
International Journal of Science and Research (IJSR)
ISSN: 2319-7064

ResearchGate Impact Factor (2018): 0.28 | SJIF (2018): 7.426

Volume 9 Issue 1, January 2020

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

Enhancing the Quality of Sound using Fast Fourier

Transform in Python

Criton Jose Kallukkaran
1
, Yashraj Morde

2

1, 2MS Mechatronics, University of Glasgow, United Kingdom

Abstract: Audio information plays an important role in the increasing digital content that is available today, resulting in a need for

methodologies that automatically analyse such content like music information retrieval, audio-visual analysis of online videos for

content-based recommendation. This report presents the use of fast Fourier transform (FFT) to improve the quality of voice.

Motivation: Sound is an essential part of life. While shooting a video and sound in an outdoor location, recording high quality audio

can be difficult. Using FFT to increase the amplitudes of the harmonics to improve the quality of the voice and bringing it to a desired

standard is essential.

Keywords: fast Fourier transform, harmonics, fundamental frequencies, Noise reduction, Voice amplification

1. Introduction

Audio information plays an important role in the increasing

digital content that is available today, resulting in a need for

methodologies that automatically analyse such content like

music information retrieval, audio-visual analysis of online

videos for content-based recommendation. This report

presents the use of fast Fourier transform (FFT) to improve

the quality of voice.

Motivation: Sound is an essential part of life. While shooting

a video and sound in an outdoor location, recording high

quality audio can be difficult. Using FFT to increase the

amplitudes of the harmonics to improve the quality of the

voice and bringing it to a desired standard is essential.

2. SM58 microphone – Common vocal

microphone

Harmonics enhancement in this report is done using SM58

microphone as a reference.

Figure 1: SM58 Frequency Response

Figure 1represents the frequency response for SM58

microphone. From the response graph frequencies below

100 Hz are attenuated. Frequencies between 100Hz and

1000Hz are taken as range of fundamental frequencies.

Fundamental frequency is the lowest frequency in the signal.

Harmonics are the boosted frequencies which lie between

1000Hz to 10,000Hz. Frequencies above 10000Hz are high

frequency noise, hence the frequencies are attenuated again

[0][[2]].

3. Results and Discussion

3.1 Time and Frequency domain – Recoded Audio

Complete Python code for voice enhancement is shown in

Paper ID: ART20204367 DOI: 10.21275/ART20204367 1873

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

ResearchGate Impact Factor (2018): 0.28 | SJIF (2018): 7.426

Volume 9 Issue 1, January 2020

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

Appendix. The quality of voice is improved by using fast

Fourier transform in Python. Audio sample is recorded at a

sampling rate of 44kHz using a microphone. Multiple audio

samples were recorded since certain audio samples were

clipped which resulted in distortion on enhancement, hence

the best audio sample was selected were noclipping was

observed.

Recorded audio is plotted in time domain as shown in Figure

2.

t=np.linspace(0,len(data)/fs,len(data))where, len (data)

represents the total number of samples from 0-start point to

len(data)/fs – end point.

plt.plot(t,data)

 # t plotted on x-axis; data plotted on y-axis

Time domain is plotted for the total audio time [[3]].

Figure 2: Original_Time domain

Frequency domain [[3]] is plotted as shown in Figure 3 to

record the peak signals during the total period of

observation. Red area highlights the range for fundamental

frequencies (100Hz – 1000Hz) and yellow area highlights

harmonics (1000Hz – 10000Hz) range of human voice.

Generally, the first peak in the range of 100-1000Hz is

considered as fundamental frequency, however there can be

more than one fundamental frequencies in frequency

spectrum.

dataf=np.fft.fft(data) # using FFT to convert into frequency

domain

fd=abs(dataf) # considering absolute values

x=fd[0:int((len(fd)/2)-1)] # Half-samples consideration

plt.xscale('log') # log scale x-axis or frequency axis

faxis=np.linspace(0,fs/2,len(x)) # frequency axis

plt.plot(faxis,20*np.log10(x/len(data))) #amplitude in

decibels

Figure 3: Original_Frequency Domain

3.2 Amplified Harmonics and Noise reduction

k1=int(len(dataf)/fs*1000) #index place

for 1000Hz

k2=int(len(dataf)/fs*10000) #index place

for 10000Hz

n1=int(len(dataf)/fs*0.1) #index place

for 0.1Hz

n2=int(len(dataf)/fs*90) #index place

for 90Hz

n3=int(len(dataf)/fs*10001) #index place

for 10001Hz

Paper ID: ART20204367 DOI: 10.21275/ART20204367 1874

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

ResearchGate Impact Factor (2018): 0.28 | SJIF (2018): 7.426

Volume 9 Issue 1, January 2020

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

n4=int(len(dataf)/fs*25000) #index place

for 25000Hz

dataf[n3:n4]=dataf[n3:n4]/60 # Noise

reduction

dataf[int(len(dataf)-n4):int(len(dataf)-

n3)]=dataf[int(len(dataf)-n4):int(len(dataf)-n3)]/60

 # Mirroring to reduce noise

dataf[n1:n2]=dataf[n1:n2]/60

dataf[int(len(dataf)-n2):int(len(dataf)-

n1)]=dataf[int(len(dataf)-n2):int(len(dataf)-n1)]/60

 # Mirroring to reduce

noise

dataf[k1:k2]=dataf[k1:k2]*10 # Voice

amplification

dataf[int(len(dataf)-k2):int(len(dataf)-

k1)]=dataf[int(len(dataf)-k2):int(len(dataf)-k1)]*10

plt.plot(faxis,20*np.log10(dataf[0:int(len(dataf)/2)-

1]/len(dataf)))

