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1. Introduction 
 

The article suggests methodological approaches to the 

formation of constraints in mathematical physics problems 

and algorithms for the numerical solution of these problems. 

The ideas underlying the methodological approaches and 

computational algorithms overlap with the ideas of Trefftz 

method, boundary element methods and methods of 

boundary integral equations. This is natural, because I began 

to solve applied problems using these approaches. I knew 

well the strengths and weaknesses of these methods. 

Therefore, I conducted research in order to increase the 

efficiency and accuracy of these methods. 

 

The representation of constraints in the form of a matrix 

equation with a rectangular one, the transformation of this 

equation into an equation with a square matrix are 

considered. An iterative algorithm for solving the matrix 

equation and an algorithm for suppressing inaccuracies 

associated with the high-frequency part of the spectrum of 

the matrix of the equation are proposed 

 

The results of these studies can be applied not only to solve 

problems of mathematical physics, but also many other 

linear problems with constraints. 

 

Approaches to solving boundary value problems that are 

close to those described are considered in [1, 2, 3, 8]. 

 

1) Solutions of a constraint problem and equations 

A solution to a constraint problem is hereinafter calling a set 

of functions (algorithms) that allows one to calculate the 

values of all functions that characterize the solution at any 

point in the solution definition domain. Further, linear 

problems are considered. I.e. a linear combination of 

solutions is also a solution to a constraint problem in which 

the constraints are a linear combination of constraints with 

the same coefficients. Each solution of the constraint 

problem from the set  𝑣𝑖(𝒛)  satisfies the system of 

equations: 

 
 

In the equation: 

 
the columns of matrix A represent the effect of the solution 

on the constraints of the problem. x is the vector of 

coefficients with which the solutions enter into a linear 

combination. f is the vector of constraints. 

 
𝑓𝑗  – the value of the constraint number𝑗. 

 
𝒕𝑗  is the point in the solution definition domain, 𝑣𝑖𝑗 (𝒕𝑗 ) is the 

value of the function that characterizes the solutions at 𝒕𝑗 . 

The row of matrix A contains the values of the same 

function characterizing the solution of the problem at 

different points in the domain of definition of the solution. 

In the column of matrix A are the values of different 

functions characterizing the solution of the problem, at the 

same point in the domain of definition of the solution. 

 

As can be seen from (4), the matrix A is rectangular and, in 

the case N = M, is usually not symmetric. 

 

Replacing the variable in equation (2) leads to equation (5) 

with a symmetric (self-adjoint) matrix B: 

 
In equation (2), the vector x is the vector of coefficients. In 

equation (5), the coefficients of the vector y have the same 

physical meaning as the corresponding coefficients of the 

vector f. 

 

Constraints (coefficients of the vector f) can have different 

meanings. For example, in problems of the theory of 

elasticity it can be: 

 projections of the displacement vector on various vectors; 

 force vector coefficients at a point in the solution domain 

and at the boundary; 

 a linear combination of the displacement vector 

coefficients and the force vector at a point in the solution 

domain and at the boundary; etc. 

 

2) The algorithm for solving the constraint problem 

The boundary problem is solving by minimizing the 

functional: 

 
both for equation (2) and equation (5). Where 𝒇𝟏 are the 

boundary values of the approximate solution. In the case of 

equation (5), it should be borne in mind that the matrix B is 

self-adjoint. 

 

If we denote the residual 𝒇 − 𝒇𝟏 by 𝒇𝟏𝟏 and add the 

correction q with coefficient α to the vector y, then to 

determine the coefficient α in the case of equation (5), we 

obtain the quadratic equation: 

 
𝛼2 𝑩𝑩∗𝒇𝟏𝟏, 𝑩𝑩∗𝒇𝟏𝟏 + 2 ∙ 𝛼 ∙  𝑩𝑩∗𝒇𝟏𝟏, 𝒇𝟏𝟏 

+  𝒇𝟏𝟏, 𝒇𝟏𝟏  𝒎𝒊𝒏, 
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𝛼2 𝑩𝑩∗𝒇𝟏𝟏, 𝑩𝑩∗𝒇𝟏𝟏 + 2 ∙ 𝛼 ∙  𝑩∗𝒇𝟏𝟏, 𝑩∗𝒇𝟏𝟏 

