
International Journal of Science and Research (IJSR)
ISSN: 2319-7064

ResearchGate Impact Factor (2018): 0.28 | SJIF (2018): 7.426

Volume 8 Issue 9, September 2019

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

An Improved Scheduling Technique based on

Containers

Naina Solanki

Assistant Professor in Computer Science and Engineering Department, Sri Satya Sai University of Technology & Medical Science, Sehore,

Madhya Pradesh, India

Abstract: In hadoop, job scheduling is an independent module so that users can design or configure their own job scheduler based on

their actual application requirements; thereby meet their specific business needs. Currently, hadoop has three schedulers: first is FIFO,

Fair scheduler and Capacity Scheduler, all the schedulers can helps in scheduling the resources among different computers. All the

three schedulers cannot fully support data locality due to which the performance is affected. In this paper, we took the concept of

resource-prefetching into consideration, and proposed a job scheduling algorithm based on data locality. By which the PRISM

scheduler will perform much better because along with data locality we also focus on containers by which we can schedule the

containers among different map-reduce task.

Keywords: Hadoop; scheduling; data locality; resources-prefetch, containers

1. Introduction

With the popularizing of Internet technology, whether it is

business or personal generated data are in the rapid growth.

Researches aim at how to effective and efficient mining

useful knowledge from big-data to satisfied different

business requirements had made a lot of achievements. The

advent of the era of big-data, are making hadoop and Map-

Reduce processing framework becoming increasingly

popular, many companies and researchers are keen to study

hadoop to meet their specific business needs. As one of the

core technologies of hadoop, Map-Reduce job processing

framework and job scheduling algorithm play a vital role in

the overall performance of hadoop. In the dynamic task

scheduling and resources allocation policies of hadoop, the

input data will be cut into several pieces to storage on each

node, and each node keep three copies in default. How to

ensure that the data blocks needed is just located in the

compute node within different tasks of a job during

operation, and improve the utilization of system resources

and efficiency of job operation, namely how to ensure good

data locality, has become a hot issue in recent years.

Mapreduce in s open source framework which is develop

and use by goggle for processing large amount of data and

Apache hadoop is also a open source framework for storing

and processing large amount of data, for storage purpose it

uses HDFS and for processing it uses Map reduce. Hadoop

works on cluster which is made by commodity hardware for

storing and processing purpose, many companies uses

Hadoop cluster like Facebook, twitter amazon. In mapreduce

the data are storing as a block in hdfs and mapreduce is work

on two phases mapper and reducer, the mapper works

independently and parallel to achieve parallelisms, at the

map side all the mapper work parallel and send their

intermediate result to reducer which combines all the

intermediate result and generate actual output. In this

process scheduler plays a important role which help us to

avoid sending unnecessary data to reducer. In our paper we

work on data locality by which we can schedule the task

according to the data machine on which machine the data is

stored and it will schedule the task on that machine through

which we can avoid unnecessary data transmission and

reduce network traffic. If the data locality is low then the

network traffic cost is very high because every time we need

to move the data from one node to another node. In existing

Mapreduce technique comes with by default scheduler

which is FIFO(first in first out) ,All the task are schedule on

the basis of their arrival in the pool there is no concept of

priority because if higher priority task in coming we.

Zaharia et al. [5] have developed a delay technique by

which the data locality rate is improved, in which the

scheduler can delay the resource allocation through which it

is easier to seen that what what data resides in the map node

and then its assign a task or launch a task to the map node by

achieving data locality. But its take early time by delaying

allocating resources to achieve a data locality.

1.1 Containers

At the fundamental level, a container is a collection of

physical resources such as RAM, CPU cores, and disks on a

single node. There can be multiple containers on a single

node (or a single large one). Every node in the system is

considered to be composed of multiple containers of

minimum size of memory (e.g., 512 MB or 1 GB) and CPU.

The Application Master can request any container so as to

occupy a multiple of the minimum size. A container thus

represents a resource (memory, CPU) on a single node in a

given cluster. A container is supervised by the Node

Manager and scheduled by the Resource Manager. Each

application starts out as an Application Master, which is

itself a container (often referred to as container 0). Once

started, the Application Master must negotiate with the

Resource Manager for more containers. Container requests

(and releases) can take place in a dynamic fashion at run

time. For instance, a MapReduce job may request a certain

amount of mapper containers; as they finish their tasks, it

may release them and request more reducer containers to be

started.

