Kinetics and Mechanism of Hydrolysis of O-Hydroxy Benzaldehyde - Aniline Spectrophotometrically

Anil S. Kirdant¹, Bhausaheb K. Magar²

¹Department of Chemistry, Baburaoji Adaskar Mahavidyalaya, Kaj Dist. Beed, Maharashtra, India
²Department of Chemistry, Shivaji Arts Commerce and Science College, Kannad, Dist. Aurangabad, Maharashtra, India

Abstract: Kinetics of hydrolysis reaction of the Schiff base, Ortho Hydroxy Benzaldehyde - aniline (HL) have been studied in the pH range 2.86-12.30 at temperature range 293-308 K. A rate profile diagram of pH v/s rate constant shows the rate minimum in the pH range 5.21-10.22 and reaches a plateau at pH > 10.73. Suitable reaction mechanism has been suggested for the hydrolysis of the Schiff base in acidic, neutral and basic medium. From the effect of temperature on the rate, various thermodynamic parameters have been evaluated.

Keywords: Schiff base, hydrolysis, kinetics, Spectrophotometry

1. Introduction

The Schiff bases are also called imines. The study of formation and hydrolysis of Schiff base is an important reaction of biochemical interest¹⁻⁴. The hydrolysis and formation of Schiff bases is important due to its relevance to the transformation of >C = O to >C = N and vice versa⁵⁻⁹. The catalytic effect of hydrogen, hydroxyl and metal ions on the formation and hydrolysis of imines have been studied by several workers¹⁰⁻¹². In the present work we represented here systematic study of the hydrolysis of Schiff base, O-Hydroxy Benzaldehyde - aniline at different pH values.

2. Materials and Method

Experimental: The chemicals used such as, O-Hydroxy Benzaldehyde, aniline, ethanol etc. were of AR grade. The Schiff base was prepared by condensation reaction of, O-Hydroxy Benzaldehyde - aniline in ethanol medium for about three hour. On cooling the resulting yellow coloured crystals were recrystallised from ethanol, melting point = 50°C. Purity was checked by TLC.

Kinetic measurements: The rate of hydrolysis of Schiff base was followed spectrophotometrically at 434 nm by using UV/VIS, 1601, Shimadzu Spectrophotometer. Universal buffer solutions were prepared according to the reported methods⁵. The pH was determined by using an Elico LI-120 pH meter. The temperature was varied between 293–308 K. The concentration of imine was kept at 1 x 10⁻⁴ mol dm⁻³. The ionic strength of the reaction mixture was maintained at μ = 0.1 mol dm⁻³ by using KCl. All chemicals used were of AR grade. In a typical kinetic run, the solutions containing appropriate amounts of Schiff base and buffer solution were prepared at room temperature and allowed to equilibrate in previously adjusted thermostat. The quartz cuvettes were also allowed to equilibrate at the same temperature in the thermostatic cell block. After mixing, the reaction mixture was immediately transferred to a quartz cell and the decrease of absorbance of Schiff base with time was followed against the reagent blank kept in another quartz cell. The decrease of absorbance with time was followed at λ = 434 nm. Using spectrophotometer within 20 s of mixing the Schiff base. The plot of log (Aₐ – Aₜ) vs time were found to be straight lines and pseudo first order rate constants were calculated from the slopes. From the effect of temperature on the reaction rate, energy of activation E, and other thermodynamic parameters were evaluated.

3. Results and Discussion

The rate constant values in the pH range 2.86-12.30 at 303 K are listed in Table-1. A rate profile diagram of pH v/s rate constant at 303 K and ionic strength μ = 0.1 mol dm⁻³ shows the rate minimum at 5.21<pH < 10.22 (Figure. 1).

Table 1: Rate constant data hydrolysis of Ortho Hydroxy Benzaldehyde - aniline

<table>
<thead>
<tr>
<th>pH</th>
<th>H⁺ x 10³ mol dm⁻³</th>
<th>OH⁻ x 10⁸ mol dm⁻³</th>
<th>k x 10⁻⁴ S⁻¹</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.86</td>
<td>13800.00</td>
<td>51.485</td>
<td></td>
</tr>
<tr>
<td>3.16</td>
<td>6918.00</td>
<td>29.004</td>
<td></td>
</tr>
<tr>
<td>4.51</td>
<td>2630.00</td>
<td>1.380</td>
<td></td>
</tr>
<tr>
<td>5.21</td>
<td>61.66</td>
<td>1.072</td>
<td></td>
</tr>
<tr>
<td>6.61</td>
<td>2.53</td>
<td>1.072</td>
<td></td>
</tr>
<tr>
<td>8.40</td>
<td>51.485</td>
<td>2.53</td>
<td></td>
</tr>
<tr>
<td>10.22</td>
<td>1660.00</td>
<td>0.982</td>
<td></td>
</tr>
<tr>
<td>10.42</td>
<td>2630.00</td>
<td>1.276</td>
<td></td>
</tr>
<tr>
<td>10.73</td>
<td>5370.00</td>
<td>4.700</td>
<td></td>
</tr>
<tr>
<td>11.15</td>
<td>14130.00</td>
<td>8.732</td>
<td></td>
</tr>
<tr>
<td>12.30</td>
<td>19250.00</td>
<td>9.818</td>
<td></td>
</tr>
</tbody>
</table>

