E) determine all nodes

that are connected from a given node v via a(directed) path.

BFS-from node v, visit each of its neighboring nodes in

sequence then visit their neighbors etc. while avoiding

repeated visits. DFS-from node v, visit its first neighboring

node and all its neighbors using recursion, then visit node

v‘s second neighbor applying the same procedure, until all

v‘s neighbors are visited while avoiding repeated visits.

General procedure to follow here is,

[1] create a Boolean array visited [1…….n],initialize all

values to false except for visited[v] to true

[2] call DFS(v) to visit all nodes reachable via a path DFS(v)

for each neighboring nodes w of v do if visited [w] is false

then set visited[w] to true; call DFS(w).

Knn Algorithm

A secure knn algorithm is utilized to encrypt the index and

query vector ,and meanwhile ensure accurate relevance

score calculation between encrypted index and query vectors

in this paper. It also helps to protect the security of the

scheme. K nearest neighbor algorithm is very simple.

It works based on minimum distance from the query

instance to the training samples to determine the K-nearest

neighbors. ... The data for KNN algorithm consist of

several multivariate attributes name that will be used to

classify

Encryption & Descryption Algorithm

Encryption is the process of converting a plaintext message

into ciphertext which can be decoded back into the original

message. An encryption algorithm (AES) & (DES) along

with a key is used in the encryption and decryption of

data. After creating an index, to ensure the privacy of index

and files the data owner encrypts both index and key. After

encrypting data, the data owner sends encrypted file

collection and index to the cloud service provider. While

retrieving data from the csp through the ranked keyword

search it consist of three phases: Trapdoor generation,

Ranked keyword search and data decryption.

1) Trapdoor Generation—After sorting data in cloud,

whenever the authorized user wants retrieve the file

containing keywords, computes the trapdoor for

keywords and sends to the CSP as search request.

2) Ranked Keyword Search—In this method, the cloud

server searches for the matching files after receiving the

trapdoor from the user as follows: The cloud server first

finds the matching entries of the file via trapdoor,if

server finds matching files identifies along with their

associated relevance scores. Then, the server ranks the

matched files according to relevance scores and sends

top-k most relevant files to the user.

3) Data Decryption: After receiving the matched files from

CSP for corresponding search request, the authorized

user decrypts them with the private key and obtains their

plain text.

7. Discussion on System Modules

Following modules are tentatively used in this paper work:

1) Login Module

In this we are signing in to the application, If the credentials

are correct then it will open homepage otherwise it will alert

to enter correct details. There are two parts in this module

Data owner login and data user login. In case of data user

login, data owner register with his login details. This helps

the owner to upload his file with encryption using RSA

algorithm. This ensures the files to be protected from

unauthorized user. Data owner has the collection of files that

he wants to outsourced to the cloud server in encrypted form

while still keeping the capability to search on them for

effective utilization. Data owner firstly builds a secure

searchable tree index then generates an encrypted document

collection. Afterword‘s, the data owner outsources the

encrypted collection and secure index to the cloud server.

And securely distributes the key information of trapdoor

generation and document decryption to the authorized data

users. Data owner is responsible for the update operations f

his documents stored in the cloud server. While updating the

data owner generates the update information localy and

sends it to the server. In case of data user login, login details

of user are given. This module used to help the client to

search the file using the multiple keywords concept and get

the accurate result list based on the user query. Data users

are authorized ones to access the documents of data owner.

2) Keyword Encryption Module

The input text we are providing is encrypted by using

several algorithmic techniques. This module is used to

encrypt the document with an activation code and then the

activation code is send to user to download the document.

Cloud server stores the encrypted document and the

encrypted searchable tree index for data owner. Cloud

server executes search over the index tree, it returns the

corresponding collection of top k ranked encrypted

documents .While updating information from the data

owner, the server needs to update the index and document

collection according to the received information.

3) Data Integration Module

We are combining technical and business processes used to

combine data from desparate sources into meaningful and

valuable information. A complete data integration solution

delivers trusted data from various sources.

