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Abstract: In this paper, we analysed selected statistical properties of 27, 402 Sudoku grids, which we generated either by using 

software packages or by consulting sources on the Internet. We classified the Sudoku grids in four different groups according to their 

provenance as A (10k grids), B (10k grids), C (6.4k grids) and D (∼1k grids). We calculated the Pearson product-moment correlation 

coefficient (r), as well as the corresponding correlation tests, to the 36 maximum possible column pairs of each Sudoku grid. We 

determined that a maximum of 18 significantly correlated column pairs (SCCP) can be obtained in a single Sudoku grid. In addition, we 

obtained a total of 42, 826 SCCP (8.68%) out of the 493, 236 possible in our sample. We determined that the number of SCCP with 

negative r are more common than those with a positive one. We generated linear regression models using SCCP, 32 models resulted for 

all matrices, 20 with negative correlation values and 12 with positive correlation values. The ratios of negative: positive SCCP for each 

group yielded 1.00: 0.18 in group A, 1.00: 0.15 in group B, 1.00: 0.16 for group C, 1.00: 0.16 for group D, and an overall ratio of 1.00: 

0.16. We found that the number of Sudoku with at least one SCCP was smaller in groups A and B (37.58% and 14.03% respectively) 

than in groups C and D (89.43% and 89.02% respectively). We hypothesise that the total probability of models can be obtained if an 

algorithm can be found to build a group of Sudoku in which all SCCP can be found. We transposed each SCCP, so we turned them into 

position vectors or points. We conveniently assumed that the points belonged to a nine-dimensional real numbers space. We computed 

squared distance between points pairwise, and formed the Euclidean distance matrices, which we used to classify the SCCP in groups 

with a hierarchical cluster analysis. We conclude that Sudoku grids are ideal matrices for simulations and modelling with, at least 5.47 

billion matrices showing the same characteristics, with different arrangement of numbers. 
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1. Introduction 
 

1.1 Origin of Sudoku 

 

Sudoku is a logic (Pillay, 2012) and mathematical (Louis 

Lee et al., 2008) puzzle used by millions of people around 

the world (Felgenhauer and Jarvis, 2005; Newton and 

DeSalvo, 2010; Becerra Tomé et al., 2016). Several 

scientific and popular papers have been published 

highlighting the applications of Sudoku grids for several 

analysis related to significance, complexity, origin, 

reappearance, evolution, and goals achievement.  

 
Sudoku may have started in the 19th century when Le 

Siècle, a newspaper from Paris, published a 9×9 magic 

square, subdivided in a 3×3 cells. However, Sabrin (2009) 

realised that this was not a Sudoku because it contained 

double digits, as well as it required arithmetic without logic 

to solve the puzzle. The newspaper La France (July 6, 1895), 

a competitor of Le Siècle, introduced changes to this puzzle 

to position it as it is today. However, differences can be 

found with today puzzle, because the former allows having 

more than one solution (Sabrin, 2009). The modern version 

of Sudoku is considered to be designed anonymously by the 

retired architect Howard Garns and published by Dell 

Magazines as Number Places (Grossman, 2013). In 1984, 

Nikoli Corporation introduced the puzzle to Japan, thanks to 

the initiatives of its president Mr. Maki Kaji. Because of this 

introduction, in Japan the puzzle acquired by Maki Kaji 

changes in 1986 the name to Sudoku (Sabrin, 2009). In 

Japanese the sound “Su” (soo) means number and “Doku” 

(doe koo) just one place in the puzzle but the original name 

in Japanese is “Sujii wa dokushini ni kagiru” (Intelm, 2005). 

The first computer program to generate Sudoku may have 

been built by Gould (Cornell University Department of 

Mathematics, 2009; Gould, 2007). 
 

1.2 Sudoku in Mathematics 
 

Several authors (e.g. Pfaffmann and Collins, 2007; Kwan, 

2010; Tengah, 2011; Williams, 2011; Liao and Shih, 2013; 

Brophy and Hahn, 2014) remark the uses of Sudoku grids as 

educational models designed for both to aid intellectual 

steering of the brain and to foster the critical thinking for 

better understanding of complex problems in mathematics. 

The solution of Sudoku puzzles is not a trivial problem 

(Pillay, 2012), so most of the papers found in scientific 

journals deal with the development of computer algorithms 

for solving Sudoku puzzles (Maji et al., 2013; Mandal and 

Sadhu, 2013; McGerty and Moisiadis, 2014). 

 

Pillay (2012) used a genetic programming approach (GPA) 

algorithms based in Darwin’s paradigm (sensu Kuhn 1963) 

of evolution. However, evolution was helpful only to reduce 

the run-time related to the production of solutions for more 

difficult Sudoku problems. 

 

Newton and DeSalvo (2010) focuses on entropy to build the 

Sudoku matrices up. Based on their comparison, they 

conclude that the ensemble averaged Shannon entropy of the 
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collection of Sudoku matrices is slightly lower than a 

collection of Latin squares, but higher than a collection of 

appropriately chosen random matrices (Newton and DeSalvo 

(2010): 1974). 

 

Felgenhauer and Jarvis (2005) calculated the maximum 

number of Sudoku as 6.67 × 1021 matrices, but in a deeper 

analysis Russell and Jarvis (2006) considered that, given the 

symmetries, the numbers of Sudoku matrices are a lot fewer, 

i.e. 5.47 × 109. 

 

From the mathematical point of view, Williams (2011) 

wrote a book to learn algebra using Sudoku as a resource for 

helping both students and teachers to understand more math 

and to boost creativity. For a philosophy of mathematics, 

Floyd (2011) analyzed Sudoku under the Wittgenstein 

philosophy of mathematics perspective. From another 

mathematical prospective Weyland (2015) discussed how 

not to solve Sudoku, challenging Geem (2007) harmony 

search algorithm for solving Sudoku. Weyland’s main 

argument is that Geem’s harmony search algorithm offers no 

novelties. Sudoku also have been use in Psychology 

(Johnson-Laird, 2010; Louis Lee et al., 2008) as mental 

models and its logic and mathematics nature. 

 

Becerra Tomé et al. (2016) did an important historical 

review of Sudoku as a puzzle as well as the diversity of 

forms in it. They also mentioned the mathematical properties 

of the puzzle. However, they do not pretend to write a 

scientific paper, because their goal was to make Sudoku 

understandable widespread. 

 

Bailey et al. (2008) related Sudoku puzzle solution with 

“gerechte design”, a kind of specialization of Latin squares 

of the mathematician Leonard Euler (1707-1783) introduced 

by Behrens (1956). Newton and DeSalvo (2010) and Rouse 

Ball and Coxeter (1987) tried to establish the relationships 

of Sudoku with Latin Square and this have been used for 

four experimental design models by Hui-Dong and Ru-Gen 

(2008), Danbaba (2016), Danbaba and Dauran (2016) and 

Shehu and Danbaba (2018). 
 

Pelánek (2011) designed a computational model to test the 

difficult rating of Sudoku under the critical question “What 

determine which problems are difficult for humans?”. His 

main interest was to contribute to human problem-solving 

difficulty. Related with the problem-solving approach, 

Williams (2011) used the erasure correcting codes of 

MacWilliams and Sloane (1977) in Sudoku, which are 

techniques used for enabling reliable recovery of digital 

data. On the same topic, Louis Lee et al. (2008) tried to 

estimate the ability of individuals in pure deductive 

reasoning through Sudoku puzzles, under the assumptions 

that the solution cannot be done with pragmatic schemes or 

innate modules through specific contents. 
 

Sudoku’s math was analysed by Farris (2011) who realised 

that Sudoku is a logical game that has nothing to do with 

mathematics. However “The sort of reasoning that goes in to 

solving a Sudoku puzzle, on the other hand, is at the heart of 

what mathematics is all about” (Rosenhouse and Taalman, 

2011) and “When one hears that no math is required to 

solved Sudoku, what it really means is that no arithmetic is 

required. In fact, mathematical thinking in the form of 

logical deduction is very useful in solving Sudoku” (Cornell 

University Department of Mathematics, 2009). Farris (2011) 

see Sudoku as a very simple concept using numbers, 

therefore the game by itself only has relevance to write 

digits in cells but do not need any sum or subtraction. He 

remarks that nine different letters, forms or colours instead 

of the nine digits might be use, but the logic and concept 

will remain without change, i.e. filling up Sudoku grids with 

qualitative or quantitative characters, does not have effect on 

the total number of Sudoku calculated by either Felgenhauer 

and Jarvis (2005) or Russell and Jarvis (2006). However, the 

use of Sudoku as a matrix for mathematical analysis requires 

only numbers, because symbols and letters are less relevant. 

 
Sabrin (2009) developed a multimedia application for 

Sudoku solution. De Ruiter (2010) analysed several 

memorizing and optimization techniques, as well as the 

amount of dissections in a matrix (n) (n) with n numbers of 

polyomino of a given size n computed from almost all 

possible digits use in a Sudoku. He found that when n ≥ 4 in 

a cover polyomino does not allows the solution for any 

puzzle Sudoku. Regarding the properties of matrix Sudoku 

see Dahl (2009). 

 
Finally, Sudoku puzzles have also been suggested for 

applications in Coding Theory (Johnson-Laird, 2010) 

specifically in the erasure correcting codes basically in the 

recovery of erasers (see Williams, 2011). 

 
1.3 Sudoku terminology and rules 
 

Each cell in the Sudoku puzzle is a unique box that accepts 

one single natural number less than or equal to 9. Based on 

music terminology, each critical name becomes a nonet. 

