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1. Introduction 
 

Fixed-point theorem or Banach presents, if the complete 

metric space of (𝑋, 𝑑) and 𝑇 ∶ 𝑋 → 𝑋 be a mapping as it 

includes 𝑘 ∈ [0, 1) for a fixed and 𝑥, 𝑦 ∈ 𝑋  for each: 

𝑑 𝑇𝑥, 𝑇𝑦 ≤ 𝑘𝑑(𝑥, 𝑦). 

 

Hence, T includes a unique fixed point of 𝑧 ∈ 𝑋. Besides, 

for each 𝑥0 ∈ 𝑋 the  {𝑇𝑛𝑥0} iterated sequence is convergent 

to z. Many generalizations from above Banach contraction 

principle is introduced in recent years. The following 

generalization is indicated by Ciric (Ciric L. B., 1974). 

 

1.1. Theorem 

 

Suppose that (𝑋, 𝑑) is a complete metric space and 𝑇 ∶ 𝑋 →
𝑋  is a Ciric quasi-contraction map; it means there is a 

 𝑘 ∈  [0, 1), so that for each 𝑥, 𝑦 ∈ 𝑋 

𝑑 𝑇𝑥, 𝑇𝑦 
≤ 𝑘 max   𝑑 𝑥, 𝑦 , 𝑑  𝑥, 𝑇𝑥 , 𝑑 𝑦, 𝑇𝑦 , 𝑑 𝑥, 𝑇𝑦 , 𝑑 𝑦, 𝑇𝑥  . 

 

Hence, T includes a unique fixed point of 𝑧 ∈ 𝑋. In addition 

for each 𝑥0 ∈ 𝑋, the {𝑇𝑛𝑥0} is convergent to z (Amini-

Harandi, 2011). 

 

Refer to Amini-Harandi (2011) for other generalization from 

Banach contraction principle. 

 

2. Main Result 
 

Assume that X is not an empty set and 𝐷 ∶ 𝑋 × 𝑋 → [0, ∞] 
is a map. In this case, we consider the following set for each 

𝑥 ∈ 𝑋. 

𝐶 𝐷, 𝑋, 𝑥 =   𝑥𝑛  ⊂ 𝑋: lim𝑛→∞ 𝐷(𝑥𝑛 , 𝑥) = 0 . 
 

We call the {𝑥𝑛 } sequence in X , D-convergent to x , if 
 𝑥𝑛  ∈ 𝐶 (𝐷, 𝑋, 𝑥). 

 

2.1 Definition 

 

We call D a generalized meter on X, if the following 

conditions apply for each 𝑥, 𝑦 ∈ 𝑋: 
(𝐷1) If 𝐷  𝑥, 𝑦 = 0 hence ; 𝑥 = 𝑦 

(𝐷2) 𝐷  𝑥, 𝑦 = 𝐷 𝑦, 𝑥 ; 
(𝐷3) There is a real fixed 𝐶 > 0 so that we have 𝑥, 𝑦 ∈ 𝑋 for 

each and  𝑥𝑛  ∈ 𝐶 (𝐷, 𝑋, 𝑥) sequence: 

𝐷 𝑥, 𝑦 ≤ 𝐶 lim⁡sup𝑛→∞ 𝐷 (𝑥𝑛 , 𝑦). 

In this case, the (𝑋, 𝐷) paired is a generalized metric space. 

 

Obviously, if the 𝐶 (𝐷, 𝑋, 𝑥) set be empty, the (𝑋, 𝐷) is a 

generalized metric space when the (𝐷1) and (𝐷2) conditions 

apply on it. We can easily see that every meter is a 

generalized meter. For example, assume that X is arbitrary 

set and Y is the sort of all 𝑋 to ℝ functions. 𝐷 ∶ 𝑌 × 𝑌 →  ℝ 

function with regulation of 𝐷 𝑓, 𝑦 𝑠𝑢𝑝 𝑓 𝑥 − 𝑔 𝑥    is 

also a generalized meter on Y. 

 

In this section we want to explain Banach contraction 

principle on generalized metric spaces. 