Paper ID: ART20201257 10.21275/ART20201257 1345

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

ResearchGate Impact Factor (2018): 0.28 | SJIF (2018): 7.426

Volume 8 Issue 9, September 2019

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

1.2 Node Manager

The node manager is an agent which takes care of single

node with in a hadoop cluster. The main duties of node

manager is to keep update resource manager and monitoring

resource usage like memory, CPU usage and its manages by

different YARN applications. On start-up, the Node

Manager registers with the Resource Manager; it then sends

heartbeats with its status and waits for instructions. Its

primary goal is to manage application containers assigned to

it by the Resource Manager. YARN containers are described

by a container launch context (CLC). This record contains

environment variables, dependencies that are stored in

remotely accessible storage, payloads for Node Manager

Services, and the command necessary to create the process.

The authencity of the container is validated after that, the

Node Manager configures the environment variable for the

container, including initializing its monitoring subsystem

with the resource constraints’ specified application. The

Node Manager also kills containers as directed by the

Resource Manager.

1.3 ApplicationMaster

The ApplicationMaster is the process that coordinates an

application’s execution in the cluster. Each application has

its own unique ApplicationMaster, which is tasked with

negotiating resources (containers) from the

ResourceManager and working with the NodeManager(s) to

monitoring and execution of the tasks. The YARN

framework can uses a map-reduce as a generic support ot

him, this design permits building and deploying multiple

distributed applications with the help of other frameworks.

Once the ApplicationMaster is started (as a container), it will

periodically send heartbeats to the ResourceManager to

affirm its health and to update the record of its resource

demands. After building a model of its requirements, the

Application Master encodes its preferences and constraints

in a heartbeat message to the Resource- Manager. In

response, the Application Master will receive a lease on

containers bound to a allocated resources at a particular node

in the cluster. Depending on the containers it receives from

the Resource Manager, the Application Master may update

its execution plan to accommodate the excess or lack of

resources. Container allocation/deallocation can take place

in a dynamic fashion as the application progresses.

1.4 YARN Model

In the earlier versions of HADOOP, each node in the cluster

was statically assigned the running capability of a predefined

number of map slots and a predefined number of reduce

slots. The slots could not be shared between maps and

reduces. The static allocation of map task and reduce task

slot cannot optimised the performance because in the

starting of every task we cannot predict how many map and

reduce task will be sufficient to handle the test or to allocate

the slots. The resource allocation model in YARN addresses

the inefficiencies of static allocations by providing for

greater flexibility. As described previously, resources are

requested in the form of containers, where each container

has a number of no static attributes. YARN currently has

attribute support for memory and CPU. The generalized

attribute model can also support things like bandwidth or

GPUs. In the future resource management model, only a

maximum or a minimum for each attribute are defined, and

the Application Managers can request for containers with

attribute values as multiples of the minimum.

Application Master–Container Manager Communication

At this point, the Resource Manager has handed off control

of assigned Node Managers to the Application Master. The

Application Master will independently contact its assigned

node managers and provide them with a Container Launch

Context that includes environment variables, dependencies

located in remote storage, security tokens, and commands

needed to start the actual process (refer to Figure 4.3). When

the container starts, all data files, executables, and necessary

dependencies are copied to local storage on the node.

Dependencies can potentially be shared between containers

running the application.

Once all containers have started, their status can be checked

by the Application- Master. The ResourceManager is absent

from the application progress and is free to schedule and

monitor other resources. The ResourceManager can direct

the Node Managers to kill containers. Expected kill events

can happen when the ApplicationMaster informs the

Resource Manager of its completion, or the Resource-

Manager Needs nodes for another application, or the

container has exceeded its limits. When a container is killed,

the NodeManager cleans up the local working directory.

When a job is finished, the ApplicationMaster informs the

ResourceManager that the job completed successfully. The

ResourceManager then informs the NodeManager to

aggregate logs and clean up container-specific files. The

NodeManagers are also instructed to kill any remaining

containers (including the ApplicationMaster) if they have

not already exited.

Application Dependencies

Containers have dependencies on files for execution, and

these files are either required at start-up or may be needed

one or more times during application execution. For

example, to launch a simple Java program as a container, we

need a collection of classes and/or a file and potentially

more jar files as dependencies. Rather than forcing every

application for either access the files remotely and manages

all these files by themselves. YARN helps the applications

to localize these files by giving ability of data localization.