Therefore, in the Sudoku puzzle, a nonet row is a horizontal 

line of cells, a no net column is a vertical line of cells, and a 

nonet box is a 3×3 block of cells (Fig.1). Therefore, the 

random Sudoku matrix is redundant 
 

 
Figure 1: Sudoku matrix showing integer nonet (column, 

row, box) 

 

 (Newton and DeSalvo, 2010) in such a way that all columns 

are filled up with natural numbers less than or equal to 9, but 

without repeating any of those numbers in a nonet. 

 

1.4 Rationale of this paper 

 

The objective of this research is to use Sudoku as a matrix 

for testing models of regression analysis, in order to 

understand the nature of these relationships within a 

redundant theoretical system restricted to a number of 

dimensions and observations. For this, we performed 
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correlation and regression analyses with pairs of columns 

extracted from Sudoku grids. We used Pearson’s r to 

establish the relationships between the variables (see Lee 

Rodgers and Nicewander, 1988). We faced a big challenge 

to perform this task, because we performed thousands of 

correlation analysis to our sample data. In addition, we 

performed regression analysis with data extracted from 

Sudoku grids. Regression analysis is a very common 

statistical tool used for building models that, under proper 

conditions, may be suitable for predictive purposes 

Chambers and Hastie (1992). However, in this research, we 

used regression analysis for building as many models as 

possible with pairs of columns from the Sudoku. 

 

2. Materials and Methods 
 

We analysed 27, 402 Sudoku grids, which we generated 

either by using algorithms included in both open-source and 

commercial software packages, such as R Core Team 

(2015), or by consulting sources on the Internet. Hence, we 

classified the Sudoku grids in four different groups 

according to their provenance, which are described as 

follows. 

 Group A. We generated 10, 000 grids using the function 

generate sudoku from sudokuplus R package (Gan et al., 

2012). The algorithm chooses a random number of cells 

to leave blank in a “primordial” grid, by using the 

uniform distribution. Afterwards, the algorithm itself 

solves the grid with an array of logical conditions and 

discarding the erroneous solutions one by one, until all 

rules of Sudoku are satisfied. If an inconsistency arises, it 

throws an error. We used a for loop (control flow 

statement for repeating code) to generate the 10k grids. 

 Group B. We generated 10, 000 grids using the function 

generate Sudoku from the Sudoku R package (Brahm et 

al., 2009, 2014). The algorithm starts from a “primordial” 

Sudoku grid, which contains a predefined number of 

blank cells. Afterwards, the algorithm randomly swaps 

around rows and columns to fill the blank cells, ensuring 

compliance of basic rules of Sudoku. We generated 10k 

grids using a for loop and using a different random 

number generator (seed) in each iteration. 

 Group C. We downloaded and “scrapped” an anonymous 

PDF file obtained from www.b-ok.org, from which we 

retrieved 6, 400 grids. We confirmed that all the grids 

from this collection fulfilled the Sudoku rules. 
 Group D. We generated 1, 002 grids using LibreOffice 

Calc. For this task, we established the Sudoku rules in an 

empty sheet. Then we filled successive arrays of 9 × 9 

cells, either by hand or with the aid of a random number 

generator. Simultaneously, while typing the numbers in 

the sheet, we checked for the compliance of the rules. 

 
We calculated that 36 column pairs can be combined in a 

Sudoku grid without repetition and regardless the order of 

selection, by using the typical equation of the binomial 

coefficient:  

 

 
where n is the number of columns in the Sudoku grid (9), 

and k is the number of columns to combine (2). 

 

In addition, we calculated the Pearson product moment 

correlation coefficient (r) of the 36 column pairs of each 

matrix. We performed correlation tests to determine the 

statistically significant correlated column pairs (here-after 

SCCP), for which we arbitrarily set the significance level (α) 

at 0.05. We classified the SCCP in 32 subgroups according 

to their corresponding r values.  

 

It is worth noting that we conducted no exploratory data 

analysis, since our objective was initially set to use the 

Pearson coefficient without considering the mandatory 

assumptions of the correlation analysis. 
 

For each group of Sudoku grids (A, B, C and D), we 

analysed the subgroups of SCCP with similar r value to 

simultaneously detect scatter plot redundancy and reduce the 

number of SCCP. To accomplish this task, we transposed 

the N  
columns forming SCCP with similar r value, so we turned 

them into N position vectors or points {xl, l = 1, 2, . . ., N}. 

We were aware that the numbers of the Sudoku grids belong 

to N, which is not a vector space. Therefore, we  
conveniently assumed that our points belong to R

m
 space, 

where m = 9, for which we computed distance-square dij 

between points pairwise. After addressing all possible pairs 

of points, where i or j = {1, 2, . . ., N}, we formed  
the Euclidean distance matrices Δ in R+

N×N
Dattorro (2005, 

v2011.04.25): 
 

 

 
 

Afterwards, we performed regression analyses to fit into 

lineal models each column of the SCCP subset, using least-

squares as a fitting criterion (Chambers and Hastie, 1992), 

according to the following lineal equation model:  
 

Y = a + bX 
 

where Y is the dependent variable, X is the independent 

variable, and a and b are the coefficients. 
 

Finally, we performed hierarchical cluster analyses applying 

the Ward criterion and using the distance matrices as input, 

with the goal of producing tree structures (Ward Jr, 1963; 

Murtagh and Legendre, 2014). We plotted the trees into 

circular layouts, which we consider an efficient way to 

arrange our results. 
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3. Results 
 

We found that the maximum number of SCCP per Sudoku 

was 18 out of 36 which happens Within the two larger 

groups (A and B). A summary of the number of SCCP by 

group is seen in Table 1:  

 

 

 

Table 1: Number of SCCP by group (A, B, C, D) and the resulting probabilities, based on the maximum number of Sudoku 

estimated by Felgenhauer and Jarvis (2005) and by Russell and Jarvis (2006) 

 
 

Legend: n (SCCP), number of statistically significant 

correlated column pairs (SCCP) per Sudoku; n (A), n (B), n 

(C) and n (D), number of SCCP in Sudoku grids with n 

(SCCP) in groups A, B, C and D, respectively; G/T SCCP, 

proportion of n (SCCP) relative to the total number of SCCP 

along the four groups; Pr 5.47 × 10
9
 expected number of 

Sudoku grids with n (SCCP) based on the maximum number 

of grids estimated by Felgenhauer and Jarvis (2005); Pr 6.67 

× 10
21

 expected number of Sudoku grids with n (SCCP) 

based on the maximum number of grids estimated by 

Russell and Jarvis (2006) 

 

Group A lack Sudoku grids with 17-16 and 14-13 SCCP, 

therefore the 14 SCCP found were 18, with relative 

frequency of 0.0041; 15 with relative frequency of 0.0004. 

For 12-9 SCCP, relative frequency were 0.0006, 0.0001, 

0.0004 and 0.0692 respectively. For 8-1 SCCP with relative 

frequency of 0.0012, 0.0029, 0.0082, 0.0169, 0.0212, 

0.0552, 0.0803 and 0.1151 respectively, the remaining 

0.6242 did not show SCCP (Table 1). Group B lack 

probabilities 17-10 and 8-1, therefore the only two SCCP 

were 18, with relative frequency of 0.0071, and 9, with 

relative frequency of 0.1332; the remaining 0.8597 did not 

show SCCP (Table 1). 

 

Within the medium size group C (6.4k) Sudoku, SCCP were 

9-1, with 9-7 SCCP at a very low relative frequency, i.e. 

0.0003, 0.0006 and 0.0030 respectively; relative frequency 

from 6-1, are 0.0109, 0.0375, 0.0963, 0.2022, 0.2857, 

0.2578 respectively. A similar pattern shows by the small D 

(1.0k) size group Sudoku with number of SCCP from 8-1, 

with 8-7 SCCP 0.0010 and 0.0030 respectively; relative 

frequency of 6-1 were 0.0100, 0.0349, 0.0768, 0.2046, 

0.3044, 0.2555 respectively (Table 1). 

 

The correlation coefficients were between -0.983≤r≤0.900, 

with the correspondent 0.001≤ p ≤0.04 -where p is the “p-

value” in the previous hypothesis test carried out previously- 

and coefficient of determination ranging 0.445≤ r
2
 ≤0.967 

(Table 2). SCCP 42826 represent 8.68% of 493236. 

