
International Journal of Science and Research (IJSR) 
ISSN: 2319-7064 

ResearchGate Impact Factor (2018): 0.28 | SJIF (2018): 7.426 

Volume 8 Issue 9, September 2019 

www.ijsr.net 
Licensed Under Creative Commons Attribution CC BY 

Stellar Distance and Velocity (II) 
 

Milos Cojanovic 

 
Independent Scholar Montreal, Canada Email: cojmilmo[at]gmail.com 

September 3, 2019 

 

 

Abstract: In this paper we will point out the systematic error, which is made using the parallax in determining the stellar distance. 

Instead of this method, we are proposing three methods that give more precise results in calculating the distance. In the first method we 

will use two consecutive parallaxes instead of one, which will allow us to determine the distance of the stars with negative parallaxes. In 

the second one we will present a method by which it is possible to measure a true parallax. The third method is already presented in [1] 

and here we will consider only one special case when the velocity of a star is calculated relative to the sun. We tested the methods using 

data obtained from the Gaia’s catalogs [2]. 
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1. Introduction 
 

Stellar parallax is defined as the apparent change in angular 

position of a particular star against more distant background 

stars using two points in the earth’s orbit around the sun as 

the baseline. The stellar parallax obtained in this way can be 

called ”observed stellar parallax”. It is assumed that the 

position of the observed star within a period of six months is 

fixed regarding to the sun. Therefore, the parallax is caused 

only by the movement of the earth about the sun Figure (1). 

 

 
Figure 1: A generally accepted viewpoint according to 

which the position of the star regarding the sun remains 

unchanged for six months. 

 

The reason why it is usually assumed that a star position 

remains fixed relative to the sun, is that the star is so far 

away thus a change in its position does not significantly 

affect the measurement of parallax. Which is not true. In 

some cases, the change in the position of the star in relation 

to the sun affects the parallax as much as the change in the 

position of the earth. Let us consider now, the situation 

given in Figure (2). Suppose that the star (Z) moves in the 

direction of AB. 

 

 
Figure 2: A star is changing its position regarding the sun 

 

Unlike the situation shown in Figure (1), the position of a 

star has been changed from the point Z to the point Z’(Z’’). 

 

Let AZ, AP and AP’ are defined as follows: 

1) AZ = true distance between the Earth and a star at some 

moment (t0) 

2) AP = distance derived from the parallax γ’ six months 

later (parallax > 0). 

3) AP’ = distance derived from the parallax γ’’ six months 

later (parallax < 0). 

 R =AU= 149597870.7 [km] 

 year sec =365.25*24*3600 [sec] 

 

If (Π − (α + β) > 0) then we will have the following 

definitions and equations: 
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If (Π - (α + β) < 0) then we will have following equations: 

 
The Equation (9) can be written in a different way: 

 
where ∆ux denotes star velocity in the direction AB. 

 

For example, when in Equation (21) we substitute ∆ux for 

(10) it follows that calculated distance d is about times 

greater than true distance dA or in case when we substitute 

∆ux for (−10) we’ve got that calculated distance d is about 

0.65 times less than true distance dA. 

 

By analyzing the Equation (9) it follows that there are four 

possibilities: 

1) if (l = 0) ⇒ (d = dA) (distance d is equal to the true 

distance dA) 

2) if (l > 2R) ⇒ (α + β > Π) ⇒ (γ’ = Π − (α + β) < 0) ⇒ 

(derived distance d is negative) 

3) if (0 < l < 2R) ⇒ derived distance d is greater than the 

true distance dA 

4) if (l < 0) ⇒ derived distance d is less than the true 

distance dA 

From the Equation (21) it follows that the error we make by 

calculating the distance d does not depend only on the true 

distance dA but also from the relative velocity ∆u at which 

the star moves in relation to the sun (actually, mostly due to 

its component ∆ux, since the other two components ∆uy and 

∆uy are left out from consideration)). The best result in 

calculating the distance we have in the case when the ∆ux = 

0, in other words when the diameter AB is the perpendicular 

to the projection of the velocity ∆u regarding the ecliptic 

plane (Oxy). But if the velocity ∆u is known, it implies that 

in addition to knowing a proper motion, it must also be 

known a distance dA, what we are actually looking for. 

