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Abstract: A key part of the undergraduate statistics curriculum is modeling and prediction. Indeed, regression analysis is one of the 

most frequently used statistical methodsin the sciences.  Most introductory statistics textbookscontain one or more chapters discussing 

regression methodology. However, with the advent of “big data” problems, the classical discussion of introductory regression analysis 

may not fully capture the current state of the art. This article presents an undergraduate perspective for regression analysis with 

regulation. Our discussion concentrates on the methodologywhich is then followed by an informative simulation study. 
 

1. Introduction 
 

Regression analysis is a statistical methodology for 

estimating the relationships between a dependent variable 

and one or more independent variables. In simple linear 

regression, the goal to use one straight line to describe a 

potential linear relationship between a dependent variable 

and a single independent predictor; see Figure 1. 

 
Figure 1                                                        

 

 
Figure 2 

 

Table 1: Training data 
X -0.27 -1.63 -1.03 -0.33 -1.19 -0.77 0.10 0.89 0.70 -0.06 

y 3.00 -11.78 -5.40 1.04 -8.50 -2.80 6.58 15.32 14.01 4.36 

 

Here, the simple statistical model is 𝑦 = 𝛽0 + 𝛽1𝑥 + 𝜀 , 

where 𝑥 represents an independent (explanatory) variable, 𝑦 

denotes a response at 𝑥 ,  𝛽0  and 𝛽1  represents unknown 

coefficients to be estimated on the basis of data, and 𝜀 

denotes potential random error. The classical method for 

estimating the coefficients is due to Laplace who developed 

the Least SquaresEstimation. It proposes finding estimates 

𝛽0
  and  𝛽1

  of the coefficients to minimize 𝑆𝑆𝐸 =

  𝑦 − 𝛽0
 − 𝛽1

 𝑥 
2
, which is called the sum of squarederror 

(SSE). Theestimated least squares lineis then 𝑦 = 𝛽0
 +

𝛽1
 𝑥 ,where 𝑦 is the estimated mean response when the 

explanatory variable is set at 𝑥; see the red line in Figure 

2.The least square estimators𝛽1
 =

 (𝑦𝑖−𝑦 )(𝑥𝑖−𝑥 )

 (𝑥𝑖−𝑥 )2 , 𝛽0
 = 𝑦 −

𝛽1
 𝑥  are statistically unbiased, but sometimes with high 

prediction variance. This problem of reduced estimation 

power in prediction in a regression setting is often referred 

toas overfittingin the literature. This situation can directly 

beseen from thecomplete dataset in Figure 3, where the solid 

black dots are influential data values.  

 
Figure 3 

 
Figure 4 

 

Table 2: Test data 
X 3.00 4.00 5.00 6.00 7.00 

y 30.00 31.00 33.50 37.00 40.00 

 

The sum of squared prediction error 𝑆𝑆𝐸 =   𝑦 − 𝛽0
 −

𝛽1
 𝑥 

2
using the red line in Figure 4 will be very large for the 

𝑥 values corresponding to the solid-colored points there. To 

solve this issue, the objective the shifts to finding a line with 

some bias in estimating the coefficients that will, 

nonetheless, produce smaller SSE. The blue line in Figure 4 
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yields lower prediction variance than the red line in Figure 3, 

and how to achieve this result is discussed next. 

 

