
International Journal of Science and Research (IJSR)
ISSN: 2319-7064

ResearchGate Impact Factor (2018): 0.28 | SJIF (2018): 7.426

Volume 9 Issue 1, January 2020

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

Security Challenges and Solutions in MongoDB

Alankrit Chaturvedi

Carnegie Mellon University, Pittsburgh, PA, 15213

Abstract: The data present in this world is in bulk and in order to provide flawless performance along with two of the major things in

the world of database, i.e. consistency and availability, it is difficult to achieve in RDBMS. To tackle this increase in data and work

towards getting better performance in applications these days, NoSQL databases were introduced. There are different types of NoSQL

databases that are built upon the concepts of documents, key-value pair, graphs etc. This paper talks about one such NoSQL database

called MongoDB which is a based on a document store principle. It is widely used document store database in industries [11]. Despite

being performance rich, there are some security flaws when adapting the database and those flaws are discussed in this paper in detail

and are compared with traditional RDBMS system. Previous attacks on MongoDB, along with how to avoid such attacks are explained

in detail. Some suggestions to work upon in order to improve the security in MongoDB is also suggested in this paper.

Keywords: MongoDB; RDBMS; Security; MongoDB Security Features; Attack; Best Practices

1. Introduction

With the increase in technology and people being exposed to

web, the volume of data has increased. The data varies from

being about users themselves, their preferences, products for

a retail industry, events, locations and the list goes on. The

use of data has significantly increased with the accessibility

of applications, systems, mobile phones, computers etc. Data

is accessed every second of the day by millions of users

worldwide and in order to accommodate that, processing has

increased intensively. It is not always the work of the

processor to increase the performance, but performance can

be enhanced by the way data is stored and retrieved. Efficient

systems worldwide are adopting new ways to discover

performance enhancement and provide users with a fast

experience.

Most widely used databases these days are NoSQL databases

that have redefined the way data was stored in traditional

RDBMS systems. Their primary advantage is that, the way

they handle data is unstructured i.e. documents, key-value

pairs, multimedia etc. NoSQL databases such as MongoDB

that stores data as a form of documents, stores data which is

highly scalable, provides better performance and is designed

to process significant amount of unstructured data at a speed

10 times faster than traditional RDBMS has high availability

too and strong fail over capabilities.

However, when we talk about security, MongoDB is very

weak. Authentication and Encryption does not exist and is

very weak when it is implemented.

Security with data, is the most essential part of any system, as

there is a lot of user related sensitive information stored in

the databases and raises the concern of confidentiality and

privacy of the data and security provided by these systems.

In this paper, we review the main security features of

MongoDB, brief overview of the database functionality and

discuss how these security flaws can be improved

2. Overview of MongoDB

2.1 What is MongoDB?

MongoDB is a schema less database which is built in C++

programming language and is widely based on the concept of

document-oriented databases. By document like database, it

means that it manages data (also called collections) in JSON

like documents. The advantage of this is data can be stored in

the same schema without having to traverse through varied

tables as done in RDMBS or simply using less “JOIN”

operations. Complex data can be stored in nested hierarchies

and still be query-able and index-able. Every collection has

attributes pertaining to the requirement and user specific. [2]

2.2 Features of MongoDB

Following are the features of MongoDB: [2]

1) Data Model: A collection is equivalent to a table if we

compare to traditional RDBMS and a collection stores

sets of documents. Documents are equivalent to set of

fields. Every document can be attributed to a row in a

collection. Any document can store static string data or

complex data structures like lists or even other documents

which makes it faster to lookup in case of extended design

and embedded design. Every document has a system

generated „_id‟ and can be queried using that or any

attribute within a document.

2) API: MongoDB uses a RESTful API which means it uses

HTTP requests to post, read data and delete data. To

retrieve certain documents from a database collection, a

Mongo Query language is used. For example, to retrieve

certain documents query like {name: {first: Alankrit, last:

Chaturvedi}}. It is understood that if we are querying like

the above example, we have the fields „name‟, „first‟, and

„last‟.

3) Architecture: A MongoDB cluster is made of one or more

shards. By shards it means that a part that holds portion of

the total data. Sharding is managed automatically and is

backed with a replica set which holds the data set. If the

primary server goes down, it is backed up with a

secondary server and thus provides consistency. To dig

deeper, all writes, and consistent reads go to the primary

server, and all consistent reads are distributed among the

secondary servers. The data is distributed, and the cluster

Paper ID: ART20204190 DOI: 10.21275/ART20204190 918

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

ResearchGate Impact Factor (2018): 0.28 | SJIF (2018): 7.426

Volume 9 Issue 1, January 2020

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

contains a group of servers called configuration servers.