Segregated by group, non-segregated by Sudoku: a) 14046 

SCCP out of 180000 (7.80%) SCCP for A; b) and 13266 

SCCP out of 180000 (7.37%) SCCP for B;  
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Table 2: Pearson correlation coefficient and coefficient of determination in each group Sudoku grids (A, B, C, D), frequency 

(f) and relative frequency (rf) 

r r
2
 

SCCP  Proportion of SCCP Prop. relative to total 
A B C D rf A rf B rf C rf D f42826 rf42826 

-0.983 0.966 0 0 5 1 0.00000 0.00000 0.00037 0.00049 6 0.00014 

-0.967 0.935 5 0 29 3 0.00036 0.00000 0.00216 0.00146 37 0.00086 

-0.95 0.903 17 0 36 9 0.00121 0.00000 0.00268 0.00438 62 0.00145 

-0.933 0.870 61 9 43 13 0.00434 0.00068 0.0032 0.00632 126 0.00294 

-0.917 0.841 142 72 113 18 0.01011 0.00543 0.0084 0.00875 345 0.00806 

-0.900 0.810 118 126 116 20 0.00840 0.00950 0.00862 0.00972 380 0.00887 

-0.883 0.780 155 99 197 21 0.01104 0.00746 0.01464 0.01021 472 0.01102 

-0.867 0.752 224 234 261 40 0.01595 0.01764 0.01940 0.01945 759 0.01772 

-0.850 0.723 293 261 303 47 0.02086 0.01967 0.02252 0.02285 904 0.02111 

-0.833 0.694 541 486 407 70 0.03852 0.03664 0.03024 0.03403 1504 0.03512 

-0.817 0.667 492 243 526 69 0.03503 0.01832 0.03909 0.03354 1330 0.03106 

-0.800 0.640 540 603 626 106 0.03845 0.04545 0.04652 0.05153 1875 0.04378 

-0.783 0.613 580 594 641 108 0.04129 0.04478 0.04763 0.05250 1923 0.04490 

-0.767 0.588 840 648 909 127 0.05980 0.04885 0.06755 0.06174 2524 0.05894 

-0.750 0.563 1016 1206 873 103 0.07233 0.09091 0.06487 0.05007 3198 0.07467 

-0.733 0.537 1197 1134 994 152 0.08522 0.08548 0.07386 0.07389 3477 0.08119 

-0.717 0.514 1292 1413 1162 160 0.09198 0.10651 0.08635 0.07778 4027 0.09403 

-0.700 0.490 1312 1269 1261 205 0.09341 0.09566 0.09371 0.09966 4047 0.09450 

-0.683 0.466 1400 1341 1355 245 0.09967 0.10109 0.10069 0.11911 4341 0.10136 

-0.667 0.445 1682 1845 1739 254 0.11975 0.13908 0.12923 0.12348 5520 0.12889 

0.667 0.445 110 54 210 28 0.00783 0.00407 0.01561 0.01361 402 0.00939 

0.683 0.466 267 216 320 54 0.01901 0.01628 0.02378 0.02625 857 0.02001 

0.700 0.490 228 180 280 39 0.01623 0.01357 0.02081 0.01896 727 0.01698 

0.717 0.514 837 729 265 34 0.05959 0.05495 0.01969 0.01653 1865 0.04355 

0.733 0.537 143 72 154 29 0.01018 0.00543 0.01144 0.01410 398 0.00929 

0.750 0.563 80 9 78 14 0.00570 0.00068 0.00580 0.00681 181 0.00423 

0.767 0.588 56 0 112 15 0.00399 0.00000 0.00832 0.00729 183 0.00427 

0.783 0.613 108 0 188 30 0.00769 0.00000 0.01397 0.01458 326 0.00761 

0.800 0.640 37 0 75 14 0.00263 0.00000 0.00557 0.00681 126 0.00294 

0.833 0.694 18 0 71 10 0.00128 0.00000 0.00528 0.00486 99 0.00231 

0.850 0.723 250 423 87 18 0.01780 0.03189 0.00647 0.00875 778 0.01817 

0.900 0.810 5 0 21 1 0.00036 0.00000 0.00156 0.00049 27 0.00063 

Total 
 

14046 13266 13457 2057         42826    

 

c) 13457 SCCP out of 115200 (11.80%) SCCP for C, and d) 

for 2057 SCCP out of 18036 (11.40%) SCCP for D (Fig. 3). 

 

The output of the analysis, by Sudoku, within each group 

(A, B, C, D) shows that the distribution of SCCP, proportion 

of r, the ratios of negative: positive correlation as well as the 

general ratios for the whole groups and the total ratios for 

the four groups together, are as the descriptions below. 
 

Distribution of SCCP by Sudoku shows that 9 SCCP were 

the common ones, 42.58%, followed by 3 SCCP (14.37%), 2 

SCCP (13.71%), 4 SCCP (8.44%), 1 SCCP (7.14%), 5 

SCCP (5.21%), 18 SCCP (4.71%), 6 SCCP (2.37%), 7 

SCCP (0.83%), 8 SCCP (0.32%), 12 SCCP (0.17%), 15 

SCCP (0.14%), 10 SCCP (0.09%), and 11 SCCP with 0.03% 

(Fig. 4). 

 
For Group A (Tables 1, 2, 3, 4). - The 18 SCCP were the 

higher amount, 41 cases (41x18 = 738 SCCP); the variability 

and relative frequency of r 
 

Table 3: Ratios of negative and positive (Neg: Pos) correlation, segregated by group (A, B, C, D) of SCCP Sudoku 

n (SCCP) 
A B C D 

n Neg: Pos n Neg: Pos n Neg: Pos n Neg: Pos 

1 1151 1.00: 0.15 0 0 1650 1.00: 0.11 256 1.00: 0.12 

2 1606 1.00: 0.16 0 0 3658 1.00: 0.13 608 1.00: 0.14 

3 1656 1.00: 0.16 0 0 3882 1.00: 0.16 615 1.00: 0.14 

4 848 1.00: 0.20 0 0 2464 1.00: 0.20 304 1.00: 0.22 

5 845 1.00: 0.18 0 0 1200 1.00: 0.22 185 1.00: 0.28 

6 492 1.00: 0.17 0 0 420 1.00: 0.25 60 1.00: 0.20 

7 203 1.00: 0.42 0 0 133 1.00: 0.32 21 1.00: 0.24 

8 96 1.00: 0.45 0 0 32 1.00: 0.39 8 1.00: 0.14 

9 6228 1.00: 0.12 11988 1.00: 0.10 18 1.00: 0.50 0 0 

10 40 1.00: 0.67 0 0 0 0 0 0 

11 11 0.83: 1.00 0 0 0 0 0 0 

12 72 1.00: 0.38 0 0 0 0 0 0 

15 60 1.00: 0.67 0 0 0 0 0 0 

18 738 1.00: 1.00 1278 1.00: 1.00 0 0 0 0 

Legend: Neg: Pos, negative: positive correlation ratio within each group; n (SCCP), number of statistically significant 

correlated column pairs (SCCP) per Sudoku; n, number of SCCP in Sudoku grids with n (SCCP) in each group. 
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were between -0.933 (0.02439) and 0.750 (0.02439), here 

0.717 (0.18292), 0.683 (0.12195), and -0.917 (0.10976) 

were the common ones. Negative (369): positive (369) 

correlation ratio is 1.00: 1.00. For 15 SCCP a total of 60 

cases, where the variability and relative frequency of r were 

between -0.950 (0.05000) and 0.783 (0.15000), here -0.767, 

0.717, and 0.783 were the common ones with a relative 

frequency of 0.15000 each (0.45000). Negative (36): 

positive (24) correlation ratio is 1.00: 0.67. For 12 SCCP a 

total of 72 cases; the variability and relative frequency of r 

were between -0.917 (0.106944) and 0.800 (0.08333), here -

0.767 (0.16667) and -0.912 (0.10694) were the common 

ones. Negative (52): positive (20) correlation ratio is 1.00: 

0.38. For 11 SCCP a total of 11 cases; the variability and 

relative frequency of r were between -0.883 (0.45454) and 

0.733 (0.45454), also the common ones. Negative (5): 

positive (6) correlation ratio is 1.00: 0.833. For 10 SCCP a 

total of 40 cases; the variability and relative frequency of r 

were between -0.933 (0.12500) and 0.767 (0.12500), here 

0.733 and 0.750 with 0.12500 each (0.2500) were the 

common ones. Negative (24): positive (16) correlation ratio 

is 1.00: 0.67. For 9 SCCP, a total of 6228 cases; the 

variability and relative frequency of r were between -0.883 

(0.00145) and 0.850 (0.02890), here -0.667 (0.14355) and -

0.733, -0.717 and -0.700 were the common ones with 

0.10308 each. Negative (5550): positive (678) correlation 

ratio is 1.00: 0.12. For 8 SCCP a total of 96 cases; the 

variability and relative frequency of r were between -0.900 

(0.01042) and 0.850 (0.04167), here -0.667 (0.14583) and -

0.700 (0.11458) were the common ones. Negative (66): 

positive (30) correlation ratio is 1.00: 0.45. For 7 SCCP a 

total of 203 cases; the variability and relative frequency of r 

were between -0.950 (0.01970) and 0.850 (0.05419), here -

0.667 (0.10345) was the common one. Negative (143): 

positive (60) correlation ratio is 1.00: 0.42. For 6 SCCP,  

 

Table 4: Absolute number of SCCP per value of r and number of SCCP per Sudoku in group A 
r 1 2 3 4 5 6 7 8 9 10 11 12 15 18 