2. RIDGE and LASSO Methodologies 
 

With only the limited data information given in Figure 1, we 

need the ability, specified by a rule, to control the bias and 

variance trade-off, which is the essence of the concept of 

regulation. In the least squares estimation step, instead of 

minimizing   𝑦 − 𝛽0
 − 𝛽1

 𝑥 
2
, we instead are interested in 

minimizing   [  𝑦 − 𝛽0
 − 𝛽1

 𝑥 
2

+ 𝜆 × 𝛽1
 2

]. The𝛽1
 2

 termis 

referred to as the 𝐿2  norm, and the corresponding 

minimization process is called ridge regression. The penalty 

term, 𝜆 × 𝛽1
 2

, forcessome bias into the model. Clearly, the 

tuning parameter𝜆  controls the magnitude of the penalty 

term, and it is easily seen that as𝜆 → 0, then the penalty term 

also approaches zero. In this event,ridge regression reduces 

to ordinary least squares regression, so that𝛽 1,𝑅𝑖𝑑𝑔𝑒 = 𝛽 1. On 

the other hand, as𝜆 → ∞, then 𝛽 1,𝑅𝑖𝑑𝑔𝑒 → 0sincethe penalty 

term dominates in the equation,   [  𝑦 − 𝛽0
 − 𝛽1

 𝑥 
2

+ 𝜆 ×

𝛽1
 2

] . To choose the proper tuning parameter 𝜆 , cross 

validation (i.e., different choices for 𝜆 used for comparison) 

will be undertaken, and the whole process will be 

demonstrated in asimulation study to follow.  

In a real data situation, the information we know is referred 

to as training data, shown as the open-circle dots in Figure 3. 

The solid black dots in Figure 3 are referred as testdata. We 

want to initially fit a model using only the training data, and 

then consider prediction using the test data as well. For ridge 

regression, this amounts to minimizing   [  𝑦 − 𝛽0
 −

𝛽1𝑥2+𝜆×𝛽12in order toshift the slope downward, 

accounting for the test data geometric configuration. 

 

Let us compare the red and blue fitted linesshown inFigure 4. 

A modelbased only on the training data set, the open-circle 

dots, is given by the red line, 𝑦 = 5.54 + 11.05𝑥. The ten 

training data values produce  𝑆𝑆𝐸 = 3.06 . The fitted 

equation for blue line is 𝑦 = 3.85 + 6.05𝑥 and the sum of 

squared residuals is 𝑆𝑆𝐸 = 150.94 . Based on the least 

squarescriterion, we should select the red line for prediction 

since it has a smaller sum of squared residuals. However, if 

we consider ridge regression,the blue line may outperform 

the red line in the sense of lowing SSE. A tuning parameter 

choice of 𝜆 = 5  (a moderate penalty level selection) 

produces   [  𝑦 − 𝛽0
 − 𝛽1

 𝑥 
2

+ 𝜆 × 𝛽1
 2

= 3.06 + 5 ×

11.052 = 613.57 for the red line and  [  𝑦 − 𝛽0
 − 𝛽1

 𝑥 
2

+

𝜆 × 𝛽1
 2

= 150.94 + 5 × 6.052 = 333.95 for the blue line. 

In this event, the blue line should be our choice 

produceslower SSE.  

 

A major goal of ridge regression is to avoid overfitting. It is 

easy tosee that the blue fitted line has performed better in 

terms of the testing data. For red line, 𝑆𝑆𝐸 =   (𝑦. 𝑡𝑒𝑠𝑡) −

𝛽0−𝛽1(𝑥.𝑡𝑒𝑠𝑡)2=4221.79. For blue line, 

𝑆𝑆𝐸 =   (𝑦. 𝑡𝑒𝑠𝑡) − 𝛽0
 − 𝛽1

 (𝑥. 𝑡𝑒𝑠𝑡) 
2

= 121.66. Clearly, 

the blue line has significantly lower prediction error. Again, 

cross-validation should iteratively be used to select the 

optimal tuning parameter 𝜆.  

Lasso regression is similar to ridge regression, except that 

lasso uses the 𝐿1 norm, |𝛽1
 |, as the penalty term. Everything 

else remains the same in the minimization process, so the 

objective is to minimize   [  𝑦 − 𝛽0
 − 𝛽1

 𝑥 
2

+ 𝜆 ×

|𝛽1
 | ] .Due to Lasso’s geometric properties, it can shrink 

some of the regression coefficients to zero and hence 

achieve apossible reduction in dimensionality. See Figure 5.  

 
Figure 5 

 

3. Simulationusing Ridge Regression 
 

For ridge regression simulation, the combined training and 

test datasets given in Tables 1 and 2 are used. Cross-

validation is used in order to select the best tuning parameter 

𝜆. Usually, a 10-fold cross-validation is applied, but since 

our data set is very small (𝑛 = 15),we use a 5-fold cross-

validation instead. This means that we randomly divide the 

data into fiveequal subgroups,simply named as groups 1 to 5, 

each group havingthree observations.  