Each server holds a copy of the meta-data indicating the

data that lives on each shard.[1]

4) There are two types of replication functionality in

MongoDB, namely Master-Slave and Replica-set. “In

both types of replication, the write operations are

performed for a single server (Master or Primary).

Replica-Sets are known to provide better flexibility,

allowing automatic primary promotion (if enough of the

secondary servers are available), automatic fail-over and

better support for rolling upgrades [1]. Both techniques

provide data-redundancy and read-scaling (where data

can be read from any of the servers in the cluster),

however, in Master-Slave configuration, if a slave is too

far behind from the master, then the administrator has to

manually fix this, usually by fixing or rebuilding the slave

instance”.

“The last piece of the MongoDB puzzle is its ability to

automatically shard the data between multiple hosts. This

effectively allows Mongo to scale horizontally to thousands

of servers. When sharding is combined with replica-sets, the

end-result is a highly scalable, redundant cluster, with no

single point of failure” [1].

Figure 1: MongoDB Architecture [6]

2.3 Comparison Between RDBMS and MongoDB

The major difference between a traditional RDBMS and

MongoDB system deals with normalization of data, In

RDBMS, due to flexibility of JOIN operations, we have

normalized data i.e. ACID transactions support. This is done

for better performance, removal of duplicates and

consistency of data. However, when we talk about a

document store, MongoDB database keeps denormalized

data in the form of embedded documents, which in turn helps

in performance, how? that‟s because it stores the data as

required by the end user. [5]

A detailed comparison between traditional RDBMS system

(MySQL) and MongoDB is described below.

Table I: Comparing MySQL(RDBMS) and MongoDB [4]

2.4 MongoDB Security Features

The official website of MongoDB says “One valid way to run

the Mongo database is in a trusted environment, with no

security and authentication. ... Of course, in such a

configuration, one must be sure only trusted machines can

access database TCP ports.” [1]

Security was not a main concern when the developers were

building MongoDB. As discussed in the introduction,

MongoDB is still open to attacks related to user data. Attacks

Paper ID: ART20204190 DOI: 10.21275/ART20204190 919

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

ResearchGate Impact Factor (2018): 0.28 | SJIF (2018): 7.426

Volume 9 Issue 1, January 2020

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

like insecure connections (not https) and not enough

authentication support. Currently, most systems build the

security phase in the middleware or interaction layer and no

security on Mongo cluster level.

MongoDB security can be challenged in many areas. Use of

default ports, lack of authentication control, broad access to

users in authentication, lack of use of LDAP, not using SSL

and not limiting database access to known network devices.

An overview of the categories is mentioned below and in

detail in the following read: [3]

Table II: Security Overview of MongoDB with

Recommendations

a) MongoDB Data Files

There is no automatic encryption when it comes to

MongoDB data files. Attackers can access the

files/information directly once they are exposed to the

database. In order to mitigate this, it is up to the application

to encrypt sensitive information, for example, encoding user

password with base64 encoding or encoding using MD5 for

certain sensitive data.

Network encryption should be enforced in order to use

encoding. Configuring TLS layer will encrypt the

communication to and from the database. With operating

system security in place i.e. firewalls, even after that, all the

communication should still use TLS because if some attacker

is able to breach the firewall, they can breach the database

too. Encryption of data at rest is only available in Enterprise

edition of MongoDB.

b) Client Interfaces

By default, MongoDB does not support SSL client node

communication. This leads to security breach in the network.

“To use SSL, it is required recompile whole MongoDB with

the “-sl" option or deploy MongoDB enterprise version.

Additional steps to generate keys are needed for configuring

client/server for SSL communication”.[1]

Mongo supports a binary wire-level protocol, using TCP port

27017 by default. This protocol is used by various drivers

and is considered the most efficient way of communicating

with Mongo. In addition to the drivers for application,

MongoDB uses this port and protocol in order to perform

replications (both variants). Also, the port number that is

1000 more than the binary client port is used as a HTTP

server (TCP port 28017). The HTTP server provides

management level statistics and can also be configured to

provide a RESTful interface to the database, by adding

rest=true to the database configuration file or using

command line. [7]

The binary wire-level protocol is neither compressed nor

encrypted, and the HTTP server doesn‟t support SSL or TLS

in any way. The internal HTTP server can be hidden behind a

HTTP proxy server, like Apache HTTPD with the reverse

proxy mechanism, and then the Apache HTTPD‟s robust

authentication and authorization support can be used, in

addition to SSL encryption for the connection.

c) Injection attacks potential

The main utility language used by MongoDB is JavaScript.