 

2.2. Definition 

Suppose that (𝑋, 𝐷) is a generalized metric space, 𝑓: 𝑋 →
𝑋 is a function and 𝑘 ∈ (0 ,1), we say that 𝑓 is a 𝑘 –

contraction if we have 𝑥, 𝑦 ∈ 𝑋 for each as: 

𝐷  𝑓 𝑥 , 𝑓 𝑦  ≤ 𝑘𝐷 (𝑥, 𝑦). 

 

2.3. Proposition 

 

Assume that for each 𝑓, 𝑘 ∈  0 , 1 , there is 𝑘 −
𝑐𝑜𝑛𝑡𝑟𝑎𝑐𝑡𝑖𝑜𝑛. In this case for each 𝑤 ∈ 𝑋 from 𝑓, if 

𝐷 𝑤, 𝑤 <  ∞, hence 𝐷 𝑤, 𝑤 = 0 . 

 

Proof: Suppose that 𝑤 ∈ 𝑋 is a fixed point of 𝑓. So that 

 𝑤, 𝑤 <  ∞ , since  𝑓 is a k-contraction then we have: 

𝐷 𝑤, 𝑤 = 𝐷 𝑓 𝑤 , 𝑓 𝑤  ≤ 𝑘𝐷(𝑤, 𝑤), then it results 

 𝑤, 𝑤 = 0 . 

 

Next, we apply for every ∈ 𝑋 : 

𝛿 𝐷, 𝑓, 𝑥 = 𝑠𝑢𝑝  𝐷  𝑓𝑖 𝑥 , 𝑓𝑗  𝑥  : 𝑖, 𝑗 ∈ ℕ . 

Where 𝑓𝑖(𝑥) the 𝑖 combination denotation 𝑓 mapping order 

is into itself. In the next theorem we describe Banach 

contraction principle on generalized. 

 

2.4 Theorem 

 

Suppose the following conditions applied (Jleli & Samet, 

2015): 

(1) (𝑋, 𝐷), -D is complete; 

(2) for a 𝑘 ∈ (0,1), 𝑓 is a k-contraction; 

(3) There is 𝑥0 ∈ 𝑋 so that  𝐷, 𝑓, 𝑥0 <  ∞ . 
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Hence, the  𝑓𝑛 𝑥0   sequence is convergent to a single fixed 

point of 𝑤 ∈ 𝑋 from 𝑓. Also, if the 𝑤 ′ ∈ 𝑋 be the other 

single fixed point of 𝑓 so that 𝐷 𝑤, 𝑤 ′ < ∞, since 𝑤 = 𝑤′. 
 

Most of the metric spaces concept such as sequences, 

convergent sequence and complement of metric spaces, are 

definable as they are in generalized metric spaces. The main 

purpose of this article is to find for the Ciric quasi-

contraction mappings on generalized metric spaces, and 

Ciric quasi-contraction generalized mappings on generalized 

metric spaces. Then, we will present the mentioned concept 

for quasi-contraction mappings on generalized metric space 

and next its generalization. 

 

2.5. Definition 

 

Assume that (𝑋,𝐷) is a generalized metric space and 

𝑓: 𝑋 → 𝑋 is a self-mapping and 𝑘 ∈ (0,1). We say  , is 

𝑘 − 𝑞𝑢𝑎𝑠𝑖 𝑐𝑜𝑛𝑡𝑟𝑎𝑐𝑡𝑖𝑜𝑛 or Ciric quasi-contraction if the 

following condition applies for each 𝑥 and 𝑦 into X: 

𝐷 𝑓𝑥, 𝑓𝑦 ≤
𝑘𝑚𝑎𝑥 {𝐷 𝑥, 𝑦 , 𝐷 𝑥, 𝑓𝑥 , 𝐷 𝑦, 𝑓𝑦 , 𝐷 𝑥, 𝑓𝑦 , 𝐷 𝑦, 𝑓𝑥 }. 

 

2.6. Proposition 
 

Suppose that 𝑓 is a k-quasi contraction for a 𝑘 ∈ (0,1) if 

𝑤 ∈ 𝑋 be a fixed point of 𝑓 which 𝐷 𝑤, 𝑤 , hence 

𝐷 𝑤, 𝑤 = 0. 