-0.983 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

-0.967 1 3 1 0 0 0 0 0 0 0 0 0 0 0 

-0.950 3 2 1 4 0 0 4 0 0 0 0 0 3 0 

-0.933 3 13 6 10 1 2 0 0 0 5 0 0 3 18 

-0.917 7 11 13 10 3 2 2 0 0 5 0 5 3 81 

-0.900 11 7 7 9 4 3 1 1 0 0 0 3 0 72 

-0.883 16 21 20 18 6 3 3 0 9 0 5 0 0 54 

-0.867 20 26 31 24 12 15 4 1 36 1 0 6 3 45 

-0.850 22 37 32 18 11 11 3 2 153 0 0 4 0 0 

-0.833 41 44 45 22 29 21 1 1 274 0 0 3 6 54 

-0.817 50 64 56 22 29 22 8 5 229 4 0 0 3 0 

-0.800 43 61 67 39 23 36 7 3 237 0 0 6 0 18 

-0.783 66 88 68 30 42 30 18 6 228 1 0 0 3 0 

-0.767 69 101 115 50 56 36 9 8 373 2 0 12 9 0 

-0.750 78 102 101 43 57 28 12 5 561 1 0 1 0 27 

-0.733 85 113 115 57 80 43 18 4 675 4 0 3 0 0 

-0.717 127 136 175 79 81 43 6 3 642 0 0 0 0 0 

-0.700 111 173 154 78 92 28 16 11 642 1 0 6 0 0 

-0.683 135 182 215 106 89 63 10 3 597 0 0 0 0 0 

-0.667 120 197 204 89 103 36 21 14 894 1 0 0 3 0 

0.667 10 15 18 20 18 1 6 1 0 0 0 3 0 18 

0.683 21 31 43 20 10 12 16 7 5 3 0 6 3 90 

0.700 17 49 41 17 22 10 4 5 6 0 0 3 0 54 

0.717 41 40 47 23 28 15 3 4 487 1 1 3 9 135 

0.733 10 19 10 15 21 1 2 1 0 5 5 0 0 54 

0.750 4 16 10 6 3 10 4 1 0 5 0 0 3 18 

0.767 11 9 14 7 4 6 3 1 0 1 0 0 0 0 

0.783 11 17 23 15 7 9 10 5 0 0 0 2 9 0 

0.800 0 12 6 9 3 1 0 0 0 0 0 6 0 0 

0.833 2 6 3 1 4 1 1 0 0 0 0 0 0 0 

0.850 15 10 14 7 6 3 11 4 180 0 0 0 0 0 

0.900 1 1 1 0 1 1 0 0 0 0 0 0 0 0 

Total 1151 1606 1656 848 845 492 203 96 6228 40 11 72 60 738 

Legend: r, Pearson correlation coefficient for each SCCP; 1-18, number of SCCP per Sudoku. 

 

total of 492 cases; the variability and relative frequency of r 

were between -0.933 (0.00407) and 0.900 (0.00209), here -

0.683 (0.12805) was the common one. Negative (422): 

positive (70) correlations ratio is 1.00: 0.17.  

 

For 5 SCCP, a total of 845 cases; the variability and relative 

frequency of r were between -0.933 (0.00118) and 0.900 

(0.00118), here -0.667 (0.12189) was the common one. 

Negative (718): positive (127) correlation ratio is 1.00: 0.18.  

For 4 SCCP, a total of 848 cases; the variability and relative 

frequency of r were between -0.950 (0.00472) and 0.850 

(0.00825), here -0.683 (0.12500) and -0.667 (0.10495) were 

the common ones. Negative (708): positive (140) correlation 

ratio is 1.00: 0.20. For 3 SCCP, a total of 1656 cases; the 

variability and relative frequency of r were between -0.967 

(0.00060) and 0.900 (0.00060), where -0.683 (0.12983) and 

-0.667 (0.12319) are the common ones. Negative (1426): 

positive (230) correlation ratio is 1.00: 0.16. 
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Table 5: Absolute number of SCCP per value of r and 

number of SCCP per Sudoku in group B 
r 9 18 

-0.983 0 0 

-0.967 0 0 

-0.950 0 0 

-0.933 0 9 

-0.917 0 72 

-0.900 0 126 

-0.883 18 81 

-0.867 90 144 

-0.850 234 27 

-0.833 450 36 

-0.817 243 0 

-0.800 540 63 

-0.783 567 27 

-0.767 648 0 

-0.750 1152 54 

-0.733 1134 0 

-0.717 1413 0 

-0.700 1269 0 

-0.683 1341 0 

-0.667 1845 0 

0.667 0 54 

0.683 0 216 

0.700 0 180 

0.717 621 108 

0.733 0 72 

0.750 0 9 

0.767 0 0 

0.783 0 0 

0.800 0 0 

0.833 0 0 

0.850 423 0 

0.900 0 0 

Total 11988 1278 

Legend: r, Pearson correlation coefficient for each SCCP; 9 

and 18, number of SCCP per Sudoku. 
 

For 2 SCCP, a total of 1606 cases; the variability and 

relative frequency of r were between-0.967 (0.00187) and 

0.900 (0.00062), here -0.667 (0.12267), -0.683 (0.11333), 

and -0.7000 (0.10772) are the common ones. Negative 

(1381): positive (225) correlation ratio is 1.00: 0.16. For 1 

SCCP, a total of 1151 cases; the variability and relative 

frequency of r were between -0.967 (0.00087) and 0.900 

(0.00087), here -0.683 (0.11729), -0.717 (11034), and -0.667 

(0.10426) were the common ones. Negative (1008): positive 

(153) correlation ratio is 1.00: 0.15. General negative 

(11907): positive (2139) ratio for this group (A) is 1.00: 0.18 

(Table 3).  

 

For Group B (Tables 1, 3, 2, 5).- The 18 SCCP was the 

higher amount with 71 cases (71×18=1278 SCCP), a total of 

1278 cases; the variability and relative frequency of r were 

between -0.933 (0.00704) and 0.750 (0.00704), here 0.683 

(0.16901), 0.700 (0.14085), and -0.867 (0.11268) were the 

common ones. 

 

 

 

 

 

 

Table 6: Absolute number of SCCP per value of r and 

number of SCCP per Sudoku in group C 
r 1 2 3 4 5 6 7 8 9 

-0.983 2 2 0 1 0 0 0 0 0 

-0.967 6 4 14 5 0 0 0 0 0 

-0.950 8 4 10 8 3 3 0 0 0 

-0.933 5 12 12 8 3 1 2 0 0 

-0.917 15 36 34 17 9 2 0 0 0 

-0.900 19 23 37 22 13 1 1 0 0 

-0.883 22 52 63 38 18 2 1 1 0 

-0.867 31 72 73 51 17 12 4 1 0 

-0.850 33 89 78 58 18 24 3 0 0 

-0.833 48 116 116 81 31 12 2 1 0 

-0.817 71 159 137 93 42 18 4 0 2 

-0.800 97 189 168 101 51 14 5 1 0 

-0.783 59 187 197 110 66 11 7 2 2 

-0.767 135 262 256 162 72 15 7 0 0 

-0.750 100 275 256 120 76 26 16 2 2 

-0.733 98 267 321 168 107 22 8 3 0 

-0.717 178 281 353 212 91 35 6 4 2 

-0.700 147 369 343 247 104 35 9 3 4 

-0.683 158 379 398 252 107 47 12 2 0 

-0.667 252 468 484 307 159 52 14 3 0 

0.667 25 45 65 48 15 7 3 2 0 

0.683 26 76 106 63 29 14 2 2 2 

0.700 26 56 75 75 34 10 4 0 0 

0.717 23 47 87 47 34 14 10 1 2 

0.733 15 38 42 30 23 6 0 0 0 

0.750 9 22 17 18 9 2 0 1 0 

0.767 8 32 27 18 13 9 4 1 0 

0.783 15 48 44 40 24 11 3 1 2 

0.800 7 14 20 17 8 4 5 0 0 

0.833 5 17 18 19 9 2 1 0 0 

0.850 5 12 26 22 14 7 0 1 0 

0.900 2 5 5 6 1 2 0 0 0 

Total 1650 3658 3882 2464 1200 420 133 32 18 
 

Legend: r, Pearson correlation coefficient for each SCCP; 1-

9, number of SCCP per Sudoku. 
 

Negative (639): positive (639) correlation ratio is 1.00: 1.00. 

For 9 SCCP, a total of 11988 cases; the variability and 

relative frequency of r were between -0.883 (0.00150) and 

0.850 (0.03529), here -0.667 (0.15390), -0.717 (0.11787), 

and -0.683 (0.11186) were the common ones. Negative 

(10944): positive (1044) correlation ratio is 1.00: 0.10. 

General negative (11583): positive (1683) correlation ratio 

for this group (B) is 1.00: 0.15. (Table 3). 

 

For Group C (Tables 1, 3, 2, 6).- The 9 SCCP was the higher 

amount with 2 cases (2x9=18 SCCP), a total of 18 cases; the 

variability and relative frequency of r were between -0.817 

and 0.783 with 0.11111 each, here -0.700 (0.22222) was the 

common one, but it is important to remarks that the rest of 

them were 0.11111. Negative (12): positive (6) correlation 

ratio is 1.00: 0.50. For 8 SCCP, a total of 32 cases; the 

variability and relative frequency of r were between -0.883 

(0.03125) and 0.850 (0.03125), here commonalities are 

0.06250 and 0.03125. Negative (23): positive (9) correlation 

ratio is 1.00: 0.39. For 7 SCCP, a total of 133 cases; the 

variability and relative frequency of r were between -0.933 

(0.01504) and 0.833 (0.00752), here -0.750 (0.12030) and -

0.667 (0.10526) were common ones. Negative (101): 

positive (32) correlation ratio is 1.00: 0.32.  
For 6 SCCP, a total of 420 cases; the variability and relative 
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frequency of r were between -0.950 (0.00714) and 0.900 

(0.00472), here -0.667 (0.12381) and -0.683 (0.11190) were 

the common ones. Negative (332): positive (88) correlation 

ratio is 1.00: 0.25. 
 

For 5 SCCP, a total of 1200 cases; the variability and 

relative frequency of r were between -0.950 (0.00250) and 

0.900 (0.00083), here -0.667 (0.13250) is the common one. 

Negative (987): positive (213) correlation ratio is 1.00: 0.22. 

For 4 SCCP, a total of 2464 cases; the variability and 

relative frequency of r were between -0.983 (0.00041) and 

0.900 (0.00244), here -0.667 (0.12459), -0.683  
 (0.10227), and-0.700 (0.10024) were the common ones. 