JavaScript can be used to store data in the MongoDB

database and are available to the database users. JavaScript

being a scripted language, has a potential for injection

attacks.

For example, the following statements can be all used to

perform the same query in MongoDB:

The above statements are prone to injection attacks especially

the where clause. It evaluates each records in the collection.

So, any manipulation in this type of query can lead to

injection attacks.

d) Authentication

When sharding happens, authentication is not supported in

MongoDB. Authentication can only be enabled in Mongo in

standalone or replica-set mode. Thus, basic MongoDB does

provide support for authentication on a single database level.

On the other hand, MongoDB enterprise version (the paid

version) adds an additional Kerberos service for

authentication.

e) Authorization

There are limited roles in MongoDB namely, read,

readWrite, readAnyDatabase, readWriteAnyDatabase,

userAdmin, clusterAdmin, userAdminAnyDatabase,

dbAdmin, and dbaAdminAnyDatabase. [1]

In MongoDB, since there is no support for authentication,

there is no support for authorization.

Paper ID: ART20204190 DOI: 10.21275/ART20204190 920

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

ResearchGate Impact Factor (2018): 0.28 | SJIF (2018): 7.426

Volume 9 Issue 1, January 2020

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

f) Auditing

Auditing in MongoDB only happens when a new

database(namespace) is created. There is a line in the log

about the creation but there will not be logs about

subsequent operations like updates or queries.

There is an HTTP console for information about systems

and clients for each MongoDB instance. If there is no

security i.e. there is no authorization, there is a potential

threat for an attacker to leak the data. This can be rectified

by implementing authorization feature using Kerberos of

MongoDB enterprise.

2.5 Previous Attacks On MongoDB

The following attacks have been reported in high frequency

by majority of the organizations that use MongoDB as a

service. [1]

a) Injection Attack: A potential attack as discussed earlier

was JavaScript injection attacks. Turns out, organizations

have been victim of these attacks. MongoDB API works

with BSON (Binary JSON) calls and includes a BSON

query assembly tool. However, JavaScript expressions

and un-serialized JSON are allowed in several query

parameters that has made it vulnerable.

b) DoS Attack: For any attacker to fetch data from

MongoDB, if they get their hands-on valid user

credentials, they don‟t have to be an admin to carry out

attacks, since there is no authentication and authorization.

c) XSS Attacks: If attackers insert random JavaScript code,

they have been successful in attacking and stealing

sensitive information. This is because MongoDB allows

scripting using JavaScript for the database layer and for

the client to fetch data.

The following is a way to explain how attacks incur in a

MongoDB database:

Figure 2: Attack on MongoDB [7]

Few of the companies have been exposed to MongoDB

breach such as:

Shodan [8] – On 10
th

 May 2019, personal data of 275m users

including name, gender, email, address, employment history,

current salary, current employer, phone number etc. were

exposed. This happened due to public facing database and

lack of authentication.

Pipl [9] – On June 18
th

 2019, 188m records of users were

compromised. This was again due to lack of authentication.

In addition to this, about 20 percent of the data on MongoDB

was wiped out and held for ransom by the Unistellar hacking

group. About 12564 databases were sabotaged. [10]

All the issues can be rectified in any organization and many

practices have been introduced to protect data.

2.6 Solutions to MongoDB Security and Best Practices

With the following steps in place, MongoDB security can be

enhanced, without switching to the Enterprise version. The

below mentioned steps are employed by most of the

companies and works in reducing most of the above-

mentioned attacks. [7]

a) Authentication:

By either using SCRAM-SHA-1 or MongoDB-CR.

SCRAM-SHA-1 is Salted Challenge Authentication

Mechanism [7] that uses a simple text-based user credentials

transmitted over a channel and is layered by transport layer

security (TLS). Like SCRAM, MongoDB-CR verifies user

credentials against an authentication database.

