
International Journal of Science and Research (IJSR)
ISSN: 2319-7064

ResearchGate Impact Factor (2018): 0.28 | SJIF (2018): 7.426

Volume 8 Issue 9, September 2019

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

Heart Disease Prediction: Artificial Intelligence /

Machine Learning

Dr Yasin Bouanani

Abstract: In this article I will discuss the use of k-Nearest Neighbors (k-NN) algorithms for prediction of heart disease using a medical

data set and which will constitute our basic essential data for machine learning in this study. In order to make the machine learn to be

able to determine whether the patient will be prone to a heart disease or not.

Keywords: Machine learning, Artificial Intelligence, Heart Disease, Prediction algorithms, K-NN, SVM KERNEL, Scikit-Learn

1. Introduction

K-NN is a very simple algorithm, easy to understand,

versatile and one of the most advanced in machine learning.

KNN is used in various applications such as finance, health,

political science, handwriting detection, image recognition

and video recognition.

In this article we will discuss the prediction of cardiac

attacks with the Scikit Learn library which is a Python free

library for machine learning, this library that includes

functions is used for different algorithms such as Simple

Linear Regresions, Multiple, Random Forets, knn, svm

kernel, svm linear and Decision tree. Also we will use the

Python language because this library is written in python

which will allow us a performance optimization.

In data mining, classification is a supervised learning that

can be used to design models describing important data

classes.

In our case, KNN is a simple classifier, in which samples are

ranked according to the class of their nearest neighbor.

Medical databases are large volumes. If the dataset contains

redundant and irrelevant attributes, the classification may

produce less accurate results. Heart disease is the leading

cause of death in some countries.

Therefore, it is necessary to define a decision support system

that helps clinicians decide to take precautionary measures.

In this article, I propose the K-NN algorithm for efficient

classification; this algorithm will improve the accuracy of

diagnosis of heart disease. The application of this K-NN

algorithm will be done on a dataset recovered and offered

free of charge by the Kaggle website.

K-NN is one of the simplest of all supervised machine

learning algorithms. It simply calculates the distance of a

new data point to all other learning data points. In this article

we will discuss some essential points and we will rely

mainly on the application of this algorithm on the given

game in a practical way to provide an effective solution for

the prediction of heart disease that some countries are very

seriously affected.

2. Theory

The KNN algorithm that we will use in this article, simply

calculates the distance of a new data point to all other

learning data points. The distance can be of any type, for

example Euclidean or Manhattan, etc. It then selects the

nearest K data points, K being any integer. Finally, it assigns

the data point to the class to which most of the K data points

belong.

Let's see this algorithm in action using a simple example.

Suppose you have a dataset with two variables that, when

plotted, looks like the following figure.

Figure 1: Two-variable data set

Our task is to classify a new data point with 'X' in the "blue"

class or the "green" class. The coordinates of the data point

are x = 45 and y = 50. Suppose that the value of K is 3. The

KNN algorithm begins by calculating the distance of point X

from all points. It then finds the 3 closest points with the

least distance at point X. This is illustrated in the figure

below. The three closest points were circled.

Figure 2.The three closest points

Paper ID: ART20201082 DOI: 10.21275/ART20201082 564

https://stackabuse.com/tag/scikit-learn/

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

ResearchGate Impact Factor (2018): 0.28 | SJIF (2018): 7.426

Volume 8 Issue 9, September 2019

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

The last step of the KNN algorithm is to assign a new point

to the class to which most of the three closest points belong.

In the figure above, we can see that the two of the three

closest points belong to the "green" class, while one belongs

to the "Blue" class. Therefore, the new data point will be

classified as "green".

3. Application

Using the Scikit-Learn library and implementation of the

K-NN

Algorithm

In this section, we'll see how the Python Scikit-Learn library

can be used to implement the K-NN algorithm in our

dataset.