Negative (2061): positive (403) correlation ratio is 1.00: 

0.20. For 3 SCCP, a total of 3882 cases; the variability and 

relative frequency of r were between -0.967 (0.00361) and 

0.900 (0.00129), here -0.667 (0.12468) and -0.683 (0.10252) 

were the common ones. Negative (3350): positive (532) 

correlation ratio is 1.00: 0.16. 

 

For 2 SCCP, a total of 3658 cases; the variability and 

relative frequency of r were between -0.983 (0.00055) and 

0.900 (0.00137), here -0.667 (0.12794), -0.683 (0.10361), 

and -0.700 (0.10087) were the common ones. Negative 

(3256): positive (412) correlation ratio is 1.00: 0.13. For 1 

SCCP, a total of 1650 cases; the variability and relative 

frequency of r were between -0.983 (0.00121) and 0.900 

(0.00121), here -0.667 (0.15273) was the common one. 

Negative (1484): positive (166) correlation ratio is 1.00: 

0.11. General negative (11596): positive (1861) correlation 

ratio for this group (C) is 1.00: 0.16 (Table 3). 

 
For Group D (Tables 1, 2, 3, 7). - The 8 SCCP was the 

higher amount with 1 case; the variability and relative 

frequency of r were between -0.833 (0.12500) and 0.683 

(0.12500), here -0.700 (0.25000) was the common ones, all 

others were 0.12500. Negative (7): positive (1) correlation 

ratio is 1.00: 0.14. For 7 SCCP, a total of 21 cases; the 

variability and relative frequency of r were between -0.917 

(0.04762) and 800 (0.04762), here -0.717 and -0.667 were 

0.14286 each. Negative (17): positive (4) correlation ratio is 

1.00: 0.24. For 6 SCCP, a total of 60 cases; the variability 

and relative frequency of r were between -0.933 (0.01667) 

and 0.833 (0.01667), here -0.683 and -0.667 with 0.13333 

each, and -0.783 (0.10000) were the common ones. Negative 

(50): positive (10) correlation ratio is 1.00: 0.20. For 5 

SCCP, a total of 185 cases; the variability and relative 

frequency of r were between -0.967 (0.00541) and 0.850 

(0.02162), here -0.683 (0.12432) was the common one. 

Negative (144): positive (41) correlation ratio is 1.00: 0.28. 

For 4 SCCP, a total of 304 cases; the variability and relative 

frequency of r were between -0.967 (0.00329) and 0.900 

(0.00329), here -0.667 (0.12829), -0.700 (0.11184), and -

0.683 (0.10526) were the common ones. Negative (249): 

positive (55) correlation ratio is 1.00: 0.22. For 3 SCCP, a 

total of 615 cases; the variability and relative frequency of r 

were between -0.950 (0.00163) and 0.850 (0.00650), here -

0.667 (0.13496), -0.683 (0.12683), and -0.700 (0.10081) 

were the common ones. Negative (540): positive (75) 

correlation ratio is 1.00: 0.14. 
 

 

 

Table 7: Absolute number of SCCP per value of r and 

number of SCCP per Sudoku in group D 
r 1 2 3 4 5 6 7 8 

-0.983 0 1 0 0 0 0 0 0 

-0.967 0 1 0 1 1 0 0 0 

-0.950 0 5 1 3 0 0 0 0 

-0.933 5 3 2 1 1 1 0 0 

-0.917 1 7 5 1 3 0 1 0 

-0.900 3 7 6 3 0 1 0 0 

-0.883 2 10 3 3 2 1 0 0 

-0.867 6 14 12 4 1 3 0 0 

-0.850 6 15 11 9 5 1 0 0 

-0.833 13 22 19 7 8 0 0 1 

-0.817 14 18 19 7 7 2 2 0 

-0.800 16 30 34 14 9 2 1 0 

-0.783 14 39 35 9 3 6 1 1 

-0.767 21 27 47 17 9 5 1 0 

-0.750 7 33 32 16 12 2 0 1 

-0.733 17 47 47 24 12 2 2 1 

-0.717 20 47 44 25 16 4 3 1 

-0.700 28 60 62 34 14 4 1 2 

-0.683 27 75 78 32 23 8 2 0 

-0.667 29 74 83 39 18 8 3 0 

0.667 3 8 7 7 3 0 0 0 

0.683 6 13 8 12 10 3 1 1 

0.700 5 8 15 8 1 2 0 0 

0.717 1 9 16 5 2 0 1 0 

0.733 2 10 5 4 7 0 1 0 

0.750 2 3 2 4 3 0 0 0 

0.767 1 2 5 5 1 1 0 0 

0.783 2 10 6 5 6 1 0 0 

0.800 2 3 5 0 1 2 1 0 

0.833 0 1 2 3 3 1 0 0 

0.850 3 6 4 1 4 0 0 0 

0.900 0 0 0 1 0 0 0 0 

Total 256 608 615 304 185 60 21 8 

Legend: r Pearson correlation coefficient for each SCCP; 1-8, 

number of SCCP per Sudoku. 
 

For 2 SCCP, a total of 608 cases; the variability and relative 

frequency of r were between -0.983 (0.00164) and 0.850 

(0.00987), here -0.683 (0.12336) and -0.667 (0.12171) were 

the common ones. Negative (535): positive (73) correlation 

ratio is 1.00: 0.14. For 1 SCCP, a total of 256 cases; the 

variability and relative frequency of r were between -0.933 

(0.01953) and 0.850 (0.01172), here -0.667 (0.11328), -

0.700 (0.10938), and -0.683 (0.10547) were the common 

ones. Negative (229): positive (27) correlation ratio is 1.00: 

0.12. General negative (1771): positive (286) ratio for this 

group (D) is 1.00: 0.16 (Table 3). 
 

In general, of the 42826 SCCP out of 493, 236 total 

probabilities of SCCP, segregated by Sudoku without caring 

about to which one it belongs, negative and positive 

correlations were 36857 (86.49%) and 5969 (13.51%) 

respectively (Fig. 3) with a ratio (1.00: 0.16). Within the 

negative correlation were r = - 0.667 (12.89%), r = -0.683 

(10.14%), r = -0.700 (9.44%), r = -0.717 (9.40%), r = - 
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Table 8: Negative: Positive ratios, frequencies, proportions 

and summary 
Neg: Pos Fr Pr % 

1.00: 0.10 11988 0.2799 27.99 

1.00: 0.11 1650 0.0385 3.85 

1.00: 0.12 7878 0.1514 15.14 

1.00: 0.13 3658 0.0854 8.54 

1.00: 0.14 1231 0.0287 2.87 

1.00: 0.15 1151 0.0269 2.69 

1.00: 0.16 7144 0.1668 16.68 

1.00: 0.17 492 0.0115 1.15 

1.00: 0.18 845 0.0197 1.97 

1.00: 0.20 3372 0.0787 7.87 

1.00: 0.22 1504 0.0351 3.51 

1.00: 0.24 21 0.0005 0.05 

1.00: 0.25 420 0.0098 0.98 

1.00: 0.28 185 0.0043 0.43 

1.00: 0.32 133 0.0031 0.31 

1.00: 0.38 72 0.0017 0.17 

1.00: 0.39 32 0.0007 0.07 

1.00: 0.42 203 0.0047 0.47 

1.00: 0.45 96 0.0022 0.22 

1.00: 0.50 18 0.0004 0.04 

1.00: 0.67 100 0.0023 0.23 

1.00: 1.00 2016 0.0471 4.71 

0.83: 1.00 11 0.0003 0.03 

Overall Neg: Pos 
 

Sume    
1.00: 0.16 42826 1 100 

Legend: Neg: Pos ratios; Fr, frequency of ratios; Pr and %, 

proportions and % of the total. 
 

0.733 (8.12%), r = -0.750 (7.47%) and r = -0.767 (5.89%), 

representing 63.35% of all 32 correlations (negative and 

positive) and 35.00% (7 out of 20) negative correlation, 

therefore in 21.88% (7 out of 32) of the total. For positive 

correlation the larger percentages were r = 0.717 (4.35%), r 

= 0.683 (2.00%), r = 0.850 (1.82%), and r = 0.700 (1.70%), 

representing 9.87% of all 32 correlations, and 33.33% (4 out 

of 12) positive correlations, therefore 12.50% (4 out of 32) 

of the total. The smallest percentages corresponded to the 

extreme (lowest and highest) correlations, -0.983 

(0.01401%) and 0.900 (0.06305%) (Table 2; Fig. 4).  

 

The most frequent negative: positive ratios are: 1.00: 0.10 

(27.99%), 1.00: 0.16 (16.68%), 1.00: 0.12 (15.14%), 1.00: 

0.13 (8.54%), 1.00: 0.20 (7.87%), 1.00: 1.00 (4.71%), 1.00: 

0.11 (3.85%), 1.00: 0.12 (3.51%), 1.00: 0.14 (2.87%), 1.00: 

0.15 (2.69%), 1.00: 0.18 (1.97%) and 1.00: 0.17 (1.58%); 

overall ratio is 1.00: 0.16 (100.00%). Five (5) ratios out of 

23, i.e. 0.10, 0.16, 0.12, 0.13, and 0.20, represent 76.22% 

(Table 8). The three ratios with two entire digits % before 

the dot represent 59.81% 27.99+16.68+15.14), the nine 

ratios with one digit represent 37.16% (8.54+ 

7.87+4.71+3.85+ 3.51+2.87+ 2.69+1.97+1.15) and the 

eleven ratios with 0 digit represent 3.00% 

(0.98+0.47+0.43+0.31+0.23+0.22+0.17+0.07+0.05 

+0.04+0.03) (Table 8). 

