Evaluation of Material Compatibility Study on Different Material Specimens for Imago & Getter Disinfectants

Imran Memon¹, Tahur Shaikh², Idris Khan³, Surjeet Samanta⁴

IMAGO & GETTER, Technical Team, Mumbai, India

Abstract: The study was aimed to evaluate resistance offered by different disinfectant chemicals on various kinds of materials mostly present in Pharma manufacturing industries, cleanrooms, Healthcare, Institutions etc., simulating performance in potential end use environments. Disinfectant chemicals can include commonly used chemical compound or in combination of two or more compounds that the test material may be expected to come in contact with. Different disinfectants are not compatible with all types of surfaces [2]. The disinfectants must not damage the material to which they are applied to and can cause corrosion or discoloration [6]. Control is important for product safety and cost factor to the end users. The test includes provisions for reporting changes observed in weight, dimensions, appearance and strength properties. Provisions are made for various exposure times and strain conditions. The simple test procedure was developed compared to as described in Chemical Compatibility - ASTM D543 Standard [3].

Keywords: Disinfectant chemicals, Material compatibility, Pharma industries, cleanrooms, Chemical compatibility

1. Introduction

Disinfectants are of great importance for controlling the microbial population in cleanrooms. However, the selection of the most appropriate disinfectants to use is not straightforward. Cleanrooms play an important role in hospitals, from special environments for the preparation of medicines in Pharma companies to providing clean air zones for operations [8]. Cleanrooms are designed with special air filters (high efficiency particulate air) to provide 'clean air', have positive pressure differentials to prevent the ingress of less clean air, and have strict entry and clothing requirements for personnel. Nevertheless cleanroom surfaces can become contaminated with microorganisms, transported in from consumables and equipment or shed from personnel. Surfaces pose a risk if they harbor high numbers of bacteria and fungi as such microorganisms can be readily transferred [1]. Thus, an important part of contamination control within a cleanroom requires the use of cleaning and disinfection agents. The use of hand disinfectants is also part of the process of good contamination control. Disinfectants used on cleanroom surfaces, manufacturing facilities, and for hand sanitization need to be of a high quality and be effective at killing microorganisms. The range and choice of disinfectants can make the selection process difficult. There are several factors to be considered for selection of disinfectants, one of them is the Material compatibility of disinfectant chemicals to be used for disinfection [5].

2. Materials and Methods

Disinfectant

Disinfectant range of Products (Imago & Getter, Mumbai)

Apparatus

Material Specimens typically used are of Stainless steel 316, Epoxy, Glass, PVC, Plastic, Terrazzo tiles, PU (Polyurethane), GI powder coated, Rubber and Fibreglass. Material Specimens size used for testing were disks-plate of 3inch x 3inch in duplicate. Analytical balance (Contech) and Glasswares.

Test Method

All test material specimens were prepared before testing by washing with hot water and dish liquid, followed by cleaning with acetone. Then they are rinsed with distilled water. The specimens were kept for drying at room temperature. All the specimens were weighed and measured prior to contact with the Disinfectant chemicals [8].

The Disinfectant products (from Imago & Getter) were diluted in Deionised water as recommended by the manufacturer or supplier. Depending upon the type of contact anticipated for the test material specimens, the exposure to the disinfectant chemicals was done by immersion; one of the material specimens was dipped in the disinfectant solution & then sealed in a container and left at room temperature. The other specimen i.e. control was kept as it is at room temperature. This technique was applied so that both the material specimens can be easily observed and distinguished. After resting time the specimens are taken out, rinsed with distilled water and air dried. After drying, both the material specimens are removed and evaluated for desired properties such as change in weight, visual appearance or tensile properties vs controls [3]. The most typical physical strength properties evaluated are tensile strength and elongation. This procedure was repeated every day for 15 sequent working days.

3. Results and Discussion

The parameters such as visual appearance and weight were observed and checked for any changes as well as tactile versus control, every day from Day 1 to Day 15. The results of Day 1 and Day 15 for visual observation and change in weight are tabulated as in Table 1 and Table 2 respectively.