On the basis of these analyzes, it can be concluded that the 

use of observed parallax in determining the stellar distances 

should be used with great caution. 

 

2. Finding stellar distance by measuring two 

consecutive parallax angles (2CP) 
 

In the previous section, it has been proved that by applying 

the parallax method in the finding of the distance we make a 

certain systematic error. In this section we are presenting a 

method in which two successive parallax measurements are 

used in determining the distance. In this case there are also 

some systematic errors, but they are far less compared to the 

standard parallax method. 

 

We are assuming that star is moving uniformly by velocity 

∆u = [∆ux, ∆uy, ∆uz] regarding the sun. Its component noted 

by ∆ux is parallel to the arbitrarily chosen diameter AB 

Figure (3). 

 
Figure 3: Determining the distance by measuring two 

successive parallax angles 

 

At a some moment t0 the position of the Earth is indicated by 

the point B and the position of a star is shown by the point 

Z0 = (λ1, β1). After six (eighteen, thirty, ..) months later Earth 

will reach the point A and star will reach the point Z1 = (λ, 

β). And again, six (eighteen, thirty, ..) months later Earth 

will reach the point B and star will reach the point Z2 = (λ2, 

β2). The first component denotes ecliptic longitude and the 

second denotes ecliptic latitude of the star. We will now 

assume that direction AB approximately coincides with the 

star’s ecliptic longitude λ1. Latitudes with negative values 

will be treated as having positive values. 

 

Referring to Figure (3) we have the following relations and 

equations:  
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If we denote B by B(-R; 0) instead of B(R; 0) and denote A 

by A(R; 0) instead of A(-R; 0) Figure (3), we get the same 

result as in Equation (40) but with opposite sign. Equation 

(40) can be written as follows: 

 
By using this method we also made several systematic 

errors. First, components uy and uz were left out from 

calculations. This means that the actual positions of the star 

marked by Z1, Z2 are respectively replaced by S1, S2. Then, 

the time it takes for the star to move from point Z0 to point 

Z1 and from point Z1 to point Z2 is not equal to ∆t. 

 

Referring to Figure (3) we have following definitions and 

equations: 

 

 

 
 

It is obvious that the point S2 is closer to the point Z2, the 

more accurate the result will be. For a given vector ∆u, the 

angle δ that lies between the ecliptic plane (Oxy) and the 

vector ∆u is fixed. Therefore, it follows from the Equation 

(49) that the S2Z2 has a minimum length if θ = 0, in other 

words when the parallax angle has approximately the 

maximum value. 

 

The advantage of this method is that it is relatively easy to 

use, also the measurements can be performed over a period 

of time. In this way, the parallax angles are increasing, but 

the drawback is that systematic errors are also accumulating. 

 

Obviously, we did not directly use the parallax angle, but we 

associated the method name with the parallax angle 

primarily to make this method easier to distinguish from 

other methods. 

 

Now we will present two methods that do not have 

systematic errors. 

 

3. Measuring a true stellar parallax 
 

We are assuming that all the positions and angles are 

referred to the International Celestial Reference Frame 

(currently ICRF3), extragalactic reference frame of the ICRS 

(the International Celestial Reference Frame). The ICRF 

creates a quasi-inertial frame of reference centered at the 

barycenter of the Solar System, whose axes are defined by 

the measured positions of extragalactic sources (mainly 

quasars)[3]. For simplicity, the coordinate system will be 

marked by (K). 

 

Our idea is very simple. Instead of having two 

measurements from a single location within six months, we 

will simultaneously perform two measurements from two 

different locations. It would practically mean that there 

should be two satellites that would move in the vicinity of 

the two planets from the solar system. In addition, each 

satellite should have one clock, so both clocks show the 
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same time. We will not deal with further technical details, 

except that we will conclude that such an experiment in view 

of the level reached by the current technology is possible. 

 
Figure 4: The point A denotes the position of the first and 

the point B denotes position of the second satellite at the 

some instant t 

 

It is assumed that during the measurement we made random 

errors, and hence the star position at the instant t is shown by 

two different points marked by ZA and ZA. 