 

Proof: Assume that 𝑤 ∈ 𝑋 is a fixed point of 𝑓 so that 

𝐷(𝑤, 𝑤) < ∞. Where 𝑓 is k-quasi contraction, so; 

𝐷 𝑤, 𝑤 = 𝐷(𝑓𝑤, 𝑓𝑤) ≤ 𝑘𝐷(𝑤, 𝑤). 

Where 𝑘 ∈  0,1 , so 𝐷 𝑤, 𝑤 = 0 is obtained. 

 

If we replace in theorem 2.4. the k-quasi contraction 

condition instead of  𝑓 k-contraction condition, The 

following theorem is obtained. 

(1) (𝑋, 𝐷), is D-complement; 

(2) for a 𝑘 ∈ (0,1), 𝑓 is a k-quasi contraction, 

(3) there is 𝑥0 ∈ 𝑋 so that 𝛿 (𝐷, 𝑓, 𝑥0) < ∞. 

 

Since, the {𝑓𝑛𝑥0} sequence is convergence to a 𝑤 ∈ 𝑋. If 

𝐷(𝑥0, 𝑓𝑤) and 𝐷(𝑤, 𝑓𝑤) < ∞, hence 𝑤 is a fixed point of 

𝑓. In addition, if 𝑤 ′ ∈ 𝑋 be the other fixed point 𝑓 so that 

𝐷(𝑤, 𝑤 ′) < ∞ and (𝑤 ′ , 𝑤 ′) < ∞ , then 𝑤 = 𝑤′. 
 

Proof: Assume that 𝑛 ∈ ℕ where 𝑓 is a k-quasi contraction 

mapping, for each 𝑖, 𝑗 ∈ ℕ, we have: 

𝐷 𝑓𝑛+𝑖𝑥0 , 𝑓𝑛+𝑗𝑥0 

≤ 𝑘 max⁡{𝐷(𝑓𝑛+𝑖−1𝑥0, 𝑓𝑛+𝑗−1𝑥0), 𝐷(𝑓𝑛+𝑖−1𝑥0 , 𝑓𝑛+𝑖𝑥0) 

𝐷 𝑓𝑛+𝑖−1𝑥0, 𝑓𝑛+𝑗𝑥0 , 𝐷 𝑓𝑛+𝑗−1𝑥0, 𝑓𝑛+𝑗𝑥0 , 
𝐷 𝑓𝑛+𝑗−1𝑥0 , 𝑓𝑛+𝑖𝑥0 }, 

Which results: 

𝛿(𝐷, 𝑓, 𝑓𝑛𝑥0) ≤ 𝑘𝛿(𝐷, 𝑓, 𝑓𝑛−1𝑥0) ≤ 𝑘2𝛿(𝐷, 𝑓, 𝑓𝑛−2𝑥0) 

Therefore, for analysis of each 𝑛 ≥ 1, we have: 

𝛿(𝐷, 𝑓, 𝑓𝑛𝑥0) ≤ 𝑘𝑛𝛿(𝐷, 𝑓, 𝑥0) 

So for every 𝑚, 𝑛 ∈  ℕ: 

𝐷(𝑓𝑛𝑥0 , 𝑓𝑛+𝑚𝑥0) ≤ 𝛿(𝐷, 𝑓, 𝑓𝑛𝑥0) ≤ 𝑘𝑛𝛿(𝐷, 𝑓, 𝑥0). 

Whereas 𝛿(𝐷, 𝑓, 𝑥0) < ∞ and 𝑘 ∈  0,1 , then it obtains: 

lim
𝑛,𝑚→∞

𝐷 𝑓𝑛𝑥0, 𝑓𝑛+𝑚𝑥0 = 0. 

Which results {𝑓𝑛𝑥0} is D-Cauchy sequence. Where (𝑋, 𝐷), 

is D-complete there is a 𝑤 ∈ 𝑋 in a way that {𝑓𝑛𝑥0} 

sequence is D-convergent to it. 