+  𝒇𝟏𝟏, 𝒇𝟏𝟏 𝒎𝒊𝒏, 

 𝛼2 𝑩𝟐𝒇𝟏𝟏, 𝑩𝟐𝒇𝟏𝟏 + 2 ∙ 𝛼 ∙  𝑩𝒇𝟏𝟏, 𝑩𝒇𝟏𝟏 +

 𝒇𝟏𝟏, 𝒇𝟏𝟏 𝒎𝒊𝒏, (8) 

Substitution (7) makes the quadratic form positive definite, 

and its value reaches a minimum when: 

 
The solution is sought by the method of successive 

approximations. l - iteration number: 

 
Matrix B is square, self-adjoint, but without physical 

meaning. However, the spectrum of matrix B can be 

analyzed to determine the solvability of equation (5). In 

addition, the matrix B is smaller than the matrix A in case 

when the number of columns in the matrix A is greater than 

the number of rows. After solving equation (5), the vector of 

coefficients is calculated using the first of equations (5). 

 

3) Acceleration of convergence of iterations 

The iterative process presented in (9), (10) slowly converges 

if, for example, in the boundary heat conduction problem at 

the boundary of the deformation domain, mixed boundary 

conditions are specified (the temperature on the part of the 

boundary and the temperature gradient on the other part of 

the boundary), as well as in some cases when only the 

temperature is set at the boundary. 

 

It is possible to accelerate the convergence of iterations 

using the following modification of the iterative process [14, 

15]: 

 
 

4) Filtering high-frequency inaccuracies 

As an example of applying the filtering algorithm, the 

Neumann problem for the system of Lame differential 

equations is considering below: 

 

 
The solution to system (12) is representing as the potential 

of a simple layer []: 

 
  

where (𝒙 − 𝒚)is the Kelvin matrix of the fundamental 

solutions of system (12) [1]: 

 

 
Matrix𝑻(𝒏(𝒙)withcoefficients: 

 
Is the stress operator [1, 2]. The vector 𝒇 𝒙 =
𝑻(𝒏(𝒙)𝒖 𝒙 is equal to the force vector on the plane square 

element with the normal 𝒏(𝒙)passing through the point𝒙. 

Further,𝒏(𝒙)- the normal vector to the contour of the 

deformation domain, external to it. 

 

After applying operator (15) to potential (13) and calculating 

the limiting value on the boundary surface S, we obtain the 

integral equation [1]: 

 
  

where 𝒇 𝒙  is the force vector acting on the boundary of the 

deformation domain. 

 

The spectrum of the integral operator A in (16) has the 

following characteristic features [1, 2]: eigenvalues are real;  

 The spectrum lies in a circle of unit radius;  

 The spectrum has two condensation points

)1(2/)21(   , where  is the Poisson's ratio;  

 Three eigenvalues are equal to 1 if the deformation 

domain is finite, and equal to -1 if the domain is infinite. 

 

In the examples below, the case is considered when unit 

eigenvalues modulo positive. 

 

When solving equation (16) [3, 4] numerically, the boundary 

of the deformation region is defined by line segments. The 

integral operator (6) is replacing by the sum of the values of 

the integrand at the midpoints of the segment multiplied by 

the length of this segment. As a result of such discretization, 

the functions at the boundary of the deformation domain are 

approximated by finite-dimensional vectors, and the integral 

operator A by the matrix Ap: 

 
 

Fig. 1 shows the boundary contours: 

 

 
Figure 1: Boundary contours: deformed ellipse and 

lemniscate. 

 

Fig. 1 shows points approximating a deformed ellipse (a) 

and a lemniscate (b). Contour points are obtained using 

conformal mappings of the appearance of a unit circle. To 

obtain a deformed ellipse, the Zhukovskii function is applied 

twice: 1.5z + 0.5 / z; 0.9z + 0.4 / z. The lemniscate is 

obtained using the map c (z + 1)
1/2

. 
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Figure 2: Spectrums of matrices 

 

Fig. 2 shows spectrums of matrices approximating singular 

integral operators from the boundary equations of the 

corresponding boundary value problems of the plane theory 

of elasticity. 

 

For these cases, the eigenvalues and eigenvectors of the 

matrices Ap were calculated. The eigenvalues of the matrix 

in the case of an ellipse are shown in Fig. 2a, in the case of 

lemniscates, in Fig. 2b. 