Volume 8 Issue 9, September 2019 <u>www.ijsr.net</u> Licensed Under Creative Commons Attribution CC BY

10.21275/ART20201242

International Journal of Science and Research (IJSR) ISSN: 2319-7064 ResearchGate Impact Factor (2018): 0.28 | SJIF (2018): 7.426

	Table 1:	Material compatibility result	t chart ag	ainst di	isinfect	tant pro	oducts	s (Day	1 - V	√isual ol	bservati	on)	
	Image Cotton						Ν	Aaterial	Spec	cimens			
Sl. No.	Disinfectant products	Chemical composition	Dilution	SS 316	Epoxy	Glass	PVC	Plastic	PU	Rubber	GI powder coated	Ceramic tiles	Fibre glass
				Contro	ol								
		-		Α	Α	А	Α	Α	Α	Α	Α	Α	А
				Test									
	I I ID 4014	Blend of Quaternary	0.4%	Α	Α	Α	Α	Α	Α	Α	Α	А	А
1	Imagard ID 401/ Imagard IG PRO 401	Ammonium compounds (DDAC & ADBAC - 16.5% Min.)	0.8%	А	А	А	А	А	А	А	А	А	А
2	Imagard SF Strong	Quaternary Ammonium compound (ADBAC - 5% Min.)	1.0%	А	А	А	А	А	А	А	А	А	А
3	Imagard SF 25	Quaternary Ammonium compound (ADBAC - 3% Min.)	2.5%	А	А	А	А	А	A	А	А	А	А
4	Imagard IL 15	Blend of Quaternary Ammonium compounds (ADEBAC & ADBAC - 4.5% Min.)	1.5%	А	A	A	А	A	A	А	А	А	A
		Blend of Quaternary	1.0%	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α
5	Imagard Biquat	Ammonium compound (DDAC) & Biguanide (PHMB) - 14% min.	1.5%	А	А	А	А	А	А	А	А	А	А
		Combination of 1,6	1.5%	Α	Α	Α	Α	Α	Α	Α	Α	Α	А
6	Imagard Plus	Dihydroxy, 2-5 Dioxahexane, Glutaraldehyde, BKC - 24 %	2.0%	А	А	А	А	А	A	А	А	А	А
		Combination of Hydrogen	10.0%	Α	Α	Α	Α	Α	Α	А	Α	Α	Α
7	Imagard HD	peroxide & Silver nitrate solution - 11% min.	20.0%	А	А	А	А	А	А	А	А	А	А
	Imagard UD	Combination of Hydrogen	0.5%	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α
8	Shield	peroxide, Peracetic acid and Acetic acid - 25% min.	2.5%	А	А	А	А	А	А	А	А	А	А
		Combination of Alkyl	1.0%	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α
9	Imagard IL 92	Dimethyl Ethyl Benzyl Ammonium Chloride, Didecyl Dimethyl Ammonium Chloride and Biguanide: 20%	1.5%	А	А	А	А	А	А	А	А	А	А
10	Imagard AS 10	Chlorhexidine Gluconate & Cetrimide solution - 22.5% min	1.0%	А	А	А	А	А	A	А	А	А	А

 Table 2: Material compatibility result chart against disinfectant products (Day 1 – change in weight)

	Imago Cottor	* · ·						Materia	al Spe	ecimens			
Sl. No.	Disinfectant products	Chemical composition	Dilution	SS 316	Epoxy	Glass	PVC	Plastic	PU	Rubber	GI powder coated	Ceramic tiles	Fibre glass
			(Contro	ol								
		-		NC	NC	NC	NC	NC	NC	NC	NC	NC	NC
				Test									
	Imagard ID 401	Blend of Quaternary Ammonium	0.4%	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC
1	/ Imagard IG PRO 401	compounds (DDAC & ADBAC - 16.5% Min.)	0.8%	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC
2	Imagard SF Strong	Quaternary Ammonium compound (ADBAC - 5% Min.)	1.0%	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC
3	Imagard SF 25	Quaternary Ammonium compound (ADBAC - 3% Min.)	2.5%	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC
4	Imagard IL 15	Blend of Quaternary Ammonium compounds (ADEBAC & ADBAC - 4.5% Min.)	1.5%	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC
		Blend of Quaternary Ammonium	1.0%	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC
5	Imagard Biquat	compound (DDAC) & Biguanide (PHMB) - 14% min.	1.5%	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC
6	Imagard Plus	Combination of 1,6 Dihydroxy, 2-	1.5%	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC
0	illiagaiù Flus	5, Dioxahexane, Glutaraldehyde,	2.0%	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC

Volume 8 Issue 9, September 2019

<u>www.ijsr.net</u>

Licensed Under Creative Commons Attribution CC BY

International Journal of Science and Research (IJSR) ISSN: 2319-7064 ResearchGate Impact Factor (2018): 0.28 | SJIF (2018): 7.426

		BKC - 24 %											
		Combination of Hydrogen	10.0%	NC									
7	Imagard HD	peroxide & Silver nitrate solution - 11% min.	20.0%	NC									
	Imagard HD	Combination of Hydrogen	0.5%	NC									
8	Shield	peroxide, Peracetic acid and Acetic acid - 25% min.	2.5%	NC									
		Combination of Alkyl Dimethyl	1.0%	NC									
9	Imagard IL 92	Ethyl Benzyl Ammonium Chloride, Didecyl Dimethyl Ammonium Chloride and Biguanide: 20%	1.5%	NC									
10	Imagard AS 10	Chlorhexidine Gluconate & Cetrimide solution - 22.5% min	1.0%	NC									

Also the results of Day 15 for visual observation and change in weight are tabulated as in Table 3 and Table 4 respectively.

	Tuble 01	Material compationity result of	uit uguilist	Material Specimens										
Sl. No.	Imago Getter Disinfectant products	Chemical composition	Dilution	SS 316	Epoxy	Glass	PVC	Plastic	PU	Rubber	GI powder coated	Ceramic tiles	Fibre glass	
	Control													
		_		А	Α	Α	А	Α	А	Α	Α	Α	Α	
			Те	est										
	Imagard ID 401	Blend of Quaternary Ammonium	0.4%	А	Α	Α	А	Α	А	Α	Α	Α	Α	
1	/ Imagard IG PRO 401	compounds (DDAC & ADBAC - 16.5% Min.)	0.8%	А	А	В	А	А	А	А	А	А	А	
2	Imagard SF Strong	Quaternary Ammonium compound (ADBAC - 5% Min.)	1.0%	А	А	А	А	А	Α	А	А	А	А	
3	Imagard SF 25	Quaternary Ammonium compound (ADBAC - 3% Min.)	2.5%	А	А	А	А	А	А	А	А	А	А	
4	Imagard IL 15	Blend of Quaternary Ammonium compounds (ADEBAC & ADBAC - 4.5% Min.)	1.5%	A	А	В	А	А	A	А	А	А	А	
		Blend of Quaternary Ammonium	1.0%	Α	Α	Α	А	Α	А	Α	А	Α	Α	
5	Imagard Biquat	compound (DDAC) & Biguanide (PHMB) - 14% min.	1.5%	А	А	В	А	А	А	А	А	А	А	
		Combination of 1,6 Dihydroxy, 2-	1.5%	А	Α	Α	А	Α	А	Α	Α	Α	А	
6	Imagard Plus	5, Dioxahexane, Glutaraldehyde, BKC - 24 %	2.0%	А	А	А	А	А	В	А	А	А	А	
		Combination of Hydrogen	10.0%	Α	В	Α	А	Α	Α	Α	Α	Α	А	
7	Imagard HD	peroxide & Silver nitrate solution - 11% min.	20.0%	В	В	А	А	А	В	В	А	А	А	
	Imagand IID	Combination of Hydrogen	0.5%	А	Α	Α	А	Α	А	Α	Α	Α	А	
8	Shield	peroxide, Peracetic acid and Acetic acid - 25% min.	2.5%	В	В	А	А	А	В	В	А	А	А	
		Combination of Alkyl Dimethyl	1.0%	А	Α	Α	А	Α	Α	Α	Α	Α	Α	
9	Imagard IL 92	Ethyl Benzyl Ammonium Chloride, Didecyl Dimethyl Ammonium Chloride and Biguanide: 20%	1.5%	A	А	В	А	А	A	А	А	А	А	
10	Imagard AS 10	Chlorhexidine Gluconate & Cetrimide solution - 22.5% min	1.0%	A	А	А	А	А	A	А	А	А	А	