 

Now, we assume 𝐷(𝑥°𝑓𝑤) < ∞. Since we have the 

following unequal for each of the 𝑚, 𝑛 ∈  ℕ 

𝐷(𝑓𝑛𝑥°, 𝑓
𝑛+𝑚𝑥°) ≤ 𝑘𝑛𝛿(𝐷, 𝑓, 𝑥°).                (2-1) 

 

By application of definition 2.1. (𝐷3) condition, a 𝐶 > 0 

fixed exists so for each of 𝑛 ∈  ℕ, we have: 

𝐷 𝑤, 𝑓𝑛𝑥0 ≤ 𝐶 lim sup𝑚→∞ 𝐷 (𝑓𝑛𝑥0 , 𝑓𝑛+𝑚𝑥0) ≤
𝐶𝑘𝑛𝛿(𝐷, 𝑓, 𝑥0).                      (2-2) 

On the other hand, we have: 

𝐷 𝑓𝑥0 , 𝑓𝑤 ≤ 𝑘 max⁡{𝐷 𝑥0, 𝑤 , 𝐷 𝑥0, 𝑓𝑥0 , 𝐷 𝑤, 𝑓𝑤 , 
𝐷 𝑓𝑥0 , 𝑤 , 𝐷(𝑥0 , 𝑓𝑤)}. 

By application of (2-1) and (2-2) unequal, we obtain: 

𝐷 𝑓𝑥0 , 𝑓𝑤 ≤
𝑘 max⁡{𝐶𝛿 𝐷, 𝑓, 𝑥0 , 𝛿 𝐷, 𝑓, 𝑥0 , 𝐷 𝑤, 𝑓𝑤 , 𝐷  𝑥0 , 𝑓𝑤 }, 

Hence, 

𝐷 𝑓2𝑥0 , 𝑓𝑤 ≤
𝑘2 max⁡{𝐶𝛿 𝐷, 𝑓, 𝑥0 , 𝛿 𝐷, 𝑓, 𝑥0 , 𝐷 𝑤, 𝑓𝑤 , 𝐷  𝑥0 , 𝑓𝑤 }. 

Following this induction process we observe that for each 

𝑛 ≥ 1, we have: 

𝐷 𝑓𝑛𝑥0 , 𝑓𝑤 ≤
𝑘𝑛  max⁡{𝐶𝛿 𝐷, 𝑓, 𝑥0 , 𝛿 𝐷, 𝑓, 𝑥0 , 𝐷 𝑤, 𝑓𝑤 , 𝐷  𝑥0 , 𝑓𝑤 }, 

In this case, for each 𝑛 ≥ 1, we have: 

lim⁡sup
𝑛→∞

𝐷  𝑓𝑛𝑥0 , 𝑓𝑤 ≤ 𝑘𝐷 𝑤, 𝑓𝑤 , 

Whereas  𝐷  𝑥0, 𝑓𝑤 < ∞ and 𝛿 𝐷, 𝑓, 𝑥0 < ∞  by (𝐷3) 

condition application, it obtains: 

𝐷(𝑓𝑤, 𝑤) ≤ lim⁡sup
𝑛→∞

𝐷  𝑓𝑛𝑥0 , 𝑓𝑤 ≤ 𝑘𝐷 𝑤, 𝑓𝑤 , 

Which results 𝐷 𝑓𝑤, 𝑤 , it means 𝑤 is a fixed point of 𝑓. 

Also by application of 2.6. proposition, we have 𝐷 𝑤, 𝑤 =
0. Finally, we assume 𝑤′ is another fixed point of 𝑓 in a way 

which 𝐷 𝑤, 𝑤′ < ∞ and 𝐷(𝑤 ′ , 𝑤 ′) < ∞, by application of 

2.6. proposition we have 𝐷(𝑤 ′ , 𝑤 ′). Whereas 𝑓 is k-quasi 

contraction, it obtains: 

𝐷 𝑤, 𝑤 ′ = 𝐷(𝑓𝑤, 𝑓𝑤 ′) ≤ 𝑘𝐷(𝑤, 𝑤 ′), 

Which is resulted 𝑤 = 𝑤′. 
 

Now, we introduce the generalized Ciric quasi-contraction 

mapping on generalized metric spaces. 