 

The frequency number of the eigenvector is marked on the 

horizontal axis, and the corresponding eigenvalue is marked 

on the vertical axis. By the frequency of the eigenvector as a 

function of the length of the curve here is meant its 

similarity to the function sin or cos in the number of maxima 

or in the number of zero values. Light circles mark two 

eigenvalues that differ from each other by less than 0.01. 

 

In the case under consideration, the eigenvectors are two-

dimensional vector functions; therefore, four eigenvectors 

and, correspondingly, four eigenvalues correspond to each 

frequency. Zero frequency corresponds to two unit 

eigenvalues (hard shift), another unit eigenvalue corresponds 

to a unit frequency (hard turn). The dashed lines in Fig. 2 

shows the expected points of the spectrum condensation. 

 

The results of calculations of the spectrum of the matrices Ap 

showed the following:  

 The eigenvalues of the matrices are valid;  

 The spectrum lies in a circle of unit radius;  

 Eigenvalues are condensed to points up to the ninth 

frequency of eigenvectors; three eigenvalues differ from 

the unit by less than 0.0002 (ellipse) and 0.013 

(lemniscate).  

 

Starting from the tenth frequency, the eigenvalues tend to 

zero, which is a significant difference between the spectrum 

of the matrix Ap and the spectrum of the integral operator A. 

 

The concentration of the eigenvalues of the high-frequency 

eigenvectors to zero is explaining by the insufficient number 

of points for approximating such functions. For functions 

with such a frequency, it makes no sense to replace the 

integral with a finite sum without increasing the number of 

points. For high-frequency eigenvectors, the source of errors 

in the numerical solution of equation (16) is the spectrum 

distortion and the lack of points for approximating the high-

frequency vectors of the matrix Ap. 

 

To straighten the spectrum of the matrix Ap and at the same 

time reduce the computational cost of solving equation (16) 

allows the following technique. Point functions of length K 

are representing as a linear combination of a system L of 

orthogonal basic functions, with LN/2. For vector 

functions, projections on the axes Ox1 and Ox2are 

representing as a linear combination separately. 

 

The high-frequency component of the grid functions is a 

source of inaccuracies in the numerical solution of 

boundary-value problems. For example, if a segment of a 

curve is divided into K parts (elements), then filter 

frequencies should be higher than
𝐾

4
. This means that if a 

harmonic function (sine or cosine) specified on the curve 

segment, then at least four elements must fit into the period 

of such a function [5]. 

 

The filtering algorithm along the length of the curve for the 

function φ (s) defined on the curve segment is as follows: 

 𝐿 =  
𝐾

4
 , the brackets indicate the integer part of the 

number; 

 the projections 𝑝00 , 𝑝𝑐𝑗 , 𝑝𝑠𝑗  of the function φ (s) onto the 

functionsфункции𝑎, 𝑏 ∙ 𝑐𝑜𝑠  
2∙𝜋∙𝑠∙𝑗

𝑆
 и𝑏 ∙ 𝑠𝑖𝑛  

2∙𝜋∙𝑠∙𝑗

𝑆
 ; 

𝑎 =
1

 𝐾
, 𝑏 =  

2

𝐾
 are calculated: 

 𝑝00 = 𝑎 ∙  𝜑 𝑠𝑖 
𝐾
𝑖=0 ,  

 𝑝𝑐𝑗 =

𝑏 ∙  𝜑 𝑠𝑖 
𝐾
𝑖=0 ∙ 𝑐𝑜𝑠  

2∙𝜋∙(𝑖−0.5)∙𝑗

𝐾
 , 𝑗 = 1, …  , 𝐿, 

 𝑝𝑠𝑗 =

𝑏 ∙  𝜑 𝑠𝑖 ∙𝐾
𝑖=0 𝑠𝑖𝑛  

2∙𝜋∙(𝑖−0.5)∙𝑗

𝐾
 , 𝑗 = 1, …  , 𝐿, 

 The adjusted value φ (s) of the function φ (s) is 

calculated: 

 𝜑𝑝 𝑠𝑖 =

𝑎 ∙ 𝑝00 + 𝑏 ∙   𝑝𝑐𝑗 ∙ 𝑐𝑜𝑠  
2∙𝜋∙ 𝑖−0.5 ∙𝑗

𝐾
 + 𝑝𝑠𝑖 ∙𝐿

𝑗=1

𝑠𝑖𝑛2∙𝜋∙(𝑖−0.5 ∙𝑗𝐾, 

 𝑖 = 0, …  , 𝐾. 
In the operator form, the above filtering algorithm looks as 

follows: 

 
PP* = E is a consequence of the orthogonality of the 

considering functions. 

