Improvement of Dental X-rays Images using Image Processing Techniques

Tariq Alqahtani

Department of Biomedical Equipment Technology, College of Applied Medical Sciences Majmaah University, Majmaah, 11952, Saudi Arabia

Abstract: This thesis proposed a procedure for effective statistical noise analysis in dental rays. A Gaussian scale blend has been used to satisfy non-linearity dispersion to improve the quality of images after denoising. Current methods are based on a filter based on insignificant details. The traditional theory of gaseous and poison diffusion seems only to overestimate noise variance in low-intensity areas (small photon counts). 20 experiments from 20 panorama pictures test the retrospective method, and medical experts back the findings. Secondly, the general image has been maintained; secondly, the diagnostic data on the photo are preserved, and thirdly, the scene diagnostics section defines small details of low contrast. As illustrated above, state-of-the-art approaches have poor results. This new approach is followed by an attempt to see the problem from BSS’s perspective in order to see the panorama as a simple combination of (unwanted) background, observational and noise information.

Keywords: Dental Images, image, processing, MatLab

1. Introduction

The patient is relatively comfortable with the "normal" 18-film intraoral dental examination, and the overall radiation dose is usually sufficient, although it takes time, sometimes less than optimal for each of the teeth [1]. Nonetheless, as a basis for preparing treatment, it provides valuable perspectives, is far superior to solely clinically produced results, and often encourages further research [2],[3]. Finally, the 18-page "full-series" examination provides a sense of security for dentists and patients and strengthens their confidence through communication [4];[9]. On the other hand, direct x-rays of the alveolar maxilla sinus lobes of the teeth, tongue, and time and body joints reduce the risk of incomplete, possibly incorrect testing, which could result in the worst-case scenario being misused. In this way, panoramic x-rays often extend horizons as they improve dentists’ ability to differentiate between normal and abnormal circumstances and increase radiographic anatomy awareness. It is possible to implement new forms of care planning in tandem with a better understanding of chronic disease interrelationships and dental / oral problems [10]-[12]. It is really a matter of responsibility for the quality of the obtained x-rays and the amount of radiation needed, whether the dentist conducts X-rays or the position of support staff. The responsible person must ensure that the auxiliary personnel are well qualified and legally accredited before delegating the position for any reason. Not only do you need to know the signs and procedures used by producing high-quality x-rays to prevent unnecessary exposure to radiation [13]. To ensure the best radiographic performance for each patient and the minimum possible exposure to radiation, all ongoing training requirements must be kept up-to-date with the dentists responsible for taking X-rays. This is big. A depiction of physical life, painting, or drawing can be portrayed using the image. Nevertheless, it is also possible to extend an idea or concept that is more abstract than physical [14], [15].

Two elements overlay the picture. Noise restricts the image's amount of detail. In particular, noise interference can lead to a loss of finer details about the structure. Noise means that a silent visual image is influenced by an uncertain word. The term is probably derived from radio engineering, where the accuracy of transmitted radio signals (switches and whistles) is often compromised by background noise, particularly in the case of original signals that are slightly low, and the radio receiver uses the largest amplification [16]-[18]. This noise has a very similar effect on information transmitted via a radio link with a noise effect on information transmitted through an image. Under optimal conditions, the signal magnitude is much higher than the noise magnitude. The signal-to-noise ratio is very high. Signal-to-noise ratio is acceptable and in adverse circumstances, a lot of information is lost. Because of accidental exposure to radiation or poor storage conditions, fogging is not unusual [19]. While viewing an x-ray, the image is shown in brown or fog. That's the photo data size. While it is difficult to see what is left, some information is lost. No radiographic information are given by Foggling. Such fog is a picture noise example. Another source of noise is shown in a TV shot. The photo seems to have been captured here by the snowstorm. There are tiny white spots on the column [20]. The impact is again the picture information quality. The design of lower electronic circuits that produce electronic noise can result in these appearances [21]. Nevertheless, the basic fact is that the signal shown is too weak in many situations, and that was not the missing pieces left in the puzzle, but the lack of information. The image shows similar effects on the X-ray, except that the image is superimposed on very small black spots that make it look grainy or mottled. To define an image item, the meaning must be different. The optical intensity (gray shade) will vary from the surrounding structures for the design of a radiogram. The structure has to be different (high) on the TV frame. The word contrast is used to define these variations, it is difficult to identify the structure well separated from its meaning, and the contrast is said to be strong (good). The structure cannot be defined in its context if the variations are small. Comparison is low (poor). Dental quality assurance (QA) is aimed at ensuring accurate, reliable diagnostic information whereas controlled doses of
radiation are as low as possible. The QA approach must take into account the applicable regulatory requirements and define a range of organizational targets. Stable structure, also cost-effective, well designed. It is important to examine the parameters extensively, but rarely clarified or modified. Procedures should be less than 'written common sense' and contribute to greater operating performance by being well structured. It is essential to maintain and track official records, which is a key aspect of QA [22].