 

Referring to Figure (4) we can define the following 

parameters: 

 d - distance between two satellites at the some instant t 

 dA - distance between the first satellite and a star 

 dB - distance between the second satellite and a star 

 a = [ax, ay, az] - unit vector determined by the positions of 

the first satellite and a star regarding the (K) 

 b = [bx, by, bz] - unit vector determined by the positions of 

the second satellite and a star regarding the (K) 

 

 

 
Now we can construct a triangle Δ ABZ Figure (5) whose 

one side is equal to d, and has two angles of α and β. If α + β 

≥ Π then it is obvious that the triangle Δ ABZ cannot be 

constructed. The reason why this could happen was because 

a random or systematic error has been made or the object is 

too far away. 

 
Figure 5: The two satellites and a star are forming triangle 

ΔABZ 

Referring to Figure (5) we have following equations: 

 
Referring to Figure (4) it follows that 

 
if (l > L) where L denotes some predetermined positive 

number, we will say that the experiment failed. 

 
Otherwise we can define a point Z in the following way: 

Suppose we performed N such experiments Figure (6). Let ti 

denote the time and di denotes the distance between the sun 

and the star in the i
th

 experiment. 

 
Figure 6: Repeating the same procedure it is possible to 

determine a trajectory of the star then we can define τi as the 

time when the light is emitted from the star in this way. 
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Then we can define τi as the time when the light is emitted 

from the star in this way. 

 
where c as usual represents constant speed of the light 

 

Then we have the following equations: 

 

 
 

The average velocity ∆ui of a star relative to sun from point 

Zi−1 to point Zi can be defined as 

 
In this way we can determine a trajectory Figure (6) of the 

star and its velocity relative to the sun. 

 

The proposed experiment is theoretically possible, but the 

question is whether it will ever be realized. Therefore, in the 

next section, we will briefly and as simple as possible 

describe the method already presented in [1]. Some of the 

formulas will be given in a different form. 

 

4. Determining the stellar distance and 

velocity (3P) 
 

In this case, instead of two measurements it is necessary to 

make three measurements. We assume that a star is moving 

with a uniform, rectilinear space motion regarding the sun. 

 

 
Figure 7: Points A, B, C do not lie on the same line. There 

is one nontrivial solution. 

 

The following fields Figure (7) were obtained by direct 

measurements: 

 A = (Ax, Ay, Az ) - denotes the position of the Earth 

(satellite) at the time (t0) 

 aˆ = [ax, ay, az] - denotes the unit vector determined by the 

point A and position of the star (Z0) 

 B = (Bx, By, Bz ) - denotes the position of the Earth 

(satellite) at the time (t1) 

 bˆ = [bx, by, bz] - denotes the unit vector determined by the 

point B and position of the star (Z1) 

 C = (Cx, Cy, Cz) - denotes the position of the Earth 

(satellite) at the time (t2) 

 cˆ = [cx, cy, cz] - denotes the unit vector determined by the 

point C and position of the star (Z2) 

 

The time interval between the measurements is arbitrary. 

Knowing all of the above fields we are able to calculate the 

following values: 

 

 
 

 
 

if we define k as 

 
 

then we have that 

 
 

We can define matrices D; D0; D1; D2 in following way: 

 

 

 

 
 

Now we are able to calculate the distances d0, d1, d2: 
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where 

 d0 - denotes distance between the Earth (satellite) and a 

star at the time (t0) 

 d1 - denotes distance between the Earth (satellite) and a 

star at the time (t1) 

 d2 - denotes distance between the Earth (satellite) and a 

star at the time (t2) 

 ∆τ2 denotes the time it takes for the star to move from 

point Z0 to point Z2 

 ∆u - denotes relative velocity of the star regarding the sun 

 

In this way, we have determined the distance and the 

velocity of the star relative to the solar system. 

 

Now we will discuss the situation shown in Figure (8), when 

the points A, B, C are collinear and the observer moves 

uniformly by velocity v. 

 
Figure 8: The observer moves uniformly by velocity v from 

the point A to the points B and C respectively. There is only 

a trivial solution. 

 

Referring to Figure (8) we have the following equations: 

 

 
 

 
 

In the same way we can get that 

 

Combining these equations with (74) and (75) it follows 

that: 

 

 

 
 

 

Which leads us to the conclusion that in this case we would 

have only trivial solutions (d1 = d2 = d3 = 0). We have 

already assumed that the observed object (star) moves 

uniformly and if the observer also moves uniformly, which 

can be said in the following way, if the observed object 

moves uniformly with respect to the observer then the 

observer is unable to determine the distance at which the 

observed object is located. 