 When starting a container, an Application Master can

specify all the files that a container will require and,

Paper ID: ART20201257 10.21275/ART20201257 1346

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

ResearchGate Impact Factor (2018): 0.28 | SJIF (2018): 7.426

Volume 8 Issue 9, September 2019

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

therefore, that should be localized. After the files are

specified the YARN helps in data localization by hiding all

the complication involves in copying, managing and deleting

these files.

2. Background

YARN has a pluggable scheduling component. Depending

on the use case and user needs, administrators may select a

simple FIFO (first in, first out), capacity, or fair share

scheduler. The scheduler class is set in yarn-default.xml.

Information about the currently running scheduler can be

found by opening the Resource Manager web UI.

FIFO Scheduler

The original scheduling algorithm that was integrated within

the Hadoop version 1 JobTracker was called the FIFO

scheduler, meaning “first in, first out.” The FIFO scheduler

is basically a simple “first come, first served” scheduler in

which the Job-Tracker pulls jobs from a work queue, oldest

job first. Typically, FIFO schedules have no sense of job

priority or scope. The FIFO schedule is practical for small

workloads, but is feature-poor and can cause issues when

large shared clusters are used.

Capacity Scheduler

The Capacity scheduler is another pluggable scheduler for

YARN that allows for multiple groups to securely share a

large Hadoop cluster. Developed by the original Hadoop

team at Yahoo!, the Capacity scheduler has successfully

been running many of the largest Hadoop clusters. To use

the Capacity scheduler, an administrator configures one or

more queues with a predetermined fraction of the total slot

(or processor) capacity. This assignment guarantees a

minimum amount of resources for each queue.

The Capacity scheduler permits sharing a cluster while

giving each user or group certain minimum capacity

guarantees. These minimums are not given away in the

absence of demand. Excess capacity is given to the most

starved queues, as assessed by a measure of running or used

capacity divided by the queue capacity. Thus, the fullest

queues as defined by their initial minimum capacity

guarantee get the most needed resources. In the idle capacity

scheduler we can assign a queue definition property by

which we can distribute the resource among the queues.

There are multi running queue in the capacity scheduler we

just assign a percentage of usage of map slots and reduce

slots respectively. All the queue can work under the capacity

limit if the other task is completed or the other queue is

empty then only its uses the whole capacity of resources.

The Capacity schedule supports memory-intensive

applications, so the application can optionally specify higher

memory resource requirements than the default. Using

information from the node Managers, the Capacity scheduler

can then place containers on the best-suited nodes. The

Capacity scheduler works best when the workloads are well

known, which helps in assigning the minimum capacity. For

this scheduler to work most effectively, each queue should

be assigned a minimal capacity that is less than the maximal

expected workload. Within each queue, multiple

applications are scheduled using hierarchical FIFO queues

similar to the approach used with the stand-alone FIFO

scheduler.

Fair Scheduler

Fair scheduler is another pluggable scheduler in hadoop that

provides another sharing of resources between multiple

nodes in a cluster. In fair scheduler all the application can

have an equal distributed resource that means all the

application can have equal number of resources. In the Fair

scheduler model, every application belongs to a queue.

YARN containers are given to the queue with the least

amount of allocated resources. Within the queue, the

application that has the fewest resources is assigned the

container. By default, all users share a single queue, called

“default.” If an application specifically lists a queue in a

container resource request, the request is submitted to that

queue. When the fair scheduler in configure for hadoop then

we first assign the name for the queue in the the task is

arrived and we can distribute equal amount of resources

between the queue. The the task with in the queue can work

as a FIFO policy or in a pre-emptive manner and the task

can equally share the resources. When the more priority task

is assigned in the queue then the fair scheduler can prompt

the task first fairly and gives required resources to it. The

Fair scheduler also applies the notion of pre-emption,

whereby containers can be requested back from the

Application Master. Depending on the configuration and

application design, pre-emption and subsequent assignment

can be either friendly or forceful.