The Dataset:

We will use the famous dataset uploaded on the Kaggle

website (https: //www.kaggle.com/ronitf/heart-disease-uci)

for our KNN algorithm example. This dataset has 14

attributes: 1.age, 2.sex, 3.cp: type of chest pain (4 values),

4.trestbps: resting blood pressure, 5. Chol: serum

cholesterol in mg/dl, 6.fbs: fasting glucose in mg / dl, 7.

restecg: electrocardiographic results at rest (valeurs 0, 1, 2),

8. Thalach: Maximum heart frequency reached, 9.exang:

Exercise-induced angina pectoris, 10. oldpeak = ST

depression induced by exercise versus rest, 11. Slope: slope

of the maximum exercise segment ST, 12. ca: number of

main vessels (0-3) stained by fluorescence, 13. thal: 3 =

normal; 6 = fixed fault; 7 = reversible defect, 14. Target: (1:

Heart Disease Prediction, 0: No heart Disease prediction)

Our dataset looks like this:

Figure 3: Dataset of 303 rows

Before exploiting this k-NN algorithm, it is essential to

import some modules needed for its implementation:

3.1 Modules import

I proceed by importing these modules which are as follows:

Figure 4: Modules import

Some definitions:

import numpyasnp:
Allows to work with all functions present in the module.

import pandas aspd: Pandas has two data structures for

Data Storage (Series, Dataframe)

import matplotlib.pyplotasplt:

Is a set of functions of command style that allows

matplotlib to function as MATLAB, for example, create

a figure, create a plot area in a figure,

draws lines in a plot area, decorates the layout with labels

frommatplotlibimportrcParams:

An instance of RcParams to manage the default values of

matplotlib.

from matplotlib.cm import rainbow:
supports a wide range of color tables, each of

whichtranslates numeric data values into visible colors in a

path

fromsklearn.neighborsimportKNeighborsClassifier:

Paper ID: ART20201082 DOI: 10.21275/ART20201082 565

https://www.kaggle.com/ronitf/heart-disease-uci

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

ResearchGate Impact Factor (2018): 0.28 | SJIF (2018): 7.426

Volume 8 Issue 9, September 2019

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

import of classifier implementing the vote of the nearest

k-neighbors.

3.2Import dataset and change to variable:

In this part we import our dataset in CSV format and put it

in memory in a variable df.

df = pd.read_csv ('dataset4.csv')

We obtain the following result:

Figure 5: Passing the dataset in memory in the variable df

Figure 6: Display of data and appearance of all attributes in dataframe: df

3.3 Checking the rows of the dataset

We check if the lines are not empty by the function: df.info

().

We get the following results in the terminal of spider

environment:

Figure 7: Display of the results data

Analyzing this result, we find that there are 303 lines of

data, as we can see it in the output, the summary includes the

list of all the columns with their data types and the number

of non-null values in each column we also have the range

index value provided for the index axis.

3.4Summary statistics of the dataset:

Typing the method: df.describe () we get the following

results:

describe (): is a method used to display some basic statistical

details such as percentages, mean, standard values, etc.

Paper ID: ART20201082 DOI: 10.21275/ART20201082 566

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

ResearchGate Impact Factor (2018): 0.28 | SJIF (2018): 7.426

Volume 8 Issue 9, September 2019

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

Figure 8: Display of statistical data

3.5 Determination of correlations between data

In this part we will use Seaborn which is a visualization

library of Python data based on matplotlib. Execute code

below to display the correlation matrix to analyze which

attributes have more influence on having a heart disease.

#get correlations of each features in dataset

import seaborn as sns

corrmat = df.corr ()

top_corr_features = corrmat.index

plt.figure (figsize= (20, 20))

#plot heat map

g=sns.heatmap (df[top_corr_features].corr (),

annot=True, cmap="RdYlGn")

Figure 9: Correlation Matrix

You can also type df.corr () and we get the followingresult:

Paper ID: ART20201082 DOI: 10.21275/ART20201082 567

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

ResearchGate Impact Factor (2018): 0.28 | SJIF (2018): 7.426

Volume 8 Issue 9, September 2019

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

Figure 10: Correlation Matrix displayed in terminal

Following these results we find that there is a strong

correlation between cp and target because the value is at

0.433798 as the graphically shows the matrix also, there is a

strong correlation between thalach and target (0.421741)

3.6Tracing of histograms

In this part it is possible and interesting to make appear the

histograms of our data by typing df.hist ():

Figure 11: Histograms

From these histograms we find that on the Target graph men

are more prone to Hearth disease which the number is more

than 160 persons.

Let's execute the following code:

sns.set_style ('whitegrid')

sns.countplot (x='target', data=df, palette='RdBu_r')

Result

Figure 12: 0: No Heart Disease, 1: Heart Disease

Paper ID: ART20201082 DOI: 10.21275/ART20201082 568

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

ResearchGate Impact Factor (2018): 0.28 | SJIF (2018): 7.426

Volume 8 Issue 9, September 2019

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

3.7 Notions of Dummies Variables

In the field of machine learning and to prepare the data set

for predictions I will implement this data using Scikit-learn

and pyton by creating variable dummies. A dummy variable

(or dummy variable) is a numeric variable representing

categorical data, such as in our case sex, cp, fbs, restecg,

exang, slope, ca, thal.