Preprocessing techniques were used to improve the quality of dental x-rays images. Whether they are too elegant or boring, select and sharpen the files. In image processing, filters are used mostly to eliminate high-frequency artifacts (i.e. smoothing or low frequency signals), i.e. to boost or detect pixel edges. Because of a variety of factors, photographs are usually poor. Scientists also incorporated pre-processing to remove artifacts and noise degradation. Many non-linear filters have been developed for smoothing. Even though their property and practical realms were not implicit in the Fourier regression. Researcher also used anisotropic filtering and variable filtering. The research method used anisotropic and medium filtration algorithms. Anisotropic filter that fluidities not only the borders but also the areas of light images. The regular filter-like image reduces noise (a simple, clear and easy-to-use approach for smoothing images, e.g. reducing amplitude variation from pixel to pixel), often using the median filter to minimize image noise, such as the average filter [23].

2. Materials and Methods

In the case of panoramic images, each film scans with a digital scanner to determine image quality and contrast using the MatLab image processing software. The scanned image was retained in the TIFF file format to ensure image quality. The data analyzed were used to enhance the contrast between soft tissue, linear, nonlinear gray and initial panoramic images. Figure 1 illustrates the block diagram of the study paper. Researcher used a method for the preparation of radiographic X-ray images in this analysis. The flow chart would explain the workflow. The X-ray images were converted from RGB to Gray scale images. Two independent filtering algorithms used to display panoramic images. Flow algorithms use anisotropic and mean filtering algorithms. Reports were associated with PSNR and MSE. Filter output was used to enhance image. This picture increases contrast, decreases noise and subjective efficiency. Improving image goals include greater contrast, color sharpness, and consistency of interface. Several histogram-equalizing (CLAHE) algorithms exist. Researchers used an algorithm here to equalize the adaptive histogram. In the Contrast Limited Adaptive Histogram Equalization (CLAHE) method, X-ray image data has the best PSNR value.

3. Results

Figure 2 shows the original OPG X-rays images used in this study. CLAHE enhanced the contrast of this image in order to show and improve diagnostic values.

Figure 2: The original OPG images

Figure 3 shows the OPG images, which had been treated using Stretchlim technique. A two-element pixel vector representing the upper and lower limits relative to Stretch I. LOW HIGH corresponds to the lower one percent and higher one percent of all pixel values.

Figure 3: Stretchlim technique
Motion Blurred Image
Sharpened Image

shows the gray image and the filtered algorithm that is the

median filter is

color difference of one pixel. Typically, the image noise in

some degree as the traditional filter (it's easy to apply a

alter used algorithms for anisotropic and medium filtration. The

anisotropic filtering was used by scientists. The research
domains, they were thoroughly studied. Median and
subject to Fourier analysis of their properties and application
developed for smoothing. Although they

blurring and noise. Many non linear filters have been

shortened and the fractions are rounded by setting the

ing integer shape.

where Z is twice as wide. If X and Y are integer arrays, they

are returned.

original image

Z= imadd (X, Y) adds the corresponding element to the Y

array and returns the value to the corresponding Z output

array, X and Y are real, non-saving numerical arrays of the

same size, or Y is double-scalar. Except that X is wrong,

where Z is twice as wide. If X and Y are integer arrays, they

are shortened and the fractions are rounded by setting the

integer shape.

histogram map. This approach generalizes increases the local

contrast of many images, particularly when the near-contrast

values define the image data available. The move will
distribute the intensities of the histogram better. This allows
industries with lower-local contrast to achieve higher

contrast without affecting global contrast. Equalization of the

histogram spreads the most common strength values. Boost
the subjective rate of contrast, reduce noise, and sharpen the

dge of the picture. It operates in small pixel regions rather

than a full image. This tile will be improved to roughly
match the histogram of the output area. The tiles are then

combined with bilinear interpolation into arbitrarily defined

boundaries. In order to avoid amplification of image noise,

contrast can be reduced, especially in a homogeneous

setting.

5. Conclusion

This research proposed a new means to convert similar noise

(IID) into image panoramic images (MatLab version R2019a) independently. The proposed solution also stressed
the importance of (noise variation) preservation of outline,
maintained image diagnostic quality and distinguished small
and low contrast details in the diagnostic portion of the

image. The current method is based on an attempt to look at
the issue from a BSS point of view by viewing and filter
the panorama as a mixture of background, diagnostic and
noise information. Noise detection is an easy process for the

naked eye to track with effective image processing.

6. Acknowledgement

The author is thankful to the Deanship of Scientific
Research, at Majmaah University for funding this research.

References

[1] Abdallah, Y., Improvement of Sonographic Appearance
Using HAT-TOP Methods. International Journal of
Scintigraphy for Ischemic Patients. Journal of Biomedical
Engineering and Medical Imaging 2016: 2(6).
Noise Estimation, Using Image Processing Program.
Lambert Publishing Press GmbH & Co. KG. 2011. 123-
125
Images using Pixel Intensity Values Adjustments.
International Journal of Science and Research (IJSR),
[5] Abdallah, Y., Increasing of Edges Recognition in
Cardiac Scintigraphy for Ischemic Patients. Lambert
International Journal of Science and Research (IJSR)
ISSN: 2319-7064

Volume 9 Issue 1, January 2020
www.ijsr.net
Licensed Under Creative Commons Attribution CC BY


Author Profile

Tariq Alqahtani received the B.S. and M.S. and PhD degrees in Biomedical engineering. He now assistant professor and consultant biomedical engineer in Department of Biomedical Equipment Technology, College of Applied Medical Sciences Majmaah University.