The chemicals used such as, O-Hydroxy Benzaldehyde, aniline, ethanol etc. were of AR grade. The Schiff base was prepared by condensation reaction of, O-Hydroxy Benzaldehyde - aniline in ethanol medium for about three hour. On cooling the resulting yellow coloured crystals were recrystallised from ethanol, melting point = 50°C. Purity was checked by TLC.

In the present work we represented here systematic study of the hydrolysis of Schiff base, O-Hydroxy Benzaldehyde - aniline at different pH values.
Figure 1: Plot of k against pH at 303 K for the hydrolysis of Ortho Hydroxy Benzaldehyde – aniline at $\mu = 0.1 \text{ mol dm}^{-3}$.

Rate - limiting pathways: In the pH range 2.86-12.30, the Schiff base (HL) may be assumed to undergo hydrolysis by four rate determining pathways.

1) The acid catalysed addition of water to the imine linkage of protonated Schiff base, H$_2$L$^+$ (k$_1$).
2) A spontaneous path involving the addition of water to the imine linkage of the neutral imine, HL (k$_2$).
3) The addition of water to the imine anion, L$^-$ (k$_3$).
4) The addition of hydroxyl ion to the imine anion, L$^-$ (k$_4$).

The last step in which the hydroxyl ion predominates may be eliminated as the rate constant was found to be almost independent of the hydroxyl ion concentration at $\text{pH} > 10.22$ (Table 1). Thus the overall rate of hydrolysis will be,

$$\text{Rate} = k_1 (H_2L^+) + k_2 (HL) + k_3 (L^-) \quad ...1$$

The deprotonation and protonation equilibria of the imine (HL) may be represented

$$H_2L \xrightarrow{k_1} HL + H^+$$
$$HL \xrightarrow{k_2} L^- + H^+$$

Hydrolysis of Schiff base in acidic and neutral range of pH

The rate constant varies linearly with hydrogen ion concentration in the pH range 5.21-6.61. In this pH range, equation (1) reduces to (2).

$$k = \frac{k_1}{K_1} [H^+] + k_2 \quad ...2$$

A plot of k vs [H$^+$] was found to be a straight line with slope k_1/K_1 from which k_1 was calculated to be 2.902×10^{-2} at 303K. Since the intercept of the plot is zero, k_2 is taken as zero. In the acidic pH range, the proton catalysed attack of water on the reactive imine linkage of (HL) is suggested to be the rate-limiting step for the hydrolysis (scheme 1). The extremely low rates in the neutral pH range are due to negligible protonation of (HL). Consequently, the attack of water on the protonated imine is very slow. The addition of water to the neutral imine is therefore suggested to be rate-limiting step.
Hydrolysis of Schiff base in basic medium: In the basic range, pH > 10.22, the rate constant initially increases with increase in pH and is nearly independent of hydroxyl ion concentration at pH > 11.15. In this pH range, the Schiff base may be assumed to be exclusively in the anionic form L⁻ due to the neutralization of the phenolic proton of the ortho-hydroxy group by the OH⁻ ion of alkali. The above observations lead to the assumption that the complex formed may be Arrheninus complex. In the presence of excess catalyst, Arrhenius complex leads to specific hydroxyl ion catalysis at low hydroxyl concentration and the rate reaches a limiting value at high hydroxyl ion concentration.

In the present study, the rate increases with the hydroxyl ion concentration at low hydroxyl ion concentrations (Table 2). Further the rate reaches a limiting value at higher hydroxyl ion concentrations. All these facts indicate that the rate-limiting step is the slow reactions of Schiff base anion L⁻ water (k₄). The average value of the rate constants at pH > 11.15 is taken as k₄ = 13.26 x 10⁻³ at 303 K.