Their range of values is small; they can only take two

quantitative values or three. In practice, are easier to

interpret when the variables are limited to two specific

values, 1 or 0. As a rule, 1 represents the presence of a

qualitative attribute and 0, absence.

Figure 13: Selection and analysis of dummiesvariable

Let's transform this data into variable dummies and apply

this script using scikit-learn and Python:

dataset = pd.get_dummies (df, columns = ['sex', 'cp', 'fbs',

'restecg', 'exang', 'slope', 'ca', 'thal'])

In this script we create a dataset variable that will transform

the above data into variable dummies from the df variable in

which the data is stored.

Figure14: Apparition de la variable dataset avec les

Dummies variables

On verifie notre dataset s’il contient les dummies variables

Figure 15: Appearance of Variable Dummies

We find that the variables that had 3 values turn into three

possibilities, for example the attribute cp_0, cp_1, cp_2,

when one is at 1 the others are at 0.

Paper ID: ART20201082 DOI: 10.21275/ART20201082 569

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

ResearchGate Impact Factor (2018): 0.28 | SJIF (2018): 7.426

Volume 8 Issue 9, September 2019

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

4. Dataset Scaling (Normalization)

The normalizaion (Scaling) of a dataset is a common

requirement for many machine learning estimators: they

may behave incorrectly if the individual entities do not

resemble more or less standard data normally distributed.

Normalization will be applied to the age, trestbps, chol,

thalach, and oldpeak columns because their values are large

enough for the dataset data scale.

Apply the normalization:

from sklearn.model_selection import train_test_split

from sklearn.preprocessing import StandardScaler

standardScaler = StandardScaler ()

columns_to_scale = ['age', 'trestbps', 'chol', 'thalach',

'oldpeak']

dataset[columns_to_scale] = standardScaler.fit_transform

(dataset[columns_to_scale])

Resultat: valeurssontnormalisées

Figure16: Normalization of values

4.1 Création des variables X et y

In this dataset to teach our Machine we have to divide these

data into two variables X and y, where X is the matrix that

contains all the fields except the column of 'Target' and will

represent the variable of the field column ' Target 'which is

the vector, the objective is to distribute the variable X in two

data sets in training_set and test_set with a percentage for

the training _set of 80% and 20% for the test set, it means

that the machine will do a learning with 80% of data and

will be tested with the 20%. For Variable y, it will also be

divided into two part training_set to 80% and the other

which is the dataset test_set to 20%.

Creation of X and y variables:

y = dataset['target']

X = dataset.drop (['target'], axis = 1)

After creating the variables X and y we get these results:

Figure 17: Création of y and X variables

Paper ID: ART20201082 DOI: 10.21275/ART20201082 570

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

ResearchGate Impact Factor (2018): 0.28 | SJIF (2018): 7.426

Volume 8 Issue 9, September 2019

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

Figure 18: Variable y which represents the column 'Target'

Figure 19: Variable X that contains all columns except the 'Target' column

4.2 Creating Learning Datasets

The goal of creating these datasets is to divide tablesor

matrix in random learning and testing subsets.

In this case, the solution is obviously to divide the dataset

you have into two sets, one for training and the other for

testing; and you do it before you start training your model.

We will now divide the X dataset into two distinct sets:

X_train and X_test. Similarly, we will also split the dataset

there into two: y_train and y_test using the sklearn library

attached to the code to execute:

fromsklearn.model_selection import train_test_split

X_train, X_test, y_train, y_test = train_test_split (X, y,

test_size=0.20)

As you can see from the code, we divided the dataset into a

ratio of 80 to 20, which is a common practice in data

science.

Results obtained after separation of data sets:

Paper ID: ART20201082 DOI: 10.21275/ART20201082 571

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

ResearchGate Impact Factor (2018): 0.28 | SJIF (2018): 7.426

Volume 8 Issue 9, September 2019

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

Figure 20: Variable X that contains all columns except the 'Target' column

Appearance of new variables: X_test, X_train, y_Test,

y_train

Showing these variables, in the X_train we have 80% of data

and in the X_test

We have 20% of data for learning in the y_test and in

X_test.