Table 3: Material compatibility result chart against disinfectant products (Day 15 – Visual observation)

Evaluation: Visual changes of the materials specimens are documented as Ratings -

Α	No effect – Excellent (Non-critical)
В	Minor effect – Good (Semi-critical): slight corrosion, or discoloration.
С	Moderate effect - Fair (Semi-critical): not recommended for continuous use. Softening or loss of strength, and swelling may occur.
D	Severe effect – (Critical): Not recommended for any use.

Volume 8 Issue 9, September 2019

<u>www.ijsr.net</u>

Licensed Under Creative Commons Attribution CC BY

International Journal of Science and Research (IJSR) ISSN: 2319-7064 ResearchGate Impact Factor (2018): 0.28 | SJIF (2018): 7.426

	1401	e 4. Material compatibility lesa		game	or utsill	rectain	prou		10	·	ige in we	igitt)	
	Imago						1	Materi	ai Sp	ecimens	~~~		
SI.	Getter	Chemical composition	Dilution	SS							GI	Ceramic	Fibre
No.	Disinfectant	enemiear composition	Dilution	316	Epoxy	Glass	PVC	Plastic	PU	Rubber	powder	tiles	alass
	products			510							coated	tiles	grass
	Control												
		-		NC	NC	NC	NC	NC	NC	NC	NC	NC	NC
]	Test								
	Imagard ID		0.4%	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC
	401 /	Blend of Quaternary Ammonium											
1	Imagard IG	compounds (DDAC & ADBAC -	0.8%	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC
	PRO 401	16.5% Min.)											
_	Imagard SF	Ouaternary Ammonium											
2	Strong	compound (ADBAC - 5% Min.)	1.0%	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC
	Imagard SF	Quaternary Ammonium								-			
3	25	compound (ADBAC - 3% Min.)	2.5%	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC
		Blend of Quaternary Ammonium											
4	Imagard IL	compounds (ADFBAC &	1.5%	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC
-	15	ADBAC = 4.5% Min)	1.570	ne	ne	ne	ne	ne	ne	ne	ne	ne	ne
		Blend of Quaternary Ammonium	1.0%	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC
5	Imagard	compound (DDAC) & Biguanida	1.070	ne	ne	ne	ne	ne	ne	ne	ne	ne	ne
5	Biquat	(PHMR) 14% min	1.5%	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC
		(THVID) - 1470 IIIII.	1 504	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC
6	Imagard	2 5 Diovahovano	1.3%	NC	NC	NC	NC	nc	NC	nc	NC	INC.	NC
0	Plus	2-5 DIOXallexalle,	2.0%	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC
		Glutaraldellyde, BKC - 24 %	10.00/	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC
-	Imagard	Combination of Hydrogen	10.0%	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC
/	HĎ	peroxide & Silver nitrate solution	20.0%	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC
		- 11% min.	0.50/	NG	NG	NG	NG	NG	NG	NG	NG	NG	NG
0	Imagard	Combination of Hydrogen	0.5%	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC
8	HD Shield	peroxide, Peracetic acid and	2.5%	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC
		Acetic acid - 25% min.											
		Combination of Alkyl Dimethyl	1.0%	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC
_	Imagard IL	Ethyl Benzyl Ammonium											
9	92	Chloride, Didecyl Dimethyl	1 5%	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC
	2	Ammonium Chloride and	1.570	110	110	110	110	110	110	ne	ne	ne	110
		Biguanide: 20%											
10	Imagard AS	Chlorhexidine Gluconate &	1.0%	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC
10	10	Cetrimide solution- 22.5% min	1.070	ne	ne	ne	ne	ne	ne	ne	ne	ne	ne

Table 4: Material compatibility result chart against disinfectant products (Day 15 - Change in weight)

Acceptable change of weight for material specimens during the test

Starting weight	Change of weight
$\geq 1 \text{ g}$	< 0.5%
< 1 g	< 1%
< 0.5 g	< 2.5%
< 0.2 g	< 5%

NC – No change

Critical / Semi-critical / Non-critical

The evaluation <u>non-critical</u> occurs when the change of weight is in an acceptable range.