External protocols can be employed to MongoDB as well

like LDAP and Kerberos. LDAP uses the concept of

providing centralized passwords and is designed to help

anyone to locate information needed in a public or private

network. Kerberos is a secret key authentication protocol in

which a shared key is used for encryption for server-client

interactions.

b) Authorization/Role based security:

In addition to defining roles that covers most of the users,

custom roles can be created in MongoDB based on

requirements. Enabling authorization is done using the „–

auth‟ command which controls a user‟s access to the

database and upon every access, the identities are verified.

c) TLS/SSL encryption:

After Mongo 2.6, SSL and TLS are supported by x.509

certificates [5]. Clients can use the certificates to

authenticate users instead of using usernames and

passwords. While MongoDB can use a valid certificate from

a trusted server, self-signed certificates are best not

considered because it may lead in not proper verification of

the server identity and also in order to avoid man-in-the-

middle attacks.

d) Hardening the MongoDB database:

Hardening means adding security layer by layer. There can

be many hardening ways in MongoDB. The most essential is

network hardening with firewalls and VPNs.

Few of the best practices for MongoDB are [4] –

 Enabling access control and using any of the

authentication mechanisms mentioned. Each instance of

the cluster should be individually configured.

 Administrator user should always be created first.

Additional users can be added as per usage.

 All communications between mongos and mongod

instances should be encrypted using TLS/SSL.

 MongoDB should be run in a trusted network. Database

should not be allowed to be routable to a public network

even if it is residing inside a private network. Interfaces

should be limited as this does not allow a bad actor to

move the data.

 Track data movement and changes using auditing.

Paper ID: ART20204190 DOI: 10.21275/ART20204190 921

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

ResearchGate Impact Factor (2018): 0.28 | SJIF (2018): 7.426

Volume 9 Issue 1, January 2020

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

 Understanding roles and assigning correct privileges.

 Creating a user specific to the use case of the application.

For example – for a user to run an application, the user

should be provided with least privileges and for a user to

run analytics, a user with read only access should be

given. There is a clear isolation and separation of roles in

this case.

 Use IP filtering to provide better access to the people

using the environment.

2.7 MongoDB vs RDBMS Security

For any database to be secure, it needs to provide

confidentiality, availability and integrity (CIA). Relational

Databases has security that includes integrated features like

role-based security, access control by user-level permissions

on stored procedures. RDBMS is built on ACID (Atomicity,

Consistency, Isolation, Durability) transaction properties

that means that database transactions are processed with data

integrity, data logging and data consistency. Replication in

RDBMS ensures durability and data integrity. However, to

use these features, users have to pay a cost, which is for

license and speed to access data [5].

Giants like Google and Facebook, which deal with

continuous large data sets, availability and scalability are the

key requirements they look for. In order to distribute the

systems across hundreds of servers, they have adopted the

use of MongoDB database, however their security is

implemented in the middleware layers.

Basically, security in NoSQL database is nowhere as robust

as relational databases.

Table III: Pros and Cons of MySQL(RDBMS) and

MongoDB

2.8 Which Database to Choose?

RDBMS has been the go-to solution for most of the

companies worldwide. Users have reportedly complained

about the less collaborative, helpful community of MySQL

(RDBMS) compared to MongoDB, after being acquired by

Oracle. [9] Another issue with RDBMS is owner‟s direction

towards MariaDB development and therefore ignoring

patches and providing a sustainability plan.

Comparing MongoDB speed vs MySQL, developers note

that the MySQL or any RDBMS system lacks speed and

experience difficulties with large data volumes[7], so it‟ll be

a better choice for companies with fixed and concrete schema

with small scale data or small amount of data, basically

companies that are looking for more general solution.

MongoDB has one big advantage over RDBMS i.e. the

ability to cope with large, unstructured and varied amounts of

data [6].

The main question is “when to use MongoDB instead of

RDBMS?”. In order to answer this, developers need to take

into account the requirements of the project, the company

and further goals. A traditional RDBMS system is recognized

for its flexibility, high performance, data protection, high

availability, and ease of management. The concept of

indexing can even help in performance issues, help in

interaction and can ensure robustness. MongoDB is a better

option when the data is complex and unstructured, the

schema is not pre-defined. Also, if there is a need to store

large volumes of data and in a document format, MongoDB

will help in storing and retrieving the data in a much efficient

manner.