Table 2: Rate constant (Order) date of hydrolysis of Ortho Hydroxy Benzaldehyde - aniline

<table>
<thead>
<tr>
<th>Time (sec)</th>
<th>O.D.</th>
<th>k₁(Å⁻²Å⁺)</th>
<th>k₂(Å⁻²Å⁺)</th>
<th>k₃(Å⁻²Å⁺)</th>
<th>Log((Å⁺Å⁻)/(Å⁻Å⁺))</th>
<th>k x 10² s⁻¹</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.527</td>
<td>0.099</td>
<td>0.096</td>
<td>0.1761</td>
<td>2.704</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>0.494</td>
<td>0.099</td>
<td>0.042</td>
<td>0.3724</td>
<td>2.858</td>
<td></td>
</tr>
<tr>
<td>45</td>
<td>0.454</td>
<td>0.099</td>
<td>0.026</td>
<td>0.5807</td>
<td>2.971</td>
<td></td>
</tr>
<tr>
<td>60</td>
<td>0.444</td>
<td>0.099</td>
<td>0.016</td>
<td>0.7915</td>
<td>3.038</td>
<td></td>
</tr>
<tr>
<td>75</td>
<td>0.439</td>
<td>0.099</td>
<td>0.011</td>
<td>0.9542</td>
<td>2.930</td>
<td></td>
</tr>
<tr>
<td>90</td>
<td>0.436</td>
<td>0.099</td>
<td>0.008</td>
<td>1.0925</td>
<td>2.796</td>
<td></td>
</tr>
<tr>
<td>∞</td>
<td>0.428</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

k₄ mean = 2.900
k₄ Graph = 2.902

Figure 2(a): Plot of Time versus Log((Å⁺Å⁻)/(Å⁻Å⁺)) at 30°C for hydrolysis of O-Hydroxy Benzaldehyde - aniline at pH = 3.16

Figure 2(b): Plot of Time versus Log((Å⁻Å⁺)/(Å⁺Å⁻)) at 30°C for hydrolysis of O-Hydroxy Benzaldehyde - aniline

Variation of reaction rate with temperature

In order to examine the effect of temperature on reaction rate, the reaction was carried out at different temperatures, 293, 298, 303 and 308 K. The activation parameters were calculated. Eₐ, ΔH°, ΔG° and ΔS° are given in the Table-3. The plot of (3 + log k) vs 1/T is linear (Fig. 3a and Fig. 3b).

Volume 9 Issue 1, January 2020

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

Paper ID: ART20204267 DOI: 10.21275/ART20204267 1136
activated complex is more ordered than the reactants. A complex molecules as a result of the formation of the activated ΔS
nitrogen atom of imine linkage. The large negative values of because the proton
like charges hence present reaction may be taking place between ions of
the values of frequency factor lies below 10
ions or ions and neutral molecules and may generate rigid
suggest that the reaction may occur between like charged
reaction. The values of thermo dynamic parameters it is
more negative ΔS° may indicate that frequency factor A,
will have smaller value and the reaction will be slower. For slower reactions a higher value of ΔG° will be observed at
given temperature. The rate of hydrolysis was increased with
increase in temperature. Relatively constant values of ΔG°
suggest similar mechanism of all the reactions.

Table 3: Rate constants and activation parameters for O-
Hydroxy Benzaldehyde- aniline

<table>
<thead>
<tr>
<th>Temperature</th>
<th>10^3 k s^-1</th>
<th>Ea cal mol^-1</th>
<th>ΔS° cal mol^-1</th>
<th>ΔG° cal mol^-1</th>
<th>ΔH° cal mol^-1</th>
<th>Log A</th>
</tr>
</thead>
<tbody>
<tr>
<td>293 K</td>
<td>2.704</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>298 K</td>
<td>3.440</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>303 K</td>
<td>4.497</td>
<td>7786.28</td>
<td>-46.805</td>
<td>21164.31</td>
<td>7193.839</td>
<td>9.557</td>
</tr>
<tr>
<td>308 K</td>
<td>6.524</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figure 3 (a): Plot of (3+ log k) against 1/T for hydrolysis of O-Hydroxy Benzaldehyde- aniline

Figure 3 (b): Plot of log (A0-A∞)/ (A∞-A t) against Time For Hydrolysis of O-Hydroxy Benzaldehyde- aniline

From the values of thermo dynamic parameters it is observed that ΔH° and ΔS° are the important parameters in controlling the rates of reactions. The negative values of entropy of activation indicate that activated complex is probable. The high negative values of entropy of activation suggest that the reaction may occur between like charged ions or ions and neutral molecules and may generate rigid intermediate transition state resulting in slow rate of the reaction. The values of frequency factor lies below 10^10 and hence present reaction may be taking place between ions of like charges. Activation entropy values are negative. This is because the protonated water molecule is held up at the nitrogen atom of imine linkage. The large negative values of ΔS° also indicate an extensive reorientation of the solvent molecules as a result of the formation of the activated complex. A negative value of ΔS° means that the activated complex is more ordered than the reactants.

References

[8] B.K.Magar;A.S.Kirdant;V.A.Shelke;S.G.Shankarwar:T. K.Chondhekar,

Volume 9 Issue 1, January 2020

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

Paper ID: ART20204267 DOI: 10.21275/ART20204267 1137