 

Number of correlated models, based on determination 

coefficient (r
2
), to understand SCCP of combinations. 

Assumptions: All Sudoku groups are the same no matter 

what the algorithms were used to build them, therefore they 

have the same diversity of r. 

 

 
Figure 2: (a) Relative frequency of pairs of statistically significant variables per Sudoku. Red (B=10.0 k), blue (A=10.0 kp), 

gray (C=6.4k), and orange (D=1.0 k). (b) Total percentage of r where the highest percentages are 12.89% for r=-0.667, 
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10.14% for r=-0.683, 9.44% for r=-0.700, 9.40% for r=-0.717, 8.12% for r=-0.733, 7.47% for r=-0.750, and 5.89% for r=-

0.767. All this represent 63.35%. 

 

In all four groups (A, B, C, D) 32 Correlation were -0.9833 

≤ r ≤ 0.9000 (Table 2; Fig. 5), 20 for negative correlation (-

.9833 to -0.6667) correspondent r
2
 between 0.445 to 0.967 

and 12 for positive correlation (0.667 ≤ r ≤ 0.900)  

with correspondent r
2
 between 0.444 to 0.810 (Figs. 6 and 

7). Group A shows 31 correlation, -0.967 to 0.900 but lack -

0.983; group B shows 24 correlation models, -0.933 to 0.767 

but lack -0.983 to -0.950, 0.767 to 0.833 and 0.900; 

 
Figure 3: Output of the analysis of regression for 27402 Sudoku where the 42826 SCCP (statistically significant correlation 

pairs) resulted, representing 4.34% of the total theoretical probabilities (986472) and 8.68% of the calculated probabilities 

(493236). In the four groups of matrices values representing each group (A, B, C, D) times 18, resulted in the following 

percentages, 7.80% of 180000, 7.37% of 180000, 11.68% of 115200, and 11.40% of 18036 respectively 

 

group C shows all the 32 correlation models, -0.983 to 0.900 

and group D shows 30 correlation models, -0.967 to 0.850 

but lack -0.983 and 0.900 (Fig. 5; Table 9). 

 
Number of groups, within each r

2
, through cluster analysis, 

to understand the nature of the relationships of clusters 

within the same r
2
. Seems like the inclusion of maximum 

number of correlation pairs of variables within a matrix  
will depend of the number of Sudoku. The algorithms to 

build Sudoku may play a relevant role in the number of 

SCCP correlation between variables. Although A and B 

(10.0k) were the two groups of matrices where 18 SCCP  

were found. It most be remarked that A lack 4 out of 18 

outcomes, therefore correlated ones represent 37.58% versus 

the non-correlated which are 62.42%. On the other hand, in 

the group B, 16 out of 18 outcomes were absent, so  
the correlated ones are 13.21% versus the non-correlated 

which are 86.79% (Tables 1, 3, 4, 5). The two smaller 

matrices, i.e. C and D, with at least one SCCP are 89.44% 

and 89.02% respectively; only 10.46% and 10.98% lacked 

SCCP (Tables 1, 3, 6, 7). The number of Sudoku with at 

least one SCCP were smaller in large groups (37.58% for A 

and 14.03% for B) than in middle (89.43% for 

 

 
Figure 4 (g): Percentages of SCCPP out of t the o total SCCP.t Note S that 9 SCCP is w the 4 largest percentage with 42.58% 

r shows a high level of redundancy (identical scatterplot) 

because Euclidean distance within the same r = 0. This 

trimming to redundancy reduces the number of terminal 

elements between 0.00 and 98.11% (Table 9). Variability 

within the same r were tested using Spearman correlation. 

Analysis of distance within the same correlation coefficient 
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resulted in: a) an output of 31 dendrograms of group A, 

where redundancies were removed, lacking between 0.00 

and 92.00 elements, and reducing the number of branches 

between 8.00 and 100.00%, with X±S = 36.81±18.79 and 

quartiles Q1 Q3 of 32.69 and 43.24 respectively. b) an 

output of 24 deprogram of group B, where redundancies 

were removed lacking between 77.78 and 98.11% of 

elements, reducing number of branches between 1.89 and 

22.22%, with X±S = 12.05±4.47, and Q1 and Q3 of 10.44 

and 12.67 respectively. c) An output of 32 dendrograms of 

group C, where redundancies were removed, lacking 

between 53.49 and 72.41% of elements, and reducing 

number of branches between 27.59 and 46.51%, with x±S = 

38.87±3.72, and Q1 and Q3 of 36.78 and 40.95 respectively, 

and d). An output of 30 dendrograms of group D, where 

redundancies were removed, lacking between 0.00 and 

66.67%, reducing the number of branches between3.33 and 

100.00%, with X±S = 74.30±12.32 and Q1 and Q3 of 66.67 

and 83.33 (Table 10). 

 

Group B variability was the smallest one among the four 

groups and it is correlating with the small variability in 

number of SCCP per Sudoku. In this case, group B only two 

kinds of SCCP found were 18 and 9.  

 

Comparing shapes of dendrograms resulted from the cluster 

analysis in 5 correlation coefficients, i.e. -0.933, -0.850, -

0.667, 0.667, and 0, 900 to understand trimming of trees, 

show no correlation between number of cases and 

 

 
Figure 5: The 32 lineal regression models obtained from the 27402 (A, B, C, D) Sudoku matrices. In the center, general 

regression equation, with coefficient of determination (r
2
) oval 

 

In square boxes, bold equations are positive correlations and 

italics are negative correlation strimming of the branching 

diagram. These r were taking base on the occurrence in all 

four groups of matrices (A, B, C, D). 

 

4. Discussion 
 

Why correlation and regression analysis and why 

Significance of SCCP per Sudoku? Correlation and 

regression analyses might help to understand small samples 

with low value variables, which are unrelated to any specific 

real situation, that can be associated and how this association 

might be transformed in a predictive variable f (x) = y, and 

each variable can be either independent or dependent 

variable. This situation is considered as special because the 

rules to build the 9 × 9 matrix, constitute a condition for the 

relationships between each pair of the 36 pairs of 

combinations. According to Glass and Hopkins (1996), 

under the assumptions of equal variance (σ
2

x = σ
2

y) where 

values distribution 
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Figure 6: Negative correlation, an example for each r
2 
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Figure 7: Positive correlation, an example for each r

2 
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Table 9: Diversity based on the remaining cases (rem%) of correlation coefficient (r), number (orig) of terminal correlations 

in dendrograms and percentages r remained (rem%) of r after deleting (del%) redundant cases dendrograms. 

r r2 
A B C D 

orig del% rem% orig del% rem% orig del% rem% orig del% rem% 

-0.983 0.966 0 0.00 0.00 0 0.00 0.00 5 60.00 40.00 0 0.00 0.00 

-0.967 0.935 5 0.00 100 0 0.00 0.00 29 72.41 27.59 3 0.00 100.00 

-0.950 0.903 17 47.06 52.94 0 0.00 0.00 36 61.11 38.89 9 66.67 33.33 

-0.933 0.870 61 63.93 36.07 9 77.78 22.22 43 53.49 46.51 13 15.38 84.62 

-0.917 0.841 142 73.24 26.76 72 88.89 11.11 113 56.64 43.36 18 11.11 88.89 

-0.900 0.810 118 69.49 30.51 126 87.3 12.7 116 57.76 42.24 20 10.00 90.00 

-0.883 0.780 155 70.32 29.68 99 89.9 10.1 197 61.43 38.58 21 14.29 85.71 

-0.867 0.752 224 66.52 33.48 234 89.74 10.26 261 59.39 40.61 40 22.50 77.50 

-0.850 0.723 293 68.94 31.06 261 87.74 12.26 303 60 39.93 47 14.89 85.11 

-0.833 0.694 541 78.93 21.07 486 87.24 12.67 407 62.41 37.59 70 31.43 68.57 

-0.817 0.667 492 71.34 28.66 243 84.36 15.64 526 61.41 38.59 69 20.29 79.71 

-0.800 0.640 540 68.89 31.11 603 88.06 11.94 626 63.1 36.9 106 31.13 68.87 

-0.783 0.613 580 68.97 31.03 594 88.2 11.78 641 62.4 37.6 108 33.33 66.67 

-0.767 0.588 840 71.43 28.57 648 89.51 10.49 909 62.82 37.18 127 29.92 70.08 

-0.750 0.563 1016 76.28 23.72 1206 88.89 11.11 873 64.26 35.74 103 33.98 66.02 

-0.733 0.537 1197 76.36 23.64 1134 88.54 11.46 994 65.49 34.51 152 36.84 63.16 

-0.717 0.514 1292 75.54 24.46 1413 88.96 11.04 1162 65.4 34.6 160 31.87 68.12 

-0.700 0.490 1312 74.31 25.69 1269 88.34 11.66 1261 64.55 35.45 205 33.66 66.34 

-0.683 0.466 1400 73.14 26.86 1341 89.56 10.44 1355 63.91 36.09 245 39.18 60.68 

-0.667 0.445 1682 75.74 24.26 1845 88.29 11.71 1739 66.24 33.76 254 38.98 61.02 

0.667 0.445 110 43.64 56.36 54 81.48 18.52 210 59.05 40.95 28 21.43 78.57 

0.683 0.466 267 63.3 36.7 216 88.89 11 320 57.5 42.50 54 27.78 72.22 

0.700 0.490 228 60.09 39.91 180 91.11 8.89 280 59.29 40.71 39 20.51 79.49 

0.717 0.514 837 89.37 10.63 729 95.88 4.12 265 60.00 40.00 34 26.47 73.53 

0.733 0.537 143 60.84 39.16 72 86.11 13.89 154 55.19 44.81 29 34.48 65.52 

0.750 0.563 80 67.5 32.5 9 77.78 22.22 78 56.41 43.89 14 14.29 86.67 

0.767 0.588 56 42.86 57.14 0 0.00 0.00 112 58.93 41.07 15 33.33 73.33 

0.783 0.613 108 50 50 0 0.00 0.00 188 61.70 38.30 30 26.67 73.33 

0.800 0.640 37 56.76 43.24 0 0.00 0.00 75 61.33 38.67 14 21.43 78.57 

0.833 0.694 18 22.22 77.78 0 0.00 0.00 71 57.75 42.25 10 20.00 80.00 

0.850 0.723 250 92 8 423 98.11 1.89 87 63.22 36.78 18 16.67 83.33 

0.900 0.810 5 40 60 0 0.00 0.00 21 61.9 38.10 0 0.00 0.00 

 