By providing fair sharing, the Fair scheduler allows

minimum shares to be assigned to the queues, which is very

useful for ensuring that certain users, groups, or production

applications always gets sufficient resources. When a queue

contains waiting applications, it gets at least its minimum

share; in contrast, when the queue does not need its full

guaranteed share, the excess is split between other runnings

Applications To avoid a single user flooding the clusters

with hundreds of jobs, the Fair scheduler can limit the

number of running applications per user and per queue

through the configurations file. Using this limit, user

applications will wait in the queue until previously

submitted jobs finish. The YARN Fair scheduler allows

containers to request variable amounts of memory and

schedules based on those requirements. Support for other

resource specifications, such as type of CPU, is under

development. To prevent multiple smaller memory

applications from starving a single large memory

application, a “reserved container” has been introduced. If

an application is given a container that it cannot use

immediately due to a shortage of memory, it can reserve that

container, and no other application can use it until the

container is released. The reserved container will wait until

other local containers are released and then use this

additional capacity (i.e., extra RAM) to complete the job.

One reserved container is allowed per node, and each node

may have only one reserved container. The total reserved

memory can be shown in the Resource Manager UI. A new

feature in the YARN Fair scheduler is support for

hierarchical queues. Queues may now be nested inside other

queues, with each queue splitting the resources allotted to it

among its sub queues in a fair scheduling fashion. One use

of hierarchical queues is to represent organizational

Paper ID: ART20201257 10.21275/ART20201257 1347

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

ResearchGate Impact Factor (2018): 0.28 | SJIF (2018): 7.426

Volume 8 Issue 9, September 2019

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

boundaries and hierarchies. For example, Marketing and

Engineering departments may now arrange a queue structure

to ref lect their own organization. A queue can also be

divided into sub queues by job characteristics, such as short,

medium, and long run times. The Fair scheduler works best

when there is a lot of variability between queues. Unlike

with the Capacity scheduler, all jobs make progress rather

than proceeding in a FIFO fashion in their respective queues.

3. Related Work

Recently the importance of the MapReduce clusters has been

increase rapidly, many number of organization and

institution will uses a MapReduce cluster so the studies of

MapReduce schedulers also increase due to which we can

schedule the task between the cluster. MapReduce clusters

can deal with node failures automatically. If a node fails to

give a heartbeat within a timeout period, a MapReduce

cluster will re-schedule the node’s tasks to different nodes.

By default hadoop follows speculative execution means

when the task execution at any node is slow then we can

launch the task or copy the task to other node also , so the

multiple node will execute the task simultaneously and the

node will give result first it will take and other node

execution is forcefully stopped. Google has announced that

this mechanism can improve a job’s response time by 44%

[1]. The Hadoop scheduler implicitly assumes that the

cluster nodes are homogeneous in nature and tasks can make

progress linearly, but on the basis of this assumptions it is

difficult to speculatively re-execute the task within the

cluster and here the problem appear like a stragglers [9]. To

overcome this limitation of scheduler and make the

speculative execution mechanism effective in heterogeneous

environments, researchers then developed another technique

LATE (Longest Approximate Time to End) scheduler [9]

and SAMR (Self Adaptive Map Reduce Scheduling)

algorithm [10]. Yahoo! developed a multi-queue scheduler

called Capacity Scheduler [11] for Hadoop clusters, where

every queue is guaranteed a fraction of the capacity. In the

capacity scheduler we can assign a queue definition property

by which we can distribute the resource among the queues.

There are multi running queue in the capacity scheduler we

just assign a percentage of usage of map slots and reduce

slots respectively. All the queue can work under the capacity

limit if the other task is completed or the other queue is

empty then only its uses the whole capacity of resources.

The fair scheduler [14] also supports multiple queues (also

called pools) Jobs are organized into pools and resources are

fairly divided between these pools. There are multiple pools

or queue in the cluster which get equal shares of the total

resources. The jobs can be schedule either in FIFO manner

or by fair sharing. In FIFO scheduling the jobs which arrives

first will take all the available resources and after

completion of job it will release the resources. But in the fair

scheduler all the jobs can take equal number on resources

among the queue so all the jobs can executed parally by

taking some resources and waiting for other job to finish and

release the resources. And in Hadoop by default scheduler is

FIFO scheduler in which there is no concept of preemption

and the job which is first in the queue will take all the

resources and after completion release the resources. It is

also an effective way of scheduling resources between

multiple modes in the cluster. [14].

To improve MapReduce based clusters’ data locality,

researchers can studies and developed some other

technologies like prefetching [15] or node status prediction

[8]. The one that is most closely related to our work is the

delay scheduling algorithm [5], which was first developed to

improve the data locality of Hadoop fair scheduler [14].