 

We will now consider the situation shown in Figure (9). It is 

obvious that points A, B, C are collinear. But if we define a 

velocity v in the following way: 

 
Which leads us to the conclusion that observer is not moving 

uniformly, because velocity v changes its direction. 

 
Figure 9: Points A, B, C are collinear, but still there is a 

nontrivial solution 
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Therefore, equations (82), (83) and (84) have non-trivial 

solutions. 

 

5. Testing the proposed methods using data 

obtained from Gaia’s catalogs DR1 and 

DR2 
 

Input data are obtained from the Gaia’s catalogs [2] (option 

”Search”). The stars are chosen at random. We can directly 

obtain the following information: 

 RA2015 - Barycentric right ascension of the source in 

ICRS at the reference epoch J2015.0 

 DEC2015 - Barycentric declination of the source in ICRS 

at the reference epoch J2015.0 

 RA2015.5 - Barycentric right ascension of the source in 

ICRS at the reference epoch J2015.5 

 DEC2015.5 - Barycentric declination of the source in 

ICRS at the reference epoch J2015.5 

 PRX.2015.5 - Absolute stellar parallax of the source at the 

reference epoch J2015 

 PM.RA - Proper motion in right ascension direction, 

J2015 epoch 

 PM.DEC - Proper motion (Declination) J2015.5 epoch 

 

From the obtained data we can derive a right ascension 

RA2016 and a declination DEC2016 of a star at the 

reference epoch J 2016. 

 
All these coordinates are given with respect to the equatorial 

coordinate system. In order to apply Equation (41), it is 

necessary to transform these coordinates into ecliptic 

coordinate system (K). The transformation matrix from the 

equatorial to the ecliptic coordinate system is given in [1]. 

 

Mow we are now able to find the distance and transverse 

velocity of the star relative to the sun. 

 

Distance(2CP ) - Derived from the Equation (41) 

 
Where PM.LONG and PM.LAT denote components for 

proper motion of the star in the ecliptic coordinate system 

(K). 

 

The results are summarized in the two following tables, 

which are copied from [1], except for the last three rows. 

 

Table 1: Distance between the Earth and the star and star velocity calculated on the basis of the data obtained from the Gaia’s 

catalogs 
Gaia source ID 1996596911406176000 1267906854386665088 219999464832627584 932222445438498944 3471190026007380992 

RA2015 [degrees] 345.2287148122942 225.83211458394337 57.64076463233877 124.98562499895499 187.33090960579008 

DEC2015 [degrees] 54.38920810592237 25.42448994720175 36.11354636758435 50.884152757844795 -30.842056520510575 

RA2015.5 [degrees] 345.2286881349424 225.83212885046885 57.640787372575275 124.98564294506525 187.33095326939153 

DEC2015.5 [degrees] 54.38919072361569 25.424567002148986 36.11352384195696 50.88412887441873 -30.842103480719885 

Parallax[mas] 38.45223658078517 154.92079559457247 -0.1736208834797856 3.825486423654411 24.626355359460785 

PM(RA) [mas/year] -110.82924669719277 87.72181780153205 148.0180947897536 81.4438996869589 269.2027204879181 

PM(DEC) [mas/year] -125.75137410621457 559.2198769511647 -162.08048821185827 -172.20093572981995 -337.8374762654241 

Distance(PRX) [km] 8.0247 E14 1.991777 E14 - 8.0661 E15 1.252998 E15 

Distance(3P ) [km] 2.4297 E16 1.8591 E16 4.664 E15 3.5331 E17 1.516 E17 

Distance(2CP ) [km] 8.932 E16 3.538 E16 9.833 E15 2.484 E17 1.1 E17 

∆ux(2CP ) [km/sec] -2276.67 -666.83 163.94 4735.22 1416.4 

∆uy (2CP ) [km/sec] -328.02 3004.14 -288.21 -5515.41 7174.67 
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Table 2: Distance between the Earth and the star and star velocity calculated on the basis of the data obtained from the Gaia’s 

catalogs 
Gaia source ID 3968823147582581504 3506524893749579648 2392703946771797248 1854353916756790400 3945681073517688960 