The results obtained in this material compatibility study of the disinfectants from Imago & Getter showed Excellent and Good results after 15 days. Report data includes visual evidence of decomposition, swelling, clouding, crazing, cracking, and/or change in physical properties such as tensile strength and elongation also change in weight was observed. Imagard ID-401 / Imagard IG PRO 401 Imagard SF 25, Imagard Biquat, Imagard Plus, Imagard HD, Imagard HD Shield, Imagard IL 92 and Imagard AS 10 at low concentration shows excellent ratings against all material specimens. Hence they can be declared as Non-critical for use. Good rating was observed at high concentration for Imagard SF Strong, Imagard IL 15 and Imagard HD against Glass & PU specimen, Whereas at high concentration, Good rating was shown by Imagard ID-401 / Imagard IG PRO 401, Imagard Biquat and Imagard IL 92 against Glass specimen, Imagard HD and Imagard HD Shield against SS 316, Epoxy, PU and Rubber. Therefore these can be declared as Semi-critical for use. No change in weight was observed in all material specimens from Day 1 to Day 15 for all disinfectants.

4. Conclusion

Disinfectants are of great importance for controlling the microbial population in cleanrooms. However, the selection of the most appropriate disinfectants to use is not straightforward [7]. This study has examined the material compatibility as key criteria for the selection of disinfectants. Whilst selection is important, disinfectants must be applied and used appropriately. Given that the objective of the disinfectant is to kill microorganisms and to reduce the surface bioburden then the real test of whether a disinfectant is efficacious, is with the numbers of microorganisms present. . Any disinfectant will only be effective if it is used at the correct concentration and by mopping the disinfectant onto the compatible surface. This study and result table provides a quick guidance and reference for end users for the selection of suitable Imago & Getter disinfectants as per their material of construction of the surfaces to be disinfected at particular concentration. The

Volume 8 Issue 9, September 2019 www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

viable microbiological environmental monitoring can be done by using surface techniques like contact plates and swabs. Further evidence as to how effective a disinfectant is can be shown with the types of microorganisms recovered (the 'microflora'). Finally, the selection of disinfectants should not be thought of as a one-off decision; it must remain part of the on-going quality reviews undertaken by clean room manager.

References

- A. Russell and G. McDonnell, (1999), "Antiseptics and Disinfectants: Activity, Action and Resistance", Clinical Microbiology Reviews, pp147–179.
- [2] Anon, (2001), "Bacteriotherapy: the time has come", *British Medical Journal*, pp353–354.
- [3] ASTM D543 (2006) Standard Practices for Evaluating the Resistance of Plastics to Chemical Reagents.
- [4] M. Rose, et.al., (2009), The need for chemical compatibility studies of subcutaneous medication combinations used in palliative care. *Journal of Pain and Pallative Care Pharmacotherapy*, 23(3): 223-230.
- [5] P. Vina, S. Rubio, and T. Sandle, "Selection and Validation of Disinfectants", in Saghee, M.R., T. Sandle, and E.C. Tidswell, (2011), (Eds.) Microbiology and Sterility Assurance in Pharmaceuticals and Medical Devices, *New Delhi: Business Horizons*, pp219-236.
- [6] Pharmig. (2006), "A Guide to Disinfectants and their Use in the Pharmaceutical Industry", Pharmaceutical Microbiology Interest Group, England.
- [7] S. Block, (1977), Disinfection, Sterilisation and Preservation, Third Edition, Lea and Febiger, Philadelphia.
- [8] T. Sandle, (2003): 'Selection and use of cleaning and disinfection agents in pharmaceutical manufacturing' in Hodges, N and Hanlon, G., Industrial Pharmaceutical Microbiology Standards and Controls, Euromed Communications, England.

10.21275/ART20201242