Some MapReduce applications will comes with deadlines. J.

Polo et al. [12] is developed a scheduler which is focuses on

MapReduce jobs that have soft deadlines. It estimates jobs’

execution times and tries to let jobs satisfy their deadlines by

scheduling resources according to the estimated finishing

times. Kamal Kc et al. [13] created a scheduler that works

for MapRedeuce applications with hard deadlines. It also

estimates the job finishing time according to current

resources in a MapReduce cluster. The difference is if a job

cannot finish before the hard deadline, the scheduler will not

execute the job and will instead inform the user to adjust the

job deadline.

4. Proposed Work

In this paper, we proposed new features through which the

performance of PRISM scheduler will be improved. We

improve the fine grain resource allocation in hadoop 2.0

version along with containers management by which we can

achieve data locality also through which the performance of

the scheduler is better.

References

[1] J. Dean and S. Ghemawat. “MapReduce: Simplified

Data Processing on Large Clusters”. Commun. ACM,

51(1):107–113, 2008.

[2] Apache Hadoop. http://hadoop.apache.org.

[3] Amazon EC2. http://aws.amazon.com/ec2/

[4] M.C. Schatz, “BlastReduce: high performance short

read mapping with MapReduce”.

http://www.cbcb.umd.edu/software/blastreduce/.

[5] M. Zaharia et al. “Delay scheduling: A simple technique

for achieving locality and fairness in cluster

scheduling”. In EuroSys, 2010.

[6] HDFS. http://hadoop.apache.org/hdfs/

[7] M. Zaharia, D. Borthakur, J. S. Sarma, K. Elmeleegy, S.

Shenker, and I. Stoica, “Job scheduling for multi-user

mapreduce clusters,” EECS Department, University of

California, Berkeley, Tech. Rep., Apr 2009.

[8] X. Zhang, Z. Zhong, S. Feng, B. Tu, J. Fan, “Improving

Data Locality of MapReduce by Scheduling in

Homogeneous Computing Environments”, in 9th IEEE

International Symposium on Parallel and Distributed

Processing with Applications (ISPA), pp. 120-126,

2011.

[9] M. Zaharia, A. Konwinski, A.D. Joseph, R. Katz, I.

Stoica, “Improving MapReduce performance in

heterogeneous environments”, in: Proc. 8th USENIX

Symposium on Operating Systems Design and

Implementation, OSDI 2008, San Diego,USA, Dec.

2008.

[10] Q. Chen, D. Zhang, M. Guo, Q. Deng, and S. Guo,

“SAMR: A selfadaptive MapReduce scheduling

Paper ID: ART20201257 10.21275/ART20201257 1348

http://aws.amazon.com/ec2/

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

ResearchGate Impact Factor (2018): 0.28 | SJIF (2018): 7.426

Volume 8 Issue 9, September 2019

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

algorithm in heterogeneous environment”, in 10th IEEE

International Conference on Computer and Information

Technology (CIT’10), pp. 2736–2743, 2010.

[11] Capacity Scheduler

http://hadoop.apache.org/common/docs/r0.19.2/capacity

_scheduler.html

[12] J. Polo, D. Carrera, Y. Becerra, J. Torres, E. Ayguade

and, M. Steinder, and I. Whalley, “Performance-driven

task co-scheduling for mapreduce environments,” in

Network Operations and Management Symposium

(NOMS), 2010 IEEE, 2010, pp. 373 –380.

[13] K. Kc and K. Anyanwu, “Scheduling hadoop jobs to

meet deadlines,” in 2nd IEEE International Conference

on Cloud Computing Technology and Science

(CloudCom), pp. 388 –392, 2010.

[14] Fair Scheduler,

http://hadoop.apache.org/mapreduce/docs/r0.21.0/fair_s

cheduler.html

[15] S. Seo, I. Jang, K. Woo, I. Kim, J.-S. Kim, and S.

Maeng. “HPMR: Prefetching and pre-shuffling in

shared MapReduce computation environment”. In Proc.

CLUSTER’10, pp. 1–8, 2009.

Paper ID: ART20201257 10.21275/ART20201257 1349

http://hadoop.apache.org/mapreduce/docs/r0.21.0/fair_scheduler.html
http://hadoop.apache.org/mapreduce/docs/r0.21.0/fair_scheduler.html