 

2.7. Definition  
 

Suppose that (𝑋, 𝐷) is generalized metric space and 

𝑇: 𝑋 → 𝑋 is a self-mapping. T is called generalized Ciric 

quasi-contraction, if the following condition matches with 

each of 𝑥, 𝑦 ∈ 𝑋: 

𝐷 𝑇𝑥, 𝑇𝑦 ≤ 𝛼 𝐷 𝑥, 𝑦   max⁡{𝐷 𝑥, 𝑦 , 𝐷 𝑥, 𝑇𝑥 , 

𝐷 𝑦, 𝑇𝑦 , 𝐷 𝑥, 𝑇𝑦 , 𝐷(𝑦, 𝑇𝑥)}. 
In which 𝛼:  0, ∞ → [0,1) is a mapping. 

 

The following simple example denotes that theorem 1.1. for 

Ciric generalized mappings do not apply, even if we suppose 

𝛼 is connected and ascendant (Sastry & Naidu, 1980). 

 

2.8. Definition 
 

Suppose 𝑋 =  0, ∞  is with ordinary meter and 𝑇 ∶ 𝑋 → 𝑋 is 

with 𝑇𝑥 = 2𝑥 criterion. 𝛼:  0, ∞ → [0,1) is introduced with 
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𝑎 𝑡 =
2𝑡

1+2𝑡
. It is clear that 𝛼 is connected and ascendant and 

for each 𝑥, 𝑦 ∈ 𝑋, 

 𝑇𝑥 − 𝑇𝑦 ≤ 𝛼  𝑥
− 𝑦  max  𝑥 − 𝑦 ,  𝑥, −𝑇𝑥 ,  𝑦 − 𝑇𝑦 ,  𝑥

− 𝑇𝑦 ,  𝑦 − 𝑇𝑥  . 
But T does not have fixed point. 

 

Now there is a common question, what condition should to 

be imposed to 𝑇 𝑜𝑟 𝛼 to certify the existence of fixed point 

for T? for finding the answer of this question and the 

application of quasi-contraction mappings refer to Ciric, 

Hussain and Cakic (2010).  

 

The next theorem which presented with a brief change here, 

shows that a generalized Ciric self-mapping on generalized 

metric space has a fixed point (Kiany & Amini-Harandi, 

2013). 

 

2.9. Theorem 

 

Suppose  𝑋, 𝐷  is a complete generalized metric space and 

𝑇 ∶ 𝑋 → 𝑋 is a generalized Ciric quasi-contraction self-

mapping in a way that for each 𝑟 ∈ [0, ∞),  

lim sup 𝛼(𝑡) < 1.
𝑡→𝑟

 

Suppose that there is a 𝑥0 ∈ 𝑋, with boundary circuit, it 

means that {𝑇𝑛𝑥0} is boundary. If for each ∈ 𝑋, 𝐷(𝑥, 𝑇𝑥) <
∞, hence T has a fixed point of 𝑥′ ∈ 𝑋 and lim𝑛→∞ 𝑇𝑛𝑥0 =
𝑥′. In addition, if  𝑦′ be another fixed point of T, hence  

𝐷 𝑥 ′ , 𝑦′ = 0 or 𝑥 ′ = 𝑦′. 
 

Proof: If for a 𝑛0 ∈  ℕ, 𝑇𝑛0−1𝑥0 = 𝑇𝑛0𝑥0 =
𝑇(𝑇𝑛0−1𝑥0), hence for each ≥ 𝑛0 , 𝑇𝑛𝑥0 = 𝑇𝑛0−1𝑥0 . 

therefore (𝑇𝑛0−1𝑥0) is a fixed point of T and {𝑇𝑛𝑥0} 

sequence is convergent to 𝑇𝑛0−1𝑥0 and proof is all. Now 

suppose that for each 𝑛 ∈  ℕ, 𝑇𝑛𝑥0 ≠ 𝑇𝑛−1𝑥0,  then we 

indicate that 𝑐 ∈ (0,1) exists in a way which for each 

𝑛 = 0,1,2, … we have: 

𝛼 𝐷(𝑇𝑛−1𝑥0 , 𝑇𝑛𝑥0)  < 𝑐.   (2-3) 