 

The spectrum of matrix B from (18) is shown in Fig. 3. 
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Figure 3: The spectrum of the adjusted matrix 

 

In fig. 3 there is no condensation of eigenvalues to zero. 

 

 

 

 

 

Таблица 1. Спектр матрицы Bиз (18). Граница 

лемниската 
 C S C S 

0 1.0032   0.9997 

1 -0.6706 0.9789 0.2454 -0.4927 

2 -0.1084 0.6994 -0.4821 -0.3684 

3 0.0628 0.5762 -0.3561 -0.3467 

4 0.1391 0.4886 -0.3350 -0.3347 

5 0.2156 0.4097 -0.3332 -0.3331 

6 0.2955 0.3624 -0.3323 -0.3319 

7 0.3255 0.3400 -0.3303 -0.3294 

8 0.3220 0.3299 -0.3266 -0.3252 

9 0.3153 0.3217 -0.3202 -0.3184 

 

The above procedure for the correction of the approximate 

operator influences the low-frequency part of the spectrum 

in the case of lemniscata, changing the eigenvalues by 0.01-

0.02. This is due to the presence of a corner point, since in 

the case of an ellipse this effect is less than 0.001. 

 

Halving the length of the row of the matrix approximating 

the integral operator reduces the computational cost when 

solving equation (17) by the iterative method by 4 times. 

The question of to what extent it is possible to reduce the 

length of the row of the matrix or to increase determines by 

the shape of the boundary contour and the right-hand side in 

equation (16). Further, in the example of calculating the 

spectrum of the matrix, we consider a linear combination of 

solutions corresponding to the application of concentrated 

forces at points outside the deformation domain and spaced 

half the length from the middle of the boundary element in 

the direction of the normal. The spectrum of a completely 

continuous operator is condensing to zero. Correspondingly, 

the spectrum of the matrix B from equation (5), which 

approximates a completely continuous operator, is 

condensing to zero. But, as shown above, the thickening of 

the spectrum of the matrix is enhanced by the inaccuracy 

introduced by replacing the integral by the sum of discrete 

terms. 

 

Application of the filtering algorithm to the matrix B from 

equation (5) leads to equation (18): 

 

 
Figure 3: The spectrum of the adjusted matrix BP for 

lemniscata 

 

The light circle in the Fig. 3 indicates two close eigenvalues. 

 

Table 2: The spectrum of the matrix BP from (18). The 

border of the lemniscate 
 C S C S 

0 0.  0.  

1 1.1138 1.1015 0.7415 0. 

2 0.8657 0.7930 0.2453 0.0087 

3 0.6003 0.6234 0.1890 0.1976 

4 0.5137 0.5109 0.1232 0.1269 

5 0.4585 0.4266 0.0939 0.0892 

6 0.3838 0.3662 0.0743 0.0658 

7 0.3198 0.3072 0.0581 0.0497 

8 0.2735 0.2613 0.0477 0.0372 

9 0.2231 0.2157 0.0320 0.0273 

10 0.1675 0.1661 0.0245 0.0197 

 

Eigenvalues in tab. 2 ordered by the frequency and likeness 

of the projection of the eigen function onto the Ox axis to the 

cosine (C, in the middle of the graph extreme) or sine (S, in 

the middle of the graph zero). 

 

 
Figure 4: Examples of eigen functions. Frequency 1: a) is 

like a cosine, b) is like a sine 
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Three eigenvalues in tab. 2 are zero. They correspond to a 

rigid shift and rotation. In order for equation (18) to have a 

solution, the main vector and the main moment of the forces 

applied at the boundary must be zero. Of the remaining 

eigenvalues, the minimum is 0.0087. I.e. the spectrum of the 

matrix separates from zero. If filtering not carried out, then 

the next forty eigenvalues will thicken around zero, and the 

matrix will become weakly defined (ill matrix). 
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