 

We start with the first group being the test data, and the 

remaining data are the training data. Since 𝜆 ∈ (0, +∞), we 

canchoose some reasonable discrete 𝜆 ,for example, 

choosing 𝜆 ∈ (1,1000)  by increments of 1 will usually 

suffice. When 𝜆 = 1, computationally identify the estimated 

coefficients by minimizing   [  𝑦 − 𝛽0
 − 𝛽1

 𝑥 
2

+ 𝜆 × 𝛽1
 2

, 

and record its value as𝑆𝑆𝐸1(𝜆 = 1).Following that step, treat 

the second group as the test data set, and the remaining 

observations as the training data set. Again, set 𝜆 = 1 and 

find the sum of squared residuals from the testdata set, 

recorded as𝑆𝑆𝐸2(𝜆 = 1).Continue this process until every 

group is used as a test data set with the remaining data 

values as the training data set. Finally, stop this process after 

computing,𝑆𝑆𝐸5(𝜆 = 1).Therefore, when𝜆 = 1, the average 

sum of squared error is 𝐶𝑉(𝜆 = 1) =
1

𝑘
 𝑆𝑆𝐸𝑘(𝜆 =𝑘

𝑖=1

1), where 𝑘=5. 
 

The precedingalgorithmis repeated for 

𝜆 = 2, 3, ⋯ , 1000, andw e identify 𝜆 = 𝜆∗ which 

minimizes𝐶𝑉(𝜆), say𝐶𝑉(𝜆∗), along with its corresponding 

estimated coefficients𝛽0,𝜆∗  and 𝛽1,𝜆∗ . 
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Figure 6: CV values for 𝜆 = 1,2, 3, ⋯ , 1000 

 
Here, as seen in Figure 6,the minimization occurs atthe 

tuning parameter𝜆∗ = 12with𝐶𝑉(𝜆∗ = 12) = 89.09, and the 

estimated regression coefficients turn out to be 𝛽0,𝜆∗ =

2.35 𝑎𝑛𝑑 𝛽1,𝜆∗ = 5.79. 

 

4. Simulationusing Lasso Regression 
 

In the case of six explanatory variables, the model is 

𝑦 = 𝛽0 + 𝛽1𝑥1 + 𝛽2𝑥2 + 𝛽3𝑥3 + 𝛽4𝑥4 + 𝛽5𝑥5 + 𝛽6𝑥6 + +𝜀  

with 𝑆𝑆𝐸 =   𝑦 − 𝛽0
 − 𝛽1

 𝑥1 − 𝛽2
 𝑥2 − 𝛽3

 𝑥3 − 𝛽4
 𝑥4 −

𝛽5𝑥5−𝛽6𝑥62. The R package,glmnet,can be used to 

perform the simulation. To demonstrate dimension reduction, 

wearbitrarily set theregression coefficients in this model to 

be those given in Table 3. 

 

Table 3: Possible regression coefficients for a model with 

six variables 

𝛽0 𝛽1 𝛽2 𝛽3 𝛽4 𝛽5 𝛽6 

5 10 15 20 0 0 0 

 

Due to lasso’s minimization criterion, the last three 

coefficients should be reduced. Again, using cross-validation, 

the best tuning parameter is 𝜆𝐿
 = 10.24 , and estimated 

coefficients for Lasso regression are 
 

Table 4: Estimated regression coefficients for the model 

𝛽𝐿,0
  𝛽𝐿,1

  𝛽𝐿,2
  𝛽𝐿,3

  𝛽𝐿,4
  𝛽𝐿,5

  𝛽𝐿,6
  

165.46 8.8737 14.6183 19.6056 . . . 

 

Lasso regression successfully reduced the dimension while 

simultaneously retaining the variance reduction properties of 

ridge regression. 

 

5. Conclusions 
 

The recent advent of powerful computing capabilities now 

permits both teaching and researchto extend far beyond the 

frontiers of traditional statistical science. This capability 

must be valued and pursued not only for undergraduate 

research opportunities, but also fully integrated into the 

modern statistics classroom. 
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