Suppose the posterior argument for a subsequence {𝑛𝑘} from 

cardinal number  

lim
𝑘→∞

∝  𝐷 𝑇𝑛𝑘−1𝑥0 , 𝑇𝑛𝑘𝑥0  = 1, 

For a subsequence of  𝛼 𝐷 𝑇𝑛𝑘−1𝑥°, 𝑇
𝑛𝑘𝑥°   ⊂

{𝛼 𝐷 𝑇𝑛−1𝑥°, 𝑇
𝑛𝑥°  } whereas the {𝛼 𝐷 𝑇𝑛−1𝑥°, 𝑇

𝑛𝑥°  } 

sequence is boundary,  𝛼 𝐷 𝑇𝑛𝑘−1𝑥°, 𝑇
𝑛𝑘𝑥°    is also a 

boundary sequence, therefore by passing a subsequence we 

can assume that it is convergent sequence. Suppose we have: 

𝑟0 = lim
𝑘→∞

𝐷  𝑇𝑛𝑘−1𝑥0 , 𝑇𝑛𝑘𝑥0  

Hence, lim𝑘→𝑟0
sup 𝛼 𝑡 = 1 which it is contradiction 

therefore, the (2-3) condition is established. Now we show 

the {𝑇𝑛𝑥0} sequence is Cauchy. To prove this claim, first by 

analysis we indicate which for 𝑛 ≥ 2: 

𝐷 𝑇𝑛−1𝑥0 , 𝑇𝑛𝑥0 ≤ 𝑘𝑐𝑛−1    

 (2-4) 

In which k is a boundary for {𝐷 𝑥0 , 𝑇𝑛𝑘𝑥0 } sequence. If 

𝑛 = 2, hence we have: 

𝐷 𝑇𝑥0, 𝑇2𝑥0 ≤ 𝛼 𝐷 𝑥0 , 𝑇𝑥0   max⁡{𝐷 𝑥0 , 𝑇𝑥0 , 

 𝑇𝑥0 , 𝑇2𝑥0 , 𝐷(𝑥0 , 𝑇2𝑥0)} 

= 𝛼 𝐷 𝑥0 , 𝑇𝑥0   max⁡{𝐷 𝑥0 , 𝑇𝑥0 , 𝐷 𝑥0 , 𝑇2𝑥0 } 

≤ 𝑘𝑐. 
Therefore, (2-4) condition satisfies for 𝑛 = 2. 

Suppose (2-4) condition is applied on 𝑘 < 𝑛. We indicate 

that it is applied on 𝑛 < 𝑘 whereas T is a generalized Ciric 

quasi-contraction mapping, we have: 

𝐷 𝑇𝑛−1𝑥0 , 𝑇𝑛𝑥0 ≤ 𝛼(𝐷 𝑇𝑛−2𝑥0 , 𝑇𝑛−1𝑥0 𝑢 ≤ 𝑐𝑢 

In which 𝑢 ∈  𝐷 𝑇𝑛−2𝑥0 , 𝑇𝑛−1𝑥0 , 𝐷 𝑇𝑛−2𝑥0 , 𝑇𝑛𝑥0  . 
If 𝑢 = 𝐷(𝑇𝑛−2𝑥0 , 𝑇𝑛−1𝑥0), (2-4) condition is clear. 

Now, suppose 𝑢 = 𝐷(𝑇𝑛−2𝑥0 , 𝑇𝑛−1𝑥0).  

 

In this case, we have: 

𝐷(𝑇𝑛−2𝑥0 , 𝑇𝑛𝑥0) ≤ 𝑐𝑢1 
In which  
𝑢1

∈  
𝐷 𝑇𝑛−3𝑥0 , 𝑇𝑛−1𝑥0 , 𝐷 𝑇𝑛−2𝑥0 , 𝑇𝑛−1𝑥0 , 𝐷 𝑇𝑛−3𝑥0 , 𝑇𝑛−2𝑥0 ,

𝐷 𝑇𝑛−3𝑥0 , 𝑇𝑛𝑥0 𝐷 𝑇𝑛−1𝑥0 , 𝑇𝑛𝑥0 
 . 