Table 10: Descriptive statistics of reduction (%) of terminal 

elements (SCCP) in dendro- 
grams by elimination of redundancy 

Group n Min-Max (%) X±S Q1-Q3 

A 31 8.00-100.00 36.81±18.79 32.69-43.24 

B 24 1.89-22.22 12.05±4.47 10.44-12.67 

C 32 27.59-46.51 38.87±3.72 36.78-40.95 

D 30 33.33-100.00 74.30±12.32 66.67-83.33 

 
is quite similar, the maximum value of r (= 1.00) is 

achievable if the shape of the variables x and y are the same 

(Goodwin and Leech, 2006). However, we learned that 

variables base in Sudoku’s matrix does not reach a  
perfect r, i.e. -1.00 or 1.00. The maximum r value found for 

SCCP within a matrix Sudoku was r = −0.983 (Fig. 6; Table 

9) and this might be explained because for negative 

correlation, the smallest integers can perfectly match with 

the larger ones but the two in the centre do not match for 

perfect correlation, r = −1.00 e.g. (9, 1), (8, 2), (7, 3), (6, 4), 

(5, 6), (4, 5), (3, 7), (2, 8), (1, 9) as can be seen in scatter 

plot Fig 6 (r
2
 = 0.963); the meaning of the term centre is the 

distribution of each pair. For the positive ones, it is more 

complex to allow a perfect r = 1.00 because, given that in 

Sudoku rules, no pair integer can be the same in any of the 

nonet columns, e.g. (9, 8), (8, 9), (7, 6), (6, 7), (5, 4), (4, 5), 

(3, 1), (2, 3), (1, 2) as can be seen in scatter plot of Fig 7 (r
2
 

= 0.81) for maximum value found. This situation helps to 

explain why the negative correlation is a lot more frequent. 

Also, correlation near the maximum found in both, negative 

and positive, is almost impossible in closely neighbour 

variables, i.e. members of three nonet columns that belong to 

three nonet boxes, is not allowed because Sudoku rules. 

However other kinds of regression such as polynomial 

model might be performed. In this paper, general negative: 

positive ratios was 1.00: 0.16, very similar values as in 

algorithms A, B, C and D, with 1.00: 0.18; 1.00: 0.15; 1.00: 

0.16 and 1.00: 0.16 respectively (Table 3). 

 

Regarding SCCP per Sudoku, 70.66% belong to three 

SCCP, i.e. 9 (42.58%), 3 (14.37%) and 2 (13.71%); the 

following five (SCCP 4, 1, 5, 18 and 6) represents 27.98%, 

and the rest of them represents 1.58% (Fig.4). The smallest 

group, D, lack SCCP 18 to 9; Group C, lacks SCCP 18 to 

10, however group B lack almost all of them but SCCP 9 

and 18. Group A, which only lack SCCP 17-16 and 14-13, 

might represent the closure algorithm to the reality, but 

performs made until now do not support this hypothesis. We 

might interpret that in any algorithm to build Sudoku, 

regression analysis performed to the 9 × 9 matrix, the set of 

matrices should contain 9 SCCP in high proportion. 

 

Regarding the probability of SCCP per Sudoku, no output is 

small enough when a huge number of systems are 

considered, assuming each Sudoku as a system with 81 grids 

(9x9). As we learned, the maximum number of Sudoku are 
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6.67 x10
21

 (sensu Felgenhauer and Jarvis, 2005) but 

symmetries analysis reduces this number to 5.47x10
9
 

(Russell and Jarvis, 2006). In any way, finding 71 (0.0071) 

out of B (10.0k) and 41 (0.0041) out of A (10.0k), with 18 

significant correlated SCCP, because 7.1x10
-3

 x 5.47x10
9
 = 

38.837x10
6
, and analysing the original amount 

ofFelgenhauer and Jarvis (2005) it will be 7.1x10
-3

 x 

6.67x10
21

 = 47.357x10
18

. None of these numbers is small, so 

the relative proportions calculated in our sample are 

statistically relevant in order to estimate the population 

parameters. As physicists do similar things with their 

calculus about number of galaxies in the universe, e.g. 

Christopher Conselice from University of Nottingham 

estimated the number of galaxies in the universe as 2.0x10
12

, 

based on data from the Deep Sky Hubble Space Telescope. 
 

Significance of SCCP per group of algorithm and Clustering 

group of algorithms. The minimum number and less diverse 

SCCP found here might be related to the algorithm to build 

Sudoku grids. Cluster analysis to establish how the four 

groups cluster using a ratio of negative and positive 

correlation, shows that the more distantly related group was 

B, i.e. (((D C) A) B), as in the dendrogram shown on Fig. 8. 

 

Application of cluster analysis to the same correlation 

coefficient to detect redundancy shows that overall patterns 

of redundancy of terminal elements in the dendrogram differ 

among each group. The larger redundancy belongs to  
group B where the remaining terminal groups, after 

trimming dendrograms, are between 1.89 and 22.00%; 17 

out of the 24 reductions between 11.11 and 13.89% with 

mode of 11.00-11.94% and (X) S of 12.05 4.47. The second 

larger redundancy belongs to Group C, where the remaining 

terminal groups after trimming dendrograms are between 

27.59 and 46.51%; 18 out of the 32 reductions between 

33.63 and 39.93%, this is also the mode and (X) S of 38.87, 

3.72% ; and Q1 to Q3 of 36.78 to 40.95% respectively (Fig. 

10). These results raise the questions: Is this a consequence 

of the algorithm? It is because only two kinds of cases were 

found? (Table 10). 
 

As might be expected, A is the most widespread and B is the 

narrowest in terms of the % diversity because the 

redundancy deleted. Is the sample size good enough to 

represent the universe of both scenarios, i.e. 5.47x10
9
and 

6.67x10
21

? In terms of the sample, yes, but the algorithm 

might introduce some bias for data analysis therefore other 

studies will go deeper into this problem to use the results for 

probabilities and to test hypotheses of chi square. Are the 

algorithms to build groups good enough to put together and 

then apply chi-square? 
 

One of the factors affecting correlation is variability of X 

and Y variables (sensu Goodwin and Leech, 2006) and here 

the amount of variability has been test using cluster analysis 

that might help to understand the diversity within the same 

group of r. A test like this is unusual because not often 

modelling correlation allows the amount of r therefore 

scatterplot help to understand how different they are. 
 

Diversity within the same r and relevance of scatter plot. 

Once the relationships is known, i.e. 20 negatives and 12 

positives correlation coefficient, several of the 42826 SCCP 

has the same r, with the following distribution: a) group A, 

in 14046 SCCP, 1682 (11.97%) belong to r = -0.667; 1400 

(9.97%) belong to r = −0.683; 1312 (9.34%) belong to r = 

−0.700, (Table 8, Fig.5). 
 

b) group B, in 13266 SCCP, 1845 (13.91%) correspond to r 

= −0.667; 1413 (10.65%) belong to r = −0.717; 1341 

(10.11%) belong to r = −0.683; 1269 (9.57%) belong to r = 

−0.700; 1206 (9.09%) belong to r = −0.750; 1134 (8.45%) 

with r = −0.7333. The remaining ones with less than one 

thousand, six of them with less than 100 or 0.75%. c) group 

C, in 13457 SCCP, 1739 (12.92%) belong to r = −0.667; 

1355 (10.07%) belong to r = −0.683; 1261 (9.37%) 

correspond to r = −0.700; 1162 (8.63%) belong to r = 

−0.717. The remaining ones with less than 1000 (7.43%), 9 

of them with less than 100 (0.74%). d) group D, in 2057 

SCCP, 254 (12.35%) belong to r = −0.667; 245 (11.91%) 

correspond to r = −0.683; 205 (9.96%) belong to r = −0.700; 

160 (7.78%) belong to r = −0.717; 152 (7.39%) belong to r = 

−0.733; 127 (6.17%) belong to r = −0.767; 108 (5.25%) 

belong to r = −0.783; 106 (5.15%) belong to r = −0.800 

(Table 9). 
 

Sometimes, it is also difficult to judge whether a correlation 

measure is “high” or “low” sensu Cohen (1977 and 1988). 

For behavioural science, Cohen (1977, 1988) classified 

correlation coefficient in three categories, small (r=0.10), 

medium (r =0.30) and large (r=0.50) (Cohen, 1992). on the 

other hand, Hebel and McCarter (2012) considered five 

categories, i.e. negligible (0.0 to 0.2), weak (0.2 to 0.5), 

moderate (0.5 to 0.8) and strong (0.8 to 1.0) (Looney, 2018). 