Figure 4: Harmonics Amplification and noise reduction

3.3 Time domain representation - Enhanced

enhanced=np.fft.ifft(dataf) #Inverse fourier transform to

transform to time domain

clr=np.real(enhanced) # Real part extraction

audio = clr.astype(np.int16) #Convert to 16 bit data

plt.plot(t,clr) #Plotting in time domain

wavfile.write('improved.wav',fs,audio)#Saving enhanced

audio file

Figure 5: Enhanced voice sample

4. Conclusion

Audio was recorded at 44kHz sampling rate and the

harmonics (1000Hz – 10000 Hz) were enhanced with a

scaling factor of 10 in order to improve the quality of

recorded voice. In order to get a similar frequency curve as

SM58 microphone, frequency below 100 Hz (noise) and

above 10001Hz (noise) where attenuated. The graphs were

plotted in time and frequency domain. The enhanced audio

sounded loud and clear as compared to the original

recording, however some unwanted noise was heard.

References

[1] Comparing the Shure SM58 VS RODE NT-1A (Read

This Before You Buy). (2019). Retrieved 27October

2019, from https://producerhive.com/buyer-guides/shure-

sm58-vs-rode-nt-1a/

[2] (2019). Retrieved 27 October 2019, from

https://www.scienceabc.com/pure-sciences/why-

negative-decibels-are-a-thing.html

[3] University of Glasgow Moodle: Log in to the site.

(2019). Retrieved 28 October 2019, from

https://moodle.gla.ac.uk/course/view.php?id=18777

Appendix

import numpy as np #importing libraries

import matplotlib.pyplot as plt #importing libraries

import scipy.io.wavfile as wavfile #importing libraries

fs,data=wavfile.read('original.wav') #Reading recorded audio file

t=np.linspace(0,len(data)/fs,len(data))#sample to time

plt.figure(1) #separate figure

plt.plot(t,data) #plotting in time domain

plt.xlabel('Time')

plt.ylabel('Amplitude')

plt.title('Time domain')

dataf=np.fft.fft(data) #FFT function

fd=abs(dataf) #Taking absolute values

x=fd[0:int((len(fd)/2)-1)] #Half Range

faxis=np.linspace(0,fs/2,len(x)) #Range frequency axis

plt.figure(2) #separate figure

plt.xlabel('frequency')

plt.ylabel('Amplitude in dB')

plt.title('Frequency Domain')

Paper ID: ART20204367 DOI: 10.21275/ART20204367 1875

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

ResearchGate Impact Factor (2018): 0.28 | SJIF (2018): 7.426

Volume 9 Issue 1, January 2020

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

plt.xscale('log') #plotting x-axis in logarithmic axis

plt.plot(faxis,20*np.log10(x/len(data)))# plotting frequency axis vs amplitude(dB)

k1=int(len(dataf)/fs*1000) #index place for 1000Hz

k2=int(len(dataf)/fs*10000) #index place for 10000Hz

n1=int(len(dataf)/fs*0.1) #index place for 0.1Hz

n2=int(len(dataf)/fs*90) #index place for 90Hz

n3=int(len(dataf)/fs*10001) #index place for 1001Hz

n4=int(len(dataf)/fs*25000) #index place for 25000Hz

dataf[n3:n4]=dataf[n3:n4]/60 # Noise reduction

dataf[int(len(dataf)-n4):int(len(dataf)-n3)]=dataf[int(len(dataf)-n4):int(len(dataf)-n3)]/60

dataf[n1:n2]=dataf[n1:n2]/60

dataf[int(len(dataf)-n2):int(len(dataf)-n1)]=dataf[int(len(dataf)-n2):int(len(dataf)-n1)]/60

dataf[k1:k2]=dataf[k1:k2]*10 # hamonics amplification

dataf[int(len(dataf)-k2):int(len(dataf)-k1)]=dataf[int(len(dataf)-k2):int(len(dataf)-k1)]*10

plt.figure(3) # separate figure

plt.plot(faxis,20*np.log10(dataf[0:int(len(dataf)/2)-1]/len(dataf))# frequency vs amplitude(db)

plt.xlabel('frequency')

plt.ylabel('Amplitude in dB')

plt.title('Improved frequency domain')

plt.xscale('log') #plotting x-axis in logarithmic axis

enhanced=np.fft.ifft(dataf) #IFFT function transform to time domain

clr=np.real(enhanced) # Real part extraction

audio = clr.astype(np.int16) #Convert to 16 bit data

plt.figure(4) #separate figure

plt.plot(t,clr) #plotting in time domain

plt.xlabel('Time')

plt.ylabel('Amplitude')

plt.title('Improved time domain')

plt.show()

wavfile.write('improved.wav',fs,audio) #writing enhanced audio file

Paper ID: ART20204367 DOI: 10.21275/ART20204367 1876