Again, if 

𝑢1 = 𝐷 𝑇𝑛−1𝑥0 , 𝑇𝑛𝑥0  𝑜𝑟 𝑢1 = 𝐷(𝑇𝑛−3𝑥0 , 𝑇𝑛−2𝑥0), hence, 

(2-4) condition is applied. If 𝑢1 = 𝐷 𝑇𝑛−2𝑥0 , 𝑇𝑛−1𝑥0  so we 

have: 

𝐷 𝑇𝑛−1𝑥0 , 𝑇𝑛𝑥0 ≤ 𝑐2𝐷 𝑇𝑛−2𝑥0 , 𝑇𝑛−1𝑥0 . 
By analysis, we have: 

𝐷 𝑇𝑛−2𝑥0, 𝑇𝑛−1𝑥0 ≤ 𝑘𝑐𝑛−2. 
Therefore, 

𝐷 𝑇𝑛−1𝑥°, 𝑇
𝑛𝑥° ≤ 𝑘𝑐𝑛 ≤ 𝑘𝑐𝑛−1 . 

If 𝑢1 = 𝐷(𝑇𝑛−3𝑥0 , 𝑇𝑛−1𝑥0) then we have: 

𝐷 𝑇𝑛−1𝑥0 , 𝑇𝑛𝑥0 ≤ 𝑐2𝐷 𝑇𝑛−3𝑥0 , 𝑇𝑛−1𝑥0 . 
And if 𝑢1 = 𝐷(𝑇𝑛−3𝑥0 , 𝑇𝑛𝑥0), hence 

𝐷 𝑇𝑛−1𝑥0 , 𝑇𝑛𝑥0 ≤ 𝑐2𝐷 𝑇𝑛−3𝑥0 , 𝑇𝑛𝑥0 . 
Therefore, by the continuous of this process we see that for 

each 𝑛 ≥ 2 the (2-4) condition is satisfied. We result from 

the (2-4) condition that {𝑇𝑛𝑥0} is a Cauchy sequence. 

Whereas (𝑋, 𝐷) is complete; there is a 𝑥′ ∈ 𝑋 so that 

lim
𝑘→∞

𝑇𝑛𝑥0 = 𝑥 ′ . 

Now we denote that 𝑥 ′  is a fixed point of 𝑇. For indication 

of this claim, first we denote there is 𝑘 ∈ (0,1) so that for 

each 𝑛 ∈ ℕ, we have: 

𝛼 𝐷 𝑥 ′ , 𝑇𝑛𝑥0  < 𝑘. 

For getting to contradiction, suppose for a subsequence 𝑛𝑗 , 

lim
𝑗→∞

 𝛼  𝐷 𝑥 ′ , 𝑇𝑛𝑗 𝑥0  = 1. 

Whereas lim𝑗→∞ 𝛼 𝐷 𝑥 ′ , 𝑇𝑛𝑗𝑥0  = 0 it obtains: 

lim⁡sup
𝑡→0+

𝛼(𝑡) = 1. 

Which it is a contradiction. Whereas T is a generalized Ciric 

quasi-contraction, we have: 

𝐷 𝑇𝑥 ′ , 𝑇𝑛+1𝑥0 

≤ 𝛼 𝐷 𝑥 ′ , 𝑇𝑛𝑥0  max⁡{ 𝐷 𝑥 ′ , 𝑇𝑛𝑥0 , 𝐷 𝑥 ′ , 𝑇𝑥 ′ , 

𝐷 𝑇𝑛𝑥0 , 𝑇𝑛+1𝑥0 , 𝐷 𝑥 ′ , 𝑇𝑛+1𝑥0 , 𝐷 𝑇𝑛𝑥0 , 𝑇𝑥 ′ } 

≤ 𝑘 max⁡{𝐷 𝑥 ′ , 𝑇𝑛𝑥0 , 𝐷 𝑥 ′ , 𝑇𝑥 ′ , 𝐷 𝑇𝑛𝑥0 , 𝑇𝑛+1𝑥0 , 
𝐷 𝑥 ′ , 𝑇𝑛+1𝑥° , 𝐷 𝑇𝑛𝑥°, 𝑇𝑥