However, there are certain situations where a correlation 

measure of 0.3, for example, may be consider negligible. 

Looney (2018) paid attention to the sample size where his 

minimum value of r to yield p smaller of equal to 0.05 in a 

sample n=10 is r =0.632; he uses a range of n between 10 

and 200 (his table 3). Our sample size, n=9, is constant 

without any choice. However, we did have a choice in the 

number of matrices, each of which allows 36 correlation 

pairs where the minimum r =0.667 (SCCP). 

 
This area of research is critical to decide whether or not r is 

negligible. The diversity of criteria to decide whether or not 

an index is significant for new knowledge to support a 

hypothesis, the correlation categories discussed in here 

suggest that further examination is needed. As with all data 

analysis, context of the data must be understood in order to 

evaluate any results (Stockwell, 2008). King (2013) realised 

to test the hypotheses of significance if the value of r is low 

and certain uncertainty exist, to find whether or not r arising 

by chance alone or if the relationship can apply to the whole 

population. Repeating, thousand of times, the analysis with 

exactly the same sample size per variable support Goodwin 

and Goodwin (1999) affirmation about the common 

misconception assuming a direct relationship between the 

size of N and the size of r (Goodwin and Leech, 2006). 

However, Hinkle et al. (1988) realise that the size of the 

samples might affect the stability and accuracy of  
the results. Looney (2018) main argument is based on size of 

the sample for a strong regression model. Because non null 

hypothesis might be appropriate when you have CI so wide 

to provide very little useful information regarding magnitude 
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of the population regression; as a consequence of this, 

Looney (2018) proposed two alternative approach: a) testing 

null values other than po = 0 and b) determining the sample 

size so as to achieve a certain level of precision of the 

estimate of p, as measured by the width of the resulting C.I. 

(Looney, 2018). In this case, further analysis like this should 

have more in depth discussion about the effect of the rules of 

the Sudoku and the size of the sample, considering that each 

variable always will have 9 integers, restricted by Sudoku 

rules. The reasoning above makes matrix Sudoku ideal for 

simulation and modelling, to use in bivariate and 

multivariate analysis such as regression, cluster, principal 

component and functional discriminant analyses. Testing the 

relationships of the same r in a group of matrices where 

simultaneous regression analysis was performed, a 

multivariate analysis was applied to bi-variate analysis 

results as the basis for simulations and models.  

 

It is a big opportunity to learn whether it is possible to feel 

confident with the same r as the same model. Given the 

pattern to build the matrices, all matrices are different but 

keep the same properties and rules; however, it does not 

prevent exactly the same shape in several SCCP from 

different matrices. Scatter plot accuracy to compare models 

were tested using cluster analysis. 

 
In 1842 resulted with same r the ones in the same 

dendrogram that present nodes with zero distance, 

interpreted as no differences in the model.  

 

However, the percentage that remains with distances 

different than 0 is interpreted as relevant for diversity of 

scatter plot because, after trimming the ones with 0 distance, 

between 0.00 and 98.2% of the values or r remains, this is 

interpreted as a lack of redundancy shows a wide range of 

variation. Trimming was applied to eliminate redundancy, to 

understand the diversity of branches for a given group. 

Using thousands of matrices as the sample, where the 

maximum number of r values without repetition is 36, the 

same r can be found in several scatter plots across the 

sample. The challenge in this case is to establish an 

association through cluster analysis, using Pearson’s r of a 

group of elements to understand variability of r as well as 

the level of redundancy. To show the distances equal zero, 

which reduces considerably the diversity within the same 

simulations through the elimination of the terminal elements 

in the same branch of a dendrograms with distance equal 

zero.  

 

Modelling is a common tool in areas such as neuroscience 

(Nombela et al., 2011), chemistry education (Pérez and 

Lamoureux, 2007), climate (), several biological disciplines 

(Pianka, 1973;Pielou, 1981;Sneath and Sokal, 1962) such as 

Ecology and population genetic and phenetics, economy (), 

health (). A tendency to organize information to understand 

systems, either natural or artificial, is a human attribute used 

to benefit education (Crute and Myers, 2007), health 

(Bhattacharyya et al., 2014;Nombela et al., 2011), 

agriculture (Dan-baba and Dauran, 2016;Danbaba, 2016; 

Hui-Dong and Ru-Gen, 2008; Shehu and Danbaba, 2018), 

technology (), and economy () among others. Puzzles, e.g. 

Sudoku, are models created for entertainment to develop 

skills for logic and mathematics. 
 

This paper method does not respond to any of the four 

models (I-IV) discussed by Hui-Dong and Ru-Gen (2008), 

Danbaba (2016a, b) and Shehu and Danbaba (2018) who 

used Sudoku as matrix for experimental design for Latin 

square. They used 3x3 block column row for the different 

treatments in agriculture experiments and did ANOVA, 

ANCOVA and regression multiple regression) that is 

different to the models used in this paper.Cluster analysis of 

the scatter plot found, considered by Asuero et al. (2006) the 

first step in all data analysis, suggest that fusion of the 

terminal branches within a dendrogram might be between 

0.00 and 100.00%, after redundancy are deleted (Fig. 9). 

Cook and Weisberg (2009) realised that scatter plot give a 

lot more information than the correlation coefficient (Asuero 

et al., 2006). To understand patterns cluster analysis using 

Euclidean distance is more accurate than scatter plot. 

 
Asuero et al. (2006) realised that, as a summary of data, 

scatter plot matrix can be better than a correlation matrix. 

However, having several (thousands) identical correlation 

coefficient, the addition of cluster analysis to build 

dendrograms, where terminal elements within the same 

terminal branch having zero distance, i.e. one hundred % 

similarity, are fused to obtain the actual diversity of scatter 

plot within that r, helps a lot to understand the variability 

within the same r, e.g. the 5520 cases of r = -0.667, 

representing an overall 

 

 
Figure 8: Dendrogram with Euclidean distances, based on the negative: positive correlation ratio for all groups of Sudoku (A, 

B, C, D) from data in Table 10) 

 
frequency of 12.89%, allow to test level of redundancy to 

answer the question whether or not the same r represent the 

same scatter plot. We call this trimming the branching 

diagram tree, trimming the dendrogram. The branches of the 

dendrogram with distance equal zero is interpreted as 

variables X and Y having exactly the same shape, as has 
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been proposed by Glass and Hopkins (1996). This might be 

test of identical distribution of each pair of data in variables 

X and Y. Redundancy in nature is relatively common, e.g. 

DNAs nucleotide, with four nitrogen bases on three of this 

aminoacids coding an aminoacid represented in the RNA in 

three nucleotide, one of them different, with maximum 

probability of 64 combinations (4
3
); intron (Gilbert, 1978) is 

also functionally monotonous. This has been use in 

molecular biology in cases of gene code, also to compare 

sequences for phylogenetic analysis. To build branching 

diagrams for overall similarity to establish distance 

relationships. Although phylogenetic analysis, where it is 

necessary to polarise data to establish as character, the 

analogy here is to interpret the branching diagrams. 

As far as we know, this is the first paper in which correlation 

and regression analysis are apply to Sudoku as matrices. The 

advantage of this is the uniformity of the matrices, all of 

them with the same structure, a kind of fractal, shows the 

same site to establish relationships among elements of each 

matrix and very relevant for modelling. Polynomial analysis 

performed in the nonet column within the same nonet box 

might show SCCP higher than any lineal model but is not 

part of the objective of this paper. This analysis might does 

not represent anything because any Sudoku performed can 

be transformed in easy, middle or very hard to solve. The 

only thing that is needed to do a transformation from easy to 

 

 
Figure 9: Selected dendrograms to compare redundancy (zero distance within terminal elements) by Group (A, B, C, D). For 

-0.933 terminal lines: A) south east and south terminal lines show high level of redundancy; B) the two branches shows high 

level of redundancy, therefore the nine elements will fuse in two; C) all branches present high level of redundancy but lower 
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A
 

D
 

in proportion to previous two, i.e. A and B, and D) low level of redundancy. Column -0.800 values are mentions as -0.800A to 

-0.800D, and so forth. 
 

 
Figure 10: Percentage of remaining’s SCCP by group after pruning the dendrograms 

 

hard to solve is the distribution of the filled grid in the 

puzzle, therefore, what is relevant is the matrix to build up. 
 

5. Conclusions 
 

In conclusion, the 42826 SCCP belong to 32 regression 

models from the 27402 Sudoku grids. Here we hypothesise 

that 32 models of regression is the maximum number of 

models (or very close to it) to be found in Felgenhauer and 

Jarvis (2005) and Russell and Jarvis (2006) maximum 

number of Sudoku. Another hypothesis is that negative: 

positive correlation ratio reported here is very close to the 

real in all possible Sudoku. Overall negative: positive 

correlation ratios were 1.00: 0.16 and the explanation is that 

Sudoku favoured negative correlation because larger and 

smaller pairs integer can perfectly match but it is impossible 

to perfectly match larger integers. None of the algorithms 

satisfy having all SCCP per Sudoku, the most inclusive one 

is the one use for Group A. However, the one for Group B is 

the less inclusive which lack all the SCCP but 18 and 9. 

Level of association of r for each of the two variables and 

scatter plot help when measuring limited number correlation 

and regression but not if there are huge amount in a complex 

system like Sudoku matrices where cluster analysis provide 

wider overview because redundancy within the same r can 

be reduce trimming the dendrogram and then reflex the real 

diversity of r and show a reduction between 0.00 and 

98.20%. 
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