RA2015 [degrees] 164.37525525103945 200.09638529784812 350.6790229293687 321.88591137228934 185.63609385569734 

DEC2015 [degrees] 13.653681201911555 -20.06343186628493 -19.691300195639307 34.0238623055378 16.357596564626736 

RA2015.5 [degrees] 164.37528560226255 200.09640104426754 350.67898899365645 321.8858646334176 185.63607166653534 

DEC2015.5 [degrees] 13.653657150053572 -20.063447680691795 -19.6913255777869 34.02383684263199 16.3575826008146 

Parallax[mas] 20.911752813322053 11.496169556523695 23.25135907901302 38.45223658078517 15.40129228431169 

PM(RA) [mas/year] 211.58298658446174 105.17501228068048 -229.9247639971531 -280.0377248573189 -153.87591844804413 

PM(DEC) [mas/year] -172.99188421088598 -113.83221442757147 -183.05964366990693 -182.44201795818088 -100.88155554235291 

Distance(PRX) [km] 1.47557 E15 2.684 E15 1.327 E15 8.0247 E14 2.0035186 E15 

Distance(3P ) [km] 1.06517 E17 5.857 E16 1.3055 E17 2.660 E16 2.994104 E18 

Distance((2CP )) [km] 1.071 E17 9.456 E16 2.014 E17 6.7924 E16 6.613589 E16 

∆ux(2CP ) [km/sec] 4309.64 699.89 -4056.81 -3465.84 -988.09 

∆uy (2CP ) [km/sec] -1284.22 2140.19 8142.27 -389.52 -1580.73 

 

From the data presented in Table (1) and Table (2), we can 

conclude that there are huge differences between the results 

obtained by different methods. It can also be observed that 

the results obtained by the parallax method are quite 

different compared to the other two methods. The following 

table shows the data for cases where parallax has a large 

negative value or is very close to zero. 

 

Table 3: Distances between the Earth and some stars with negative or very small parallaxes 
Gaia source ID 4062375820315455104 1820917428872070400 4268038405111900160 2183214172431040384 4079164984890216448 

RA2015 [degrees] 269.6730431886717 296.2907746753095 287.5377088230294 308.70236144293267 279.96399315473826 

DEC2015 [degrees] -28.972101813547678 16.947768042205972 2.2771464168140048 53.63920570113808 -22.817303658487507 

RA2015.5 [degrees] 269.6732013722213 296.2907040973579 287.5378054418249 308.70236161991096 279.96399432106153 

DEC2015.5 [degrees] -28.97209003428289 16.94766502076807 2.2771272336601984 53.639205662074886 -22.817303631496998 

Parallax[mas] -630.801289322115 -744.21514648868885 -452.15706867060175 -0.004070265025264887 0.03320771710519638 

PM(RA) [mas/year] 757.5128164066781 125.69240316245498 47.60957378935429 -1.4155986603218278 25.66026691924152 

PM(DEC) [mas/year] -566.5674247635498 39.2940055799761 23.943751870781398 -0.6699908476680323 20.000714576902016 

Distance(PRX) [km] - - - - 9.292E17 

Distance(3P ) [km] 3.80 E13 2.033 E16 9.88 E13 1.37 E17 9.128 E14 

Distance((2CP )) [km] 1.50 E14 1.20 E14 2.0846 E14 1.03 E17 4.192 E15 

∆ux(2CP ) [km/sec] 17.44 2.42 1.61 -23.95 14.91 

∆uy (2CP ) [km/sec] 13.15 0.19 0.56 6.37 -14.20 

 

From the results shown in Table (3) we can make conclusion 

that some of the stars with large negative or very small 

parallaxes are relatively close to the solar system. Which 

only confirms our assumption that the distance cannot be 

determined from the parallax angle. 

 

6. Conclusion 
 

In fact, we will not make any definitive conclusions 

regarding the proposed methods. They need to be further 

tested with a far greater number of samples. Only in this way 

will we be able to detect any errors in the proposed 

procedures and input data. Then we will be able to make 

comparisons between the results and make an assessment of 

their accuracy. 
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