′ }. 
Hence, we have: 

𝐷 𝑇𝑥 ′ , 𝑥 ′ = lim⁡sup𝑛→∞ 𝐷(𝑇𝑥 ′ , 𝑇𝑛+1𝑥0) 

≤ 𝑘 lim 𝑠𝑢𝑝
𝑛→∞

𝐷(𝑇𝑥 ′ , 𝑇𝑛𝑥0) = 𝑘𝐷(𝑇𝑥 ′ , 𝑥′), 

Which results 𝐷 𝑇𝑥 ′ , 𝑥 ′ = 0, therefore 𝑇𝑥 ′ = 𝑥′. Now, 

suppose that 𝑦′𝑎𝑛𝑑 𝑥′ are two fixed points of T so that 

𝐷(𝑥 ′ , 𝑦′) < ∞, then we have: 

𝐷 𝑥 ′ , 𝑦′ = 𝐷 𝑇𝑥 ′ , 𝑇𝑦′  

≤ 𝛼  𝐷 𝑥 ′ , 𝑦′  max 𝐷 𝑥 ′ , 𝑦′ , 𝐷 𝑥 ′ , 𝑇𝑦′ , 𝐷 𝑦′ , 𝑇𝑥 ′   

= 𝛼 𝐷 𝑥 ′ , 𝑦′   𝐷 𝑥 ′ , 𝑦′  

Therefore, 𝑥 ′ = 𝑦′. Notice that 𝛼(𝐷 𝑥 ′ , 𝑦′ ) < 1. 

The following example shows that in 2.9. theorem the 

𝐷(𝑥, 𝑇𝑥) < ∞ condition is necessary for 𝑥 ∈ 𝑋. 
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2.10. Example 

 

Suppose 𝐷 0,0 = 𝐷 ∞, ∞ = 0, 𝑋 = {0, ∞} and 

𝐷 0, ∞ = ∞. Also suppose 𝑇: 𝑋 → 𝑋 is defined by 𝑇0 = ∞ 

and 𝑇∞ = 0 criterions, hence, we have: 

𝐷(𝑇𝑥, 𝑇𝑦) ≤
1

2
𝐷(𝑥, 𝑦)  

≤
1

2
max 𝐷 𝑥, 𝑦 , 𝐷 𝑥, 𝑇𝑥 , 𝐷 𝑦, 𝑇𝑦 , 𝐷 𝑥, 𝑇𝑦 , 𝐷 𝑦, 𝑇𝑥  . 

But 𝑇 does not have a fixed point for each 𝑥, 𝑦 ∈ 𝑋. 

 

2.11. Example 

 

Suppose 𝐷 𝑥, 𝑦 =  𝑥 − 𝑦 , 𝑋 =  0, ∞ , for each 𝑥, 𝑦 ∈
[0, ∞) and 𝐷 𝑥, ∞ = ∞. For each 𝑥 ∈ [0, ∞) and suppose 

𝐷(∞, ∞), hence (𝑋, 𝐷) is a complete generalized metric 

space. 

 

Suppose 𝑇: 𝑋 → 𝑋 which 𝑇𝑥 = 2𝑥. For each 𝑥 ∈ [0, ∞) and 

𝑇∞ = ∞. The 𝛼: [0, ∞] → [0,1) is defined by 𝛼 𝑡 =
2𝑡

1+2𝑡
 

criterion for 𝑡 ∈ [0, ∞) and 𝛼 ∞ =
1

2
. Hence,  𝑇𝑥 − 𝑇𝑦 ≤

𝛼  𝑥 − 𝑦  max  𝑥 − 𝑦 ,  𝑥 − 𝑇𝑥 ,  𝑦 − 𝑇𝑦 ,  𝑥 − 𝑇𝑦 ,  𝑦 −
𝑇𝑥, 
For each 𝑥, 𝑦 ∈ 𝑋 and 𝐷(𝑥, 𝑇𝑥) < ∞. Therefore, all the 

supposed theorem of 2.9. are applied and T is a unique fixed 

point. In fact, 𝑥 = ∞ is the only fixed point of T. 
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