4) Encryption Module

Here we are actually doing the encryption using

cryptography. The sole purpose of encryption is to protect

the confidentiality of data stored on computer system or

some other network. Encryption does not guarantee the

protection of data but it does add a layer of security that

makes it more difficult for hackers or dishonest users to

misuse data. In case of symmetric encryption readable

message or plaintext is encrypted to make it unreadable by

means of a secret key.At the receiver end , encrypted data is

decrypted using the same key. Algorithms used for

symmetric encryption and decryption are AES and DES.

5) Index Encryption Module

Single values level encryption of the index reveals sensitive

information, such as frequencies of the index values.

Whole Index level encryption ensures that information

Paper ID: ART20204375 DOI: 10.21275/ART20204375 1428

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

ResearchGate Impact Factor (2018): 0.28 | SJIF (2018): 7.426

Volume 9 Issue 1, January 2020

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

about the indexed data cannot be leaked, since the index is

encrypted as one unit.

8. Objective Analysis

To enable secure, efficient, accurate and dynamic multi-

keyword ranked search over outsourced encrypted cloud

data under the above models, our system has the following

design goals. The proposed scheme is designed to provide

not only multi-keyword query and accurate result ranking,

but also dynamic update on document collections. Search

efficiency. The scheme aims to achieve sublinear search

efficiency by exploring a special tree- and an efficient search

algorithm. Privacy-preserving. The scheme is designed to

prevent the cloud server from learning additional

information about the document collection, the index tree,

and the query. The specific privacy requirements are

summarized as follows,

1) Index confidentiality and query confidentiality. The

underlying plaintext information, including keywords in

the index and query, TF values of keywords stored in the

index, and IDF values of query keywords, should be

protected from cloud server;

2) Trapdoor unlink ability. The cloud server should not be

able to determine whether two encrypted queries

(trapdoors) are generated from the same search request.

3) Keyword privacy. The cloud server could not identify the

specific keyword in query, index or document collection

by analyzing the statistical information like term

frequency. Note that our proposed scheme is not

designed to protect access pattern, i.e., the sequence of

returned documents.

4) Index Encryption: In this to achieve the level of security

proposed methodology finds the required data index and

perform the index encryption.

9. Acknowledgement

I wish to acknowledge Dr A ABARDEKAR (Department of

Computer & Science Engineering, SIPNA COET) for his

contribution in my work of documentation and development

of this review paper.

10. Conclusion & Future work

In this paper, a secure, efficient and dynamic search scheme

is proposed, which supports not only the accurate multi

keyword ranked search but also the dynamic deletion and

insertion of documents. The scheme proposes to construct a

special keyword balanced binary tree as the index, and

propose a ―Greedy Depth-first Search‖ algorithm to obtain

better efficiency than linear search. In addition, the parallel

search process can be carried out to further reduce the time

cost. To protect the security of the scheme a secure kNN

algorithm is suggested. There are still many challenge

problems in symmetric SE schemes. In the proposed

scheme, the data owner is responsible for generating

updating information and sending them to the cloud server.

Thus, the data owner needs to store the unencrypted index

tree and the information that are necessary to recalculate the

IDF values. Such an active data owner may not be very

suitable for the cloud computing model. It could be a

meaningful but difficult future work to design a dynamic

searchable encryption scheme whose updating operation can

be completed by cloud server only, meanwhile reserving the

ability to support multi-keyword ranked search. In addition,

as the most of work about searchable encryption, our scheme

mainly considers the challenge from the cloud server.

Actually, there are many secure challenges in a multi-user

scheme. First, all the users usually keep the same secure key

for trapdoor generation in a symmetric SE scheme. In this

case, the revocation of the user is big challenge. If it is

needed to revoke a user in this scheme, we need to rebuild

the index and distribute the new secure keys to all the

authorized users. Second, symmetric SE schemes usually

assume that all the data users are trustworthy. It is not

practical and a dishonest data user will lead to many secure

problems. For example, a dishonest data user may search the

documents and distribute the decrypted documents to the

unauthorized ones. Even more, a dishonest data user may

distribute his/her secure keys to the unauthorized ones. In

the future works, we will try to improve the SE scheme to

handle the SE challenge problems.