Figure 21: X_test and X_train datasets created

We also took 80% for y_train and 20% for y_test

Figure 22: Jeux de données y_test et y_train crées

We can check the dataset to see if the values have been

normalized by executing the following method:

dataset.head ()

We obtain the following result:

Paper ID: ART20201082 DOI: 10.21275/ART20201082 572

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

ResearchGate Impact Factor (2018): 0.28 | SJIF (2018): 7.426

Volume 8 Issue 9, September 2019

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

Figure 23: Display of the first 5 rows

It is found that all values have been normalized.

4.3 Determining the K-neighbors with the highest score:

We will import the cross_val_score library and create a

score variable

Let's execute this script:

fromsklearn.model_selection import cross_val_score

knn_scores = []

for k in range (1, 21):

knn_classifier = KNeighborsClassifier (n_neighbors = k)

score=cross_val_score (knn_classifier, X, y, cv=10)

knn_scores.append (score.mean ())

Then we draw the K-neighbors classifier curves:

Let's execute this script for the graphical plot and

determination of K and the highest score:

plt.plot ([k for k in range (1, 21)], knn_scores, color = 'red')

for i in range (1, 21):

plt.text (i, knn_scores[i-1], (i, knn_scores[i-1]))

plt.xticks ([i for i in range (1, 21)])

plt.xlabel ('Number of Neighbors (K)')

plt.ylabel ('Scores')

plt.title ('K Neighbors Classifier scores for different K

values')

Result after executing the script:

Figure 24: Determination of K which corresponds to the highest score

We get the value 12 for the highest score which is 0.85 so

we get ascore of 0.85066 for a k = 12.

4.4 Implement a K-Neigbors classifier for K = 12:

Since we found the K -Neighbors equal to 12 corresponding

to the score of 0.85, the X_train and y_train workout

datasets are introduced into the nearest neighbor classifier.

#Application of classifier KNN with K=12

knn_classifier = KNeighborsClassifier (n_neighbors = 12)

knn_classifier.fit (X_train, y_train)

Message obtained in terminal of spider environment

meaning that the classifier has been applied:

KNeighborsClassifier (algorithm='auto', leaf_size=30,

metric='minkowski',

metric_params=None, n_jobs=None, n_neighbors=12, p=2,

weights='uniform')

4.5 Prediction on X_test dataset

We create ay_pred variable with the following script:

y_pred = knn_classifier.predict (X_test)

Let's analyze the variables y_pred, and execute the following

script:

print (y_pred)

We obtain the following prediction result:

Paper ID: ART20201082 DOI: 10.21275/ART20201082 573

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

ResearchGate Impact Factor (2018): 0.28 | SJIF (2018): 7.426

Volume 8 Issue 9, September 2019

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

Figure 25: Prediction results after training for X_test

These results are the predictions of the X_test dataset set

Figure 26: Comparison of y_pred with y_test

These values of 1 and 0 are the predictions that we obtained

on the set ofX-test and we can compare the results of y_pred

with y_test which is the already the existing dataset

5. Evaluation of our K-NN algorithm

Following our prediction on the test game X_test, we need

to evaluate this algorithm, there are several evaluation

methods, in this article I opted for the following evaluation

method, we will import the report library classification and

confusion matrix:

Let's run this script that will display the score and accuracy

of our algorithm:

fromsklearn.metrics import classification_report,

confusion_matrix

print (confusion_matrix (y_test, y_pred))

print (classification_report (y_test, y_pred))

We obtain the following result:

Figure 27: The score is 0.85, the precision is 0.86

The results show that our K-NN algorithm was able to

classify the X_test set records with 85% accuracy, we can

improve these results with a better score, we also have the

confusion matrix as you see on the terminal image Figure

(27):

This confusion matrix gives us a 85.24% success rate

5.1 Error calculation for the different values of K

between 1 and 40:

The purpose of the error calculation in this part is to find the

K for the lowest error

Let's run this script:

error = []

Calculating error for K values between 1 and 40

for i in range (1, 40):

knn = KNeighborsClassifier (n_neighbors=i)

knn.fit (X_train, y_train)

pred_i = knn.predict (X_test)

error.append (np.mean (pred_i != y_test))

plt.figure (figsize= (12, 6))

plt.plot (range (1, 40), error, color='red',

linestyle='dashed', marker='o',

markerfacecolor='blue', markersize=10)

plt.title ('Error Rate K Value')

plt.xlabel ('K Value')

plt.ylabel ('Mean Error')

The result obtained:

Paper ID: ART20201082 DOI: 10.21275/ART20201082 574

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

ResearchGate Impact Factor (2018): 0.28 | SJIF (2018): 7.426

Volume 8 Issue 9, September 2019

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

Figure 28: Determination of the lowest mean error that corresponds to K

On this graph we notice that for a low average error value

we have a K = 8, it would be interesting to test our algorithm

with this new value of K for evaluation.