3. Conclusion

We reviewed the problems for MongoDB database security

that includes lack of encryption for data files, weak support

for authentication between client and servers, weak

authorization (except the Enterprise version), vulnerability to

injection attacks etc. Currently, with the middleware layer in

place and encryption, authentication and authorization

happening at the middleware layer, this problem is under

control however, there is a need for considerable hardening

and development in order to provide an environment that is

secure to store sensitive data without relying on middleware

layers to perform the task and also to get the robustness like

that of relational databases. Many options mentioned in the

paper like use of Kerberos, LDAP, role-based authorization,

use of SSL etc. are being used in the industry and there is

scope to explore many more options with the enhancement of

technology.

References

[1] Hossain Shahriar, and Hisham M. Haddad, “Security

Vulnerabilities of NoSQL and SQL Databases for

MOOC Applications,” International Journal of Digital

Society (IJDS), Volume 8, Issue 1, March 2017

[2] MongoDB Security Concept. [Online]. Accessed from

http://docs.mongodb.org/master/core/security/

[3] “Security Checklist.” Security Checklist - MongoDB

Manual. Accessed from

https://docs.mongodb.com/manual/administration/securi

ty-checklist/.

[4] David Murphy. “The Essential Guide to MongoDB

Security.” InfoWorld. InfoWorld, February 2, 2017.

https://www.infoworld.com/article/3164504/the-

essential-guide-to-mongodb-security.html

[5] Cobb, Michael. “Comparing Relational Database

Security and NoSQL Security.” SearchSecurity.

Accessed November 18, 2019.

https://searchsecurity.techtarget.com/answer/Comparing

-relational-database-security-and-NoSQL-security.

[6] “MongoDB vs MySQL Comparison: Which Database Is

Better?” By Eugeniya. Accessed November 30, 2019.

https://hackernoon.com/mongodb-vs-mysql-

comparison-which-database-is-better-e714b699c38b.

[7] International Journal of Scientific Research. “Analysis

on Database Security Model Against NOSQL

Paper ID: ART20204190 DOI: 10.21275/ART20204190 922

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

ResearchGate Impact Factor (2018): 0.28 | SJIF (2018): 7.426

Volume 9 Issue 1, January 2020

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

Injection.” Academia.edu.

https://www.academia.edu/33112210/Analysis_on_Data

base_Security_Model_Against_NOSQL_Injection.

[8] Bradbury, Danny, Danny Bradbury, Hydra, Paul

Ducklin, Mahhn, John E Dunn, and Danny Bradbury.

“275m Personal Records Swiped from Exposed

MongoDB Database.” Naked Security, May 10, 2019.

https://nakedsecurity.sophos.com/2019/05/10/275m-

indian-citizens-records-exposed-by-insecure-mongodb-

database/.

[9] Asokan, Akshaya, and Ron Ross. “MongoDB Database

Exposed 188 Million Records: Researchers.” Bank

Information Security. Accessed November 30, 2019.

https://www.bankinfosecurity.com/mongodb-database-

exposed-188-million-records-researchers-a-12769

[10] Barth, Bradley. “Hacking Group Wipes Content from

over 12,000 Open MongoDB Databases.” SC Media,

May 20, 2019.

https://www.scmagazine.com/home/security-

news/cybercrime/report-hacking-group-wipes-content-

from-over-12000-open-mongodb-databases/.

[11] “DB-Engines Ranking.” historical trend of document

stores popularity. http://db-

engines.com/en/ranking_trend/document store.

Paper ID: ART20204190 DOI: 10.21275/ART20204190 923

https://nakedsecurity.sophos.com/2019/05/10/275m-indian-citizens-records-exposed-by-insecure-mongodb-database/
https://nakedsecurity.sophos.com/2019/05/10/275m-indian-citizens-records-exposed-by-insecure-mongodb-database/
https://nakedsecurity.sophos.com/2019/05/10/275m-indian-citizens-records-exposed-by-insecure-mongodb-database/
https://www.bankinfosecurity.com/mongodb-database-exposed-188-million-records-researchers-a-12769
https://www.bankinfosecurity.com/mongodb-database-exposed-188-million-records-researchers-a-12769
https://www.scmagazine.com/home/security-news/cybercrime/report-hacking-group-wipes-content-from-over-12000-open-mongodb-databases/
https://www.scmagazine.com/home/security-news/cybercrime/report-hacking-group-wipes-content-from-over-12000-open-mongodb-databases/
https://www.scmagazine.com/home/security-news/cybercrime/report-hacking-group-wipes-content-from-over-12000-open-mongodb-databases/