References

[1] TIANYUE PENG , (Student Member, IEEE), YAPING

LIN, (Member, IEEE), XIN YAO , (Student Member,

IEEE), AND WEI ZHANG ―An Efficient Ranked

Multi-Keyword Search for Multiple Data Owners Over

Encrypted Cloud Data‖ Received March 12, 2018,

accepted April 11, 2018, date of publication April 20,

2018, date of current version May 9, 2018.

[2] C. Liu, L. Zhu, and J. Chen, ‗‗Efficient searchable

symmetric encryption for storing multiple source data

on cloud ,‘‘J .Netw. Comput. Appl., vol. 86, pp. 3–14,

May 2017.

[3] S. K. Pasupuleti, S. Ramalingam, and R. Buyya, ‗‗An

efficient and secure privacy-preserving approach for

outsourced data of resource constrained mobile devices

in cloud computing,‘‘ J. Netw. Comput. Appl., vol. 64,

pp. 12–22, Apr. 2016.

[4] Zhihua Xia, Xinhui Wang, Xingming Sun and Qian

Wang,‖ A Secure and dynamic multikeyword ranked

search scheme over encrypted cloud data‖IEEE

transactions on parallel and distributed systems,vol 27,

no 2 february 2016.

[5] D. Boneh, G. Di Crescenzo, R. Ostrovsky, and G.

Persiano, ―Public key encryption with keyword search,‖

in Proc. Adv. Cryptol.-Eurocrypt, 2014, pp. 506–522

[6] D. X. Song, D. Wagner, and A. Perrig, ―Practical

techniques for searches on encrypted data,‖ in Proc.

IEEE Symp. Secur. Privacy, 2007, pp. 44–55.

[7] E.-J. Goh, ―Secure indexes,‖ IACR Cryptol.ePrint

Archive, vol. 2003, p. 216, 2003.

[8] S. Kamara, C. Papamanthou, and T. Roeder, ―Dynamic

searchable symmetric encryption,‖ in Proc. ACM Conf.

Computation 2012, pp. 965–976.

[9] N. Cao, C. Wang, M. Li, K. Ren, and W. Lou, ―Privacy-

preserving multi-keyword ranked search over encrypted

cloud data,‖ in Proc. IEEE INFOCOM, Apr. 2011, pp.

829–837.

[10] W. Sun, B. Wang, N. Cao, M. Li, W. Lou, Y. T. Hou,

and H. Li, ―Privacy-preserving multi-keyword text

search in the cloud supporting similarity-based

Paper ID: ART20204375 DOI: 10.21275/ART20204375 1429

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

ResearchGate Impact Factor (2018): 0.28 | SJIF (2018): 7.426

Volume 9 Issue 1, January 2020

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

ranking,‖ in Proc. 8th ACM SIGSAC Symp. Inf.,

Comput.Commun.secur., 2013, pp. 71–82.

[11] C. Orencik, M. Kantarcioglu, and E. Savas, ―A practical

and secure multi-keyword search method over

encrypted cloud data,‖ in Proc. IEEE 6th Int. Conf.

Cloud Comput., 2013, pp. 390–397.

[12] W. Zhang, S. Xiao, Y. Lin, T. Zhou, and S. Zhou,

―Secure ranked multi-keyword search for multiple data

owners in cloud computing,‖ in Dependable Syst.

Networks (DSN), IEEE 44th Annu. IEEE/IFIP Int.

Conf., 2014, pp. 276–286.

Author Profile

Vaishali Bambode received the BE degree in

Computer Engineering , MIT Pune University . She is

pursuing her Master‘s in engineering from SIPNA

Amravati University. Her research study interest

include cloud computing security and machine

learning.

Paper ID: ART20204375 DOI: 10.21275/ART20204375 1430