5.2 Evaluation of the algorithm with K = 8:

We will evaluate our algorithm with K = 8 after classifier

application:

#application of classifier KNN withK=8

knn_classifier = KNeighborsClassifier (n_neighbors = 8)

knn_classifier.fit (X_train, y_train)

Execution of this script also for evaluation:

fromsklearn.metrics import classification_report,

confusion_matrix

print (confusion_matrix (y_test, y_pred))

print (classification_report (y_test, y_pred))

Obtained result:

Figure 29: Matrix of Confusion, precision and score

We find that the confusion matrix is now:

This confusion matrix gives us a percentage of 87%of

success and accuracy of 87%

6. Predictions for medical dataset received

6.1 Conversion of data toa variable: datamedical

In this part we will receive a medical data set having all the

attributes with their values except the 'Target' part which is

the value to predict and test our algorithm because the

learning has already been done.

Here is the file received to predict the heart disease of these

patients:

It is very important that when receiving the data to be

predicted, all the categorical variables must be present in the

columns because during the transformation phase into

Dummies variables no column should be missing.

File received for prediction: medicalForPredict2.csv

Paper ID: ART20201082 DOI: 10.21275/ART20201082 575

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

ResearchGate Impact Factor (2018): 0.28 | SJIF (2018): 7.426

Volume 8 Issue 9, September 2019

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

Figure 30: Patient data set for prediction without Target column

In spider environment you type:

datamedical = pd.read_csv ('medicalForPredict2.csv')

This step is used to pass the file into a datamedical variable

Result:

Figure 31: Variable created: datamedical

Figure 32: Apparition des nouvelles données de patients dans variable data medical

We display the data received by the medical staff to predict.

These data must also be normalized and also pass the values

into dummies variable so that the predictions are reliable.

6.2 Passing data into dummies variables

dataset = pd.get_dummies (datamedical, columns = ['sex',

'cp', 'fbs', 'restecg', 'exang', 'slope', 'ca', 'thal'])

We obtain a new variable: dataset containing the dummies

variable

Paper ID: ART20201082 DOI: 10.21275/ART20201082 576

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

ResearchGate Impact Factor (2018): 0.28 | SJIF (2018): 7.426

Volume 8 Issue 9, September 2019

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

Figure 33: Appearance of Dummies variables

6.3 Data normalizations

Let's execute the same script seen before:

fromsklearn.model_selection import train_test_split

fromsklearn.preprocessing import StandardScaler

standardScaler = StandardScaler ()

columns_to_scale = ['age', 'trestbps', 'chol', 'thalach',

'oldpeak']

dataset[columns_to_scale] = standardScaler.fit_transform

(dataset[columns_to_scale])

Figure 34: Data normalization

Now that we have created the variable dummies and

normalize the data of the data received by the medical to

predict, we can proceed to the prediction:

6.4 Let's apply the KNN classifier with K = 8:

knn_classifier = KNeighborsClassifier (n_neighbors = 8)

knn_classifier.fit (X_train, y_train)

We will create the variable y_pred with the passage in

argument the dataset that interests us to predict:

y_pred = knn_classifier.predict (dataset)

Let's show the predictions of this dataset of patients received

and transmitted by the medical team:

print (y_pred)

Paper ID: ART20201082 DOI: 10.21275/ART20201082 577

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

ResearchGate Impact Factor (2018): 0.28 | SJIF (2018): 7.426

Volume 8 Issue 9, September 2019

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

Results for all Patients

Predictions:

[1 1 1 1 0 1 1 0 1 1 1 1 1 1 1 1 1 1 1 0 1 0 1 0 1]

Figure 35: Prediction results

We find that 20 patients are going to have a heart disease

and 5 patients are not going to have heart disease, and our

algorithm have 87% of accuracy (20 values = 1 and 5 values

= 0)

7. Prediction by patient alone

Let's take the variable dataset and copy the first row of the

patient 1

Figure 36: Selection and copy of first line of patient 1 (index 0)

For this example, take the first line 0 of the 1st patient and

copy the first line and place it as an argument of the

following script:

knn_classifier.predict ([[-0.07716439054355188,

0.19905117369814235, -0.5168960856949255, -

2.085865430252193, -0.532627428060773, 1, 0, 0, 0, 1, 0,

1, 0, 1, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 0, 0, 1, 0, 0, 0]])

Write the following script to display the result for this

patient:

print ('The prediction is: ', knn_classifier.predict ([[-

.07716439054355188, 0.19905117369814235, -

0.5168960856949255, -2.085865430252193, -

0.532627428060773, 1, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 0, 0,

1, 1, 0, 0, 0, 0, 1, 0, 0, 0]]))

8. Result Per Patient

The prediction is: [1]

[1]: means that this patient will have a heart disease and that

preventive actions are necessary.

In conclusion, we can have predictions by patient alone or

by group of patients.

Figure 37: Patient data with results after predictions

Paper ID: ART20201082 DOI: 10.21275/ART20201082 578

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

ResearchGate Impact Factor (2018): 0.28 | SJIF (2018): 7.426

Volume 8 Issue 9, September 2019

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

9. Conclusion

This K-NN algorithm could be very effective for prediction

of heart disease; the diagnosis of heart disease in most cases

depends on a complex combination of clinical and

pathological data. Because of this complexity, health

professionals and researchers are increasingly interested in

accurate and accurate prediction of heart disease. In this

article, I use this algorithm as a prediction system for heart

disease that can help health professionals predict the state of

heart disease based on clinical data of patients. The dataset

used with the 14 attributes can be used with other attributes

that can be added by the medical staff, plus we have relevant

data plus our algorithm will be precise.

This algorithm and method can be used for prediction of

heart disease and provide preventive actions to patients for

their heart disease.

References

[1] Holte, Robert C. “Very simple classification rules

perform well on most commonly used datasets.”

Machine learning 11.1 (1993): 63-90.

[2] A. Blum, J. Hopcroft and R. Kannan .Foundations of

Data Science : An Introduction to Computational

Learning Theory (M. Kearns and U. Vazirani)

[3] S. Shalev-Shwartz and S. Ben-David. Understanding

Machine Learning: From Theory to Algorithms

[4] John D. Kelleher, Brian Mac Nameeet Aoife D'Arcy «

Fundamentals of Machine Learning for Predictive Data

Analytics: Algorithms, Worked Examples, and Case

Studies » par John D. Kelleher, Brian Mac Nameeet

Aoife D'Arcy

[5] Ian H. Witten, Eibe Frank et Mark A. Hall .« Data

Mining: Practical Machine Learning Tools and

Techniques »

[6] O'Mahony C, Jichi F, Pavlou M, Monserrat L,

Anastasakis A, Rapezzi C, Biagini E, Gimeno JR,

Limongelli G, McKenna WJ, Omar RZ, Elliott PM. A

novel clinical risk prediction model for sudden cardiac

death in hypertrophic cardiomyopathy (HCM risk-SCD)

Eur Heart J. 2014;35: 2010–2020.

[7] Guyon I, Elisseeff A. An introduction to variable and

feature selection. J Mach Learn Res. 2003;3: 1157–

1182.

[8] Clarke, B.S., Fokoué, E. & Zhang, H.H. (2009).

Principles and Theory for Data Mining and Machine

Learning. Springer Verlag.

[9] Giuseppe Bonaccorso .Machine Learning Algorithms

Author Profile

Yasin Bouanani, is a Professor with a Ph.D in

Computer Sciences, currently personal Researcher in

Morocco. His current researches focuses on 3D

immersive Virtual Reality for analysis and learning

and Artificial Intelligence in Machine Learning and

Deep Learning, he has an MBA of the Conley College London..

His current research focuses on Artificial Intelligence in Machine

Learning and Deep Learning

Paper ID: ART20201082 DOI: 10.21275/ART20201082 579

https://www.microsoft.com/en-us/research/wp-content/uploads/2016/02/book-No-Solutions-Aug-21-2014.pdf
https://www.microsoft.com/en-us/research/wp-content/uploads/2016/02/book-No-Solutions-Aug-21-2014.pdf
https://www.amazon.com/Giuseppe-Bonaccorso/e/B00J1C644E/ref=dp_byline